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Abstract

Mueller and Tribe [32] have shown that rescaled long-range voter models in one-
dimension converge to a Wright-Fisher SPDE, also known as a stochastic Fisher-
Kolmogorov-Petrovskii-Piscounov (FKPP) wave. Recently Hallatschek and Nelson [20]
have described the asymptotic behavior of genealogies in a closely related model. Their
answer is expressed in terms of a diffusion in a very singular random environment. Here
we prove rigorous results that partially confirm their analysis. Brunet et al. [7] have
conjectured that genealogies of all models in the FKPP universality class are described
by the Bolthausen-Sznitman coalescent, see [33]. However, in the model we study there
are no simultaneous coalescences.

1 Introduction

The goal of this work is to understand the shape of genealogies in growing tumors but similar
issues arise in the study of populations expanding into new territory, [9, 15, 26]. The last
two papers consider a 25 × 100 grid of demes of carrying capacity 50. Here, we will study
the biased voter model on Zd with each site occupied by one cell that is a wild type (0) or
a cancer cell (1). The fitness of cancer cells is λ = 1 + s times that of wild type cells. Let fi
be the fraction of neighbors in state i. A site changes

from state 0 to 1 at rate λf1,

from state 1 to 0 at rate f0.

As we will describe in more detail in Section 1.2, the biased voter model, ξt, is dual to the
branching coalescing random walk: ζx,tr , which can be defined on the same space so that

{ξt(x) = 1} = {ξt−r(y) = 1 for some y ∈ ζx,tr }. (1)

In ζx,tr particles jump at rate 1 to a randomly chosen nearest neighbor, and give birth at rate
s to a new particle sent to a randomly chosen nearest neighbor. If a particle lands on a site
occupied by another particle they coalesce to become a single particle.

Let Ax,t0 = {y ∈ ζx,tt : ξ0(y) = 1}. If this set is empty, then ξt(x) = 0; if not, then Ax,t0

gives the potential ancestors of the cell at x at time t. To find the actual ancestor, the
traditional method is to run the biased voter model forward in time from this initial set.
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This procedure, invented by Krone and Neuhauser, [28, 35], is called the ancestral selection
graph. Here, as we show in Section 1.2, one can instead impose an ordering on points in the
dual so that the ancestor is the first occupied site in the dual.

The shape theorem of Bramson and Griffeath [5, 4], shows that if we start the biased
voter model from a single type 1 and the process does not die out, then at time t, the set
of 1’s is roughly tD ∩ Zd, where D is the limiting shape. D is a convex set that has the
same symmetries as those of Zd that leave the origin invariant, i.e., rotations and reflections.
Suppose we sample a site x at random from tD. Let Ct = ∪ts=0 (sD×{s}) denote the space
time cone swept out by the expanding ball. As we work backwards in time in the dual
process, there will be no successful branching events until our genealogy exits Ct, so this
part of the genealogy will be a random walk. Random walks move by an amount O(

√
t) in

time t while the cone is growing linearly, so to a first approximation the genealogy will go
straight down until it hits the boundary of the cone. What happens when the genealogy hits
the boundary is hard to visualize, but there must be enough successful branching events to
allow the genealogy to move at the same speed as which the biased voter model advances.

Some insight into the nature of the genealogies can be found in experimental papers.
Sottoriva et al. [39] did genomic profiling of 349 individual glands sampled from the opposite
sides of 15 colorectal cancer tumors. Consistent with the hypothesis that the cancer came
from a single aberrant colon crypt, some mutations were present in all glands. However,
there were also mutations that were only present in small regions of the tumor. This is
consistent with the mental picture of genealogies working backwards in time along the edge
of the space time cone. Genealogies of cells sampled from opposite edges of the tumor at
time t will coalesce near the time when the tumor began growing. See Figure 1 in [39].

Hallatschek, Hersen, Ramanathan, and Nelson [19] inserted two initially well mixed pop-
ulations of fluorescent E. coli into the center of a Petri dish. Over time the system developed
well-defined sector-like regions with “fractal” boundaries. The authors concluded that the
formation of these regions was driven by random fluctuations that originate in a thin band of
pioneers at the expanding frontier. This system and similar experiments involving yeast have
been studied by approximate calculations and heuristic arguments leading to a description
of the genealogies, see [20, 27, 30, 36].

Our goal is to obtain rigorous results. One related model that has been analyzed math-
ematically is the multi-color version of first passage percolation, which was introduced by
Haggström and Pemantle [18]. In this system, occupied sites are red or blue and vacant sites
become occupied by either a red or a blue particle at a rate proportional to the number of
occupied sites of that color. In [18] it was shown that if we start with one red and one blue
then with positive probability the red and blue populations become infinitely large, and will
each occupy a linearly growing cone. For more recent results, see [17] and references therein.

1.1 Long range voter models in one dimension

To try to find a mathematically tractable model, we will leave biological reality and consider
a one-dimensional system. Perhaps the most famous of these is the model introduced by
Brunet, Derrida, Mueller, and Munier [7]. In one of the many variants, at each time step,
each of the N particles dies and gives birth to two offspring, displaced from its current
location by an independent amount. Then out of the 2N particles we choose the right-most
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N of them. In a second version, which is analytically more tractable, see [8], we again always
have N particles, but a particle at y gives birth to an infinite number of offspring distributed
according to a Poisson point process with intensity e−(x−y). Again we keep the right-most
N . In this case, it is reasonably straightforward to compute, see [6], that when N is large
the genealogy follows the Bolthausen-Sznitman coalescent [3] and the most recent common
ancestor is O(logN) generations in the past. Berestycki, Berestycki, and Schweinsberg [2]
have proved a similar result for a system introduced many years ago by Kesten [24]. In that
system, Brownian motions with drift −

√
2 on (0,∞) branch into two at rate 1 and are killed

when they hit 0. As Kesten showed −
√

2 is the critical value of the drift separating rapid
extinction from exponential growth.

While the Brunet-Derrida model is interesting, it is not relevant to the expanding tumor
model we want to study, because in that system space represents a continuum of fitness
values. Instead, in this paper, we will consider a model closely related to the one introduced
by Hallatsheck and Nelson [20]. In our model, there is one cell at each point of (L−1Z) ×
{1, . . . ,M}, whose cell-type is either 1 or 0. The cells in deme w ∈ L−1Z only interact
with those in demes w − L−1 and w + L−1. Hence each cell x = (w, i) has 2M neighbors.
Type-0 cells reproduce at rate 2Mrn, type-1 cell at rate 2M(rn+θR−1

n ). When reproduction
occurs the offspring replaces a neighbor chosen uniformly at random. In the terminology of
evolutionary games, this is birth-death updating.

Let ξt(x) = ξnt (x) be the type of the cell at x at time t. Our (rescaled) biased voter
model (ξt)t≥0 can be constructed using two independent families of i.i.d. Poisson processes:
{P x,y

t : x ∼ y} that have rate rn, and {P̃ x,y
t : x ∼ y}, that have rate θR−1

n . Here we write
y ∼ x to indicate that y is a neighbor of x. At a jump time of P x,y

t , the cell at x is replaced
by an offspring of the one at y. At a jump time of P̃ x,y

t , the cell at x is replaced by an
offspring of the one at y only if y has cell-type 1. The dynamics of (ξt)t≥0 can be described
by the equation

ξt(x) = ξ0(x) +
∑
y∼x

∫ t

0

(ξs−(y)− ξs−(x)) dP x,y
s +

∑
y∼x

∫ t

0

ξs−(y)(1− ξs−(x)) dP̃ x,y
s . (2)

In the first integral, if ξs−(y) = ξs−(x) then nothing happens.

If ξs−(y) = 1 and ξs−(x) = 0 then ξs(x) = 1;

if ξs−(y) = 0 and ξs−(x) = 1 then ξs(x) = 0.

In the second integral, nothing happens unless ξs−(y) = 1 and ξs−(x) = 0. In this case
ξs(x) = 1.

We define the approximate density by

unt (w) :=
1

M

M∑
i=1

ξt(w, i)

and linearly interpolate between demes to define unt (w) for all w ∈ R. It is clear that for all
t ≥ 0, we have 0 ≤ unt (w) ≤ 1 for all w ∈ R and unt ∈ Cb(R), the set of bounded continuous
functions on R. If we equip Cb(R) with the metric

‖f‖ =
∞∑
k=1

2−k sup
|x|≤k
|f(x)| (3)
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i.e., uniform convergence on compact sets, then Cb(R) is Polish and the paths t 7→ unt are
Cb(R) valued and càdlàg.

Theorem 1. Suppose that as n→∞, the initial condition un0 converges in Cb(R) to f0 and
that:

(a) rnMn/L
2
n → α ∈ (0,∞)

(b) rn/Ln → γ ∈ [0,∞)

(c) Mn/Rn → β ∈ [0,∞)

(d) Ln →∞ and LnRn →∞

Then the approximate density process (unt )t≥0 converges in distribution in D([0,∞), Cb(R)),
as n → ∞, to a continuous Cb(R) valued process (ut)t≥0 which is the weak solution to the
(stochastic) partial differential equation

∂tu = α∆u+ 2θ β u(1− u) + |4γ u(1− u)|1/2 Ẇ (4)

with initial condition u0 = f0. Here Ẇ is the space-time white noise on [0,∞)× R.

This result is a straight forward generalization of a result of Mueller and Tribe [32]. They
considered a long range voter model on Z/n in which two voters are neighbors if |x−y| ≤

√
n.

Their voters change their opinion at rate O(n) and imitate the opinion of a neighbor chosen
at random. More precisely, for each of the 2n1/2 neighbors, they adopt the opinion of that
neighbor at rate n1/2 if it is 0 and at rate n1/2 + θn−1/2 if it is 1. Their model corresponds
roughly in our situation to Ln = Mn = Rn = rn = n1/2. Their limit is

∂tu =
1

6
∆u+ 2θ u(1− u) + |4u(1− u)|1/2 Ẇ .

β = γ = 1 while the 1/6 comes from the fact that the variance of the uniform distribution
on [−1, 1] is 1/3.

1.2 Duality

By using methods of Durrett and Restrepo [14], we can study the limiting behavior of the
the dual branching coalescing random walks. They considered a sequence of voter models
on Z in which voters change their opinion at rate 1 and a voter at x imitates the one at x+z
with probability qn(z) where

1. qn(z) = qn(−z),
2.
∑

z∈Z z
2qn(z) = σ2

nn with σn → σ ∈ (0,∞),
3. there is an h > 0, independent of n so that qn(z) ≥ h/n1/2 for |z| ≤ n1/2,
4. qn(z) ≤ C exp(−c|z|/n1/2).

Theorem 2. [14, Theorem 3] Consider the voter model on Z with dispersal kernel qn satis-
fying assumptions 1-4 above. Let t0 be the coalescence time of the lineages starting at 0 and
at Ln where Ln/σn→ x0 ≥ 0. Then 2t0/n converges in distribution to `−1

0 (στ/2) where `0 is
the local time at 0 of a standard Brownian motion started from x0 and τ is an independent
mean 1 exponential random variable.
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The first step in generalizing this result is to describe the dual process in our setting in
more detail. To do this, we recall the graphical representation of the biased voter model
introduced by Harris (1976) and developed by Griffeath (1978). The ingredients are arrows
that spread fluid in the direction of their orientation, and δ’s which are dams that stop fluid.
At times s of P̃x,y we draw an arrow from (s, y) → (s, x). At times s of Px,y we draw an
arrow from (s, y)→ (s, x) and put a δ at (s−, x). Intuitively, we inject fluid into the bottom
of the graphical representation at the sites of the configuration that are 1 and let it flow up.
A site x is in state 1 at time t if and only if it can be reached by fluid. If there is fluid at y
at time s and an arrow (with no δ) from (s, y)→ (s, x), the fluid will spread to x, i.e., there
is a birth at x if it is in state 0. If x is already occupied no change occurs.

If there is an arrow-δ from (s, y)→ (s, x), then a little thought reveals

before after
y x y x
1 0 1 1
0 1 0 0
1 1 1 1
0 0 0 0

In the first case the fluid spreads from y to x as before. In the second, there is no fluid to
be spread but the dam stops the fluid at x. In the third the dam stops the fluid at x, but it
replaced by fluid from y. In the fourth, there is no fluid so nothing happens. Thus the effect
in all cases is that x imitates y.

To define the dual, we inject fluid at x at time t and let it flow down. It is again stopped
by dams but now moves across arrows in the direction OPPOSITE to their orientation.
Given z = (w, i) we define the dual process ζt,zs , 0 ≤ s ≤ t to be the set of sites at time t− s
that can be reached by fluid starting at z. A little thought shows that ζt,z0 = {z} and follows
the following rules:

• If a particle in ζt,zs is at x and an arrival in P x,y occurs at time t− s then the particle
jumps to y.

• If a particle in ζt,zs is at x and an arrival in P̃ x,y occurs at time t− s then the particle
gives birth to a new particle at y.

• If a jumping particle or an offspring lands on another particle in ζt,zs , then the two
particles coalesce to 1.

For a picture see Figure 1. There ζt,1t = {−2,−1, 1, 3}. It follows from the definition that

Lemma 1. ξt(z) = 1 if and only if ξ0(x) = 1 for some x ∈ ζt,zt .

To extend the definition to a collection of sites A, we let ζt,As = ∪z∈Aζt,zs . We defined
our dual process starting at a fixed time t so that the relationship in Lemma 1 holds with
probability 1. If we have two times t < t′ then the distributions of ζt,As and ζt

′,A
s agree up to

time t, so the Kolmogorov extension theorem implies that we can define a process ζAs for all
time so that the distribution agrees with ζt,As up to time t.
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Figure 1: Duality for the biased voter model.

Theorem 3. As n→∞, the dual process converges to a limit in which branching occurs at
rate θβ, particles move according to Brownian motions with variance 2αt, and two particles
coalesce when the local time at 0 of the difference between their locations exceeds αζ/γ,
where ζ is a mean one exponential independent of the particle motions. If γ = 0 there is no
coalescence.

If we let χAt denote the spatial locations of the particles in the limit process in Theorem
3, then Lemma 1 and Theorem 3 imply

E
∏
x∈A

(1− ut(x)) = E
∏
y∈χA

t

(1− u0(y)). (5)

Here A can be a multi-set, e.g., {a, a, a, b, b}. In this case duality says

E[(1− ut(a))3(1− ut(b)2] = E
∏
y∈χA

t

(1− u0(y)).

The duality relationship described in the last paragraph is not new. In 1986, Shiga and
Uchiyama [37] introduced it to study a collection of Wright-Fisher diffusions coupled by
migrations. Shiga [38] used it to show uniqueness in law for (4). Doering, Mueller, and
Smerekea [11] gave a simpler description and derivation of the dual. See also Hobson and
Tribe [22].
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The dual process gives us the set of possible ancestors of the particle at x at time t.
To determine the actual ancestor and the ancestral lineage, we assign an ordering to the
particles in the dual in such a way that the first occupied site in the list will be the ancestor.
The rules are as follows:

• If particle i jumps and there is no coalescence, then its location changes but the order
does not.

• If particle i jumps and coalesces with j then the particle with the higher index is
removed from the dual. The surviving particle has its location updated. The remaining
particles are reindexed.

• If the i particle gives birth then the new particle is labeled i, while all particles with
indices j ≥ i have their indices increased by 1.

To explain the definition, we will work through the example drawn in Figure 1. The succeisve
states are

{1}, {0, 1}, {0, 2}, {−1, 2}, {−1, 3, 2},
{0,−1, 3, 2}, {1,−1, 3, 2}, {1,−1, 3}, {1,−2,−1, 3}

To see this note that under our rules, at the point where the dual jumps from {1} → {0, 1},
if there is a particle at 0 it will give birth and replace any particle at 1. The next two
events involve voting, so the affected particles move but do not change their position in the
ordering. The next event is an arrow from 3 to 2. A particle at 3 will replace one at 2, so
3 is inserted in the list before 2. The next novel event is the seventh transition when the
particles at 2 and 1 coalesce: at that time we drop the lower ranked particle.

Neuhauser [34] used a similar dual to show that in the multitype contact process, if the
particle death rates are equal, then the one with the higher birth rate takes over the system.
She was concerned with limits starting from translation invariant initial distributions, so
the top ranked particle, which she called the distinguished particle had positive probability
to land on a site occupied by the type with the higher birth rate. In our situation the
distinguished particle will jump left or right with equal probability due to birth and voter
events. Thus if we sample an individual at time t near the predicted location of the front,
it is unlikely its lineage will land on an occupied site, so the true ancestor will be some
particle that is not highly ranked. Because of this, it seems difficult to use the ordered
dual to obtain detailed information about the motion of the lineage in our model. However,
since coalescences of particles in the branching coalescing random walk occur when local
times exceed independent exponentially distributed levels, it is clear that we do not get
simultaneous coalescences as in the Bolthausen-Sznitman coalescent, and the times between
coalescences are O(1).

1.3 Tracer Dynamics

Hallatschek and Nelson [20] have an interesting approach to studying the ancestral lineage
of a particle based on “tracer dynamics”. Think of our expanding population as a fluid and
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inject a small amount of red liquid at time 0. The locations of the red fluid at time t will
identify the locations of their progeny. In particle terms, we will have states 0, 1, and 1∗

where the * indicates being labeled by the tracer. To construct the labeled process it is
convenient to use the graphical representation. If there is an arrow-δ from y to x then x
adopts the state of y. If there is an arrow from y to x and y is in state 1 or 1∗ then x will
adopt the state of y, but nothing happens if y is in state 0. In fluid terms, the color of fluid
at y replaces that at x.

To do computations, we let ηt(x) = 1 if the individual at x at time t is labeled and 0
otherwise. We only label type 1’s, so ηt(x) ≤ ξt(x). A noted above ηt(x) can be computed
using the version of the dual ζt,xs in which the points are ordered. That is, ηt(x) = 1 if the
first occupied site in the list is labeled. More formally, if ζt,xt = {y1, y2, . . . yK} (note that K
and y1, . . . yK are random variables), then

P (ξt(x) = 0) = E

(
K∏
i=1

(1− ξ0(yi))

)
≡ EF (ζxt )

P (ηt(x) = 1) = E

(
K∑
j=1

ζ0(yj))

j−1∏
i=1

(1− ξ0(yi))

)
≡ EG(ζxt )

In the same way one computes

P (ξt(x1) = 0, . . . ξt(xm) = 0, ηt(xm+1) = 1, . . . , ηt(xn) = 1) (6)

= E

[
m∏
i=1

F (ζxit )
n∏

i=m+1

G(ζxit )

]

A standard argument shows that the probabilities just computed determine the distribution
of (ξt, ηt).

To obtain an idea of the working of the limit process (and to prove tightness), we note
that in terms of the previously defined Poisson processes,

ηt(x)− η0(x) =
∑
y∼x

∫ t

0

(ηs−(y)− ηs−(x)) dP x,y
s (7)

+
∑
y∼x

∫ t

0

ηs−(y)(1− ηs−(x))− ξs−(y)(1− ηs−(y))ηs−(x) dP̃ x,y
s .

The first term gives the voter interactions. For the second term, note that if y is in state 1∗

and x is not, the number of 1∗’s will increase by 1, while if x is in state 1∗ and y is in state
1 (ξs−(y) = 1 and ηs−(y) = 0), the number will decrease by 1.

As before, we define the approximate density for the labeled particles by

`nt (w) :=
1

M

M∑
i=1

ηt(w, i)

and linearly interpolate to obtain a function `nt (w) for all w ∈ R.
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Theorem 4. Suppose that as n → ∞, the conditions on rn, Rn, Mn and Ln in Theorem
1 hold, and that the initial condition (un0 , `

n
0 ) converges in Cb(R) × Cb(R) to (f0, g0). Then

the pair of approximate densities (unt , `
n
t )t≥0 converges in distribution in D([0,∞), Cb(R)×

Cb(R)) to a continuous Cb(R) × Cb(R) valued process (ut, `t)t≥0 which is the weak solution
to the coupled (stochastic) partial differential equations

∂tu = α∆u+ 2θ β u(1− u) + |4γ `(1− u)|1/2 Ẇ 0 + |4γ (u− `)(1− u)|1/2 Ẇ 1

∂t` = α∆`+ 2θ β ` (1− u) + |4γ `(1− u)|1/2 Ẇ 0 + |4γ ` (u− `)|1/2 Ẇ 2

with initial condition (u0, `0) = (f0, g0), where Ẇ i, i = 0, 1, 2 are three independent space-
time white noises on [0,∞)× R.

As the proof shows the three noises Ẇ 0, Ẇ 1 and Ẇ 2 refer to voting interactions between
1∗ and 0, 1 and 0, and 1∗ and 1 respectively. The drift in `t is 2θβ `(1− u) because labeled
particles only have a selective advantage in competition with those of type 0.

We will prove our result by showing that the sequence of approximating processes is tight.
To conclude that there is weak convergence, we need to show

Lemma 2. When γ > 0, the solution of the coupled SPDE in Theorem 4 is unique in law.

To do this we use our duality function (6). Details are in Section 8.
In Theorems 1, 3 and 4, the assumption α > 0 is used crucially in the proof of tightness,

but we allow β or γ to be 0. The deterministic regime (γ = 0) occurs, for instance, if
rn = n1/a, Ln = n1/b, Mn = dαn2/b−1/ae and Rn = Mn/β, where 2a > b > a > 0. When
γ = 0 the limiting process is a PDE

∂tu = α∆u+ 2θ β u(1− u)

∂t` = α∆`+ 2θ β ` (1− u).

This PDE obviously has a unique weak solution (solve the first equation and then solve the
second), but if one wants, this can be proved using duality.

1.4 Lineage dynamics

Using tracer dynamics Hallatschek and Nelson [20], see page 163 and Appendix A, derived
the probability density G(x, t|x′, t′) that an individual at x′ at time t′ is descended from an
ancestor at x at time t < t′. They assumed that the population density in a frame moving
with velocity v is

∂tu(x, t) = D∂2
xu(x, t) + v∂xu(x, t) +K(x, t)

where, for instance, K(x, t) = su(u∞−u)+ε
√
u(u∞ − u)Z with Z being a space-time White

noise, and we have changed their c to u. They concluded, see their (3), that

∂tG(x, t|x′, t′) = −∂xJ(x, t|x′, t′)
J(x, t|x′, t′) = −D∂xG+ {v + 2D∂x log[u(x, t)]}G.
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Here (x′, t′) is thought of as the initial condition and (x, t) as the finial condition, so this is
the forward equation

∂tG = D∂2
xG− ∂x({v + 2D∂x log[u(x, t)]}G) (8)

and the drift in the diffusion process is v + 2D∂x log[c(x, t)].
As we will now show, a closely related equation “follows” from Theorem 4. We used

quotation marks because we use the nonexistent Itô’s formula for the SPDE in Theorem 4
and apply it to the function f(`, u) = `/u which is not continuous at (0, 0). Suppose (u, `)
solves the SPDE and let ρ = `/u. By calculus and Theorem 4,

∂tρ =
1

u

[
α∆`+ 2θ β ` (1− u) + |4γ`(1− u)|1/2 Ẇ 0 + |4γ`(u− `)|1/2 Ẇ 2

]
− `

u2

[
α∆u+ 2θ β u(1− u) + |4γ`(1− u)|1/2 Ẇ 0 + |4γ(u− `)(1− u)|1/2 Ẇ 1

]
.

The terms involving θβ cancel. To combine the Laplacian terms we use the formula

∆

(
`

u

)
=

∆`

u
− `∆u

u2
− 2

∂xu

u
· ∂x

(
`

u

)
.

To add up the noises we note that since the W i are independent, the variances add up to

(u− `)2

u4
`(1− u) +

`(u− `)
u2

+
`4(u− `)(1− u)

u4

=
`(u− `)
u2

[
u− `)(1− u)

u2
+
u2

u2
+
`(1− u)

u2

]
=

`(u− `)
u3

since (u− `)(1− u) + `(1− u) + u2 = u(1− u) + u2 = u. Combining our calculations,

∂tρ = α∆ρ+ 2α ∂x log u · ∂xρ + |4γ ρ (1− ρ)/u|1/2 Ẇ (9)

for some white noise Ẇ . To compare (9) with (8), note that their D = α, they work in a
moving reference frame and their equation is for a fixed realization of the total population
size; while ours is in a fixed reference frame and does not condition on u(t, x) and hence
retains the fluctuation term |4γ ρ (1− ρ)/u|1/2 Ẇ .

Equations (8) and (9) both contain drift terms of the form ∂x log[u(x, t)]. It is a well-
known fact that solutions of the SPDE in (4) are Hölder continuous with exponent 1/2− ε
in space and 1/4 − ε in time, so it is not clear how to make sense of these equations. The
fact that ηt(x) ≤ ξt(x) means that ` ≤ u, so in computing `/u we will never divide a positive
number by 0. However solutions to u have compact support [31], so it is not clear if the ratio
of densities `n/un will be tight.

Forgetting about technical problems and returning to the realm of physical intuition, the
drift in equation (8) has two competing parts. The first term v tends to push the lineage into
the tip of the wave and is a consequence of the moving frame of reference. In terms of our
earlier heuristics, for lineages far from the front there are few opportunities for branching so
the genealogies perform Brownian motions while (as we move backwards in time) the front
catches up. The second term reflects the fact that going forward in time, particles near the

10



front move from regions of high density to low density due to branching. Hence genealogic
lineages drift from the wavefront back toward the center of the wave.

To visualize the movement of the particle in the moving reference frame we introduce the
time dependent potential

V (x, t) = −vx− 2α log u(x, t)

and note, as [20] do in their formula (A.3), that the drift in (8) is ∂xV (x, t). To analyze the
asymptotic behavior of the motion of genealogies near the boundary, it is natural to assume
that (in the moving frame of reference) we are in steady state

u(x, t) ≈ ust(x).

Muller and Sowers [31] have shown that if the constant γ is small enough then the
stationary state exists and is the limit for all initial states that are = 1 for x ≤ a and = 0
for x ≥ b, for some a, b ∈ R. This and the previous calculation suggest that the steady state
location of the genealogy (in the moving reference frame) is

Pst(x) = lim
t′→∞

G(x, 0|x′, t′) = c ust(x)2 exp(vx/D),

where c is a normalization constant, see (6) in [20]. In appendix C, [20] consider the special
case of a deterministic wave u and show that unfortunately, even for the slowest wave speed,
2
√
Ds, ust(x)2 exp(vx/D) is not integrable. In general, knowing ust is not enough to compute

Pst, one must also consider the evolutionary history that brought us to the current state.
Making sense of equation (8) for the ancestral lineages seems difficult, but since these lineages
are embedded in the limit of the branching coalescing random walk their behavior cannot
be too pathological.

1.5 Concluding remarks

Theorem 1 is a special case of Theorem 4. Theorem 3 is proved in Section 2. Most of the
difficulty in the proof of Theorem 2 in Durrett and Restrepo is due to the generality of the
interaction kernel. Since spatial movement of genealogies in our process is a simple random
walk, the result here can be proved easily using the argument in Section 2 of [14].

The rest of the paper is devoted to the proof for Theorem 4. In Section 3 we convert the
stochastic integral representations in (2) and (7) into approximate martingale problems. This
is now a common approach in the study of scaling limits of particle systems, see [13, 10, 12].
The calculations for the u equation are almost identical to those in Section 3 of Mueller and
Tribe [32], but some minor changes are needed to study the joint distribution (`, u).

In Sections 5–7 we prove tightness. Again many of the ideas come from [32], but since
they only write out the details for their contact process limit theorem, and we have to prove
the joint convergence, we have written out the details. See Kleim [25] for a recent example
of convergence of rescaled Lotka-Volterra models to a one-dimensional SPDE, this time
with a cubic drift term. The main ideas of the tightness proof are given in Section 5. Two
lemmas that require a lot of computation are proved in Section 6. Some nonstandard random
walk estimates are proved in Section 7. Finally Lemma 2, which establishes distributional
uniqueness for the coupled SPDE by using a duality based on (6), is proved in Section 8.
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2 Proof of Theorem 3

Let Snt be a random walk that jumps from x to x± 1/Ln at rate 2rnMn. The reader should
think of the difference of the location of two genealogies, but we allow the two genealogies to
move independently even after they hit. There are Mn cells at each deme and P̃xy has rate
θR−1

n . So the branching rate at each deme is θMnR
−1
n → θβ. On other hand, an elementary

computation shows that

|Snt | −
4rnMn

Ln

∫ t

0

1(Sn
s =0) ds

is martingale. As t → ∞, |Snt | converges to the absolute value of a Brownian motion Bt

with variance 4αt, so for reasons explained in Section 2 of [14], the second term converges to
L0(t), the local time at 0 for the limiting Brownian motion, which is defined by the property
that |Bt| − L0(t) is a martingale.

The sojurn times at 0 are independent and exponential with rate 4rnMn, so the number
of visits to 0 up to time t

Nn
t ∼ 4rnMn

∫ t

0

1(Sn
s =0) ds

and it follows that Nn
t /Ln → L0(t). On each visit to 0, the two particles have a probability

1/Mn to coalesce. Our assumptions imply that

Mn

Ln
· rn
Ln
→ α so

Ln
Mn

→ γ

α

and the desired result follows.

3 Approximate Martingale Problems

For simplicity we drop the subscript n’s on M , L, R and r. We leave the superscript n in
unt and `nt to distinguish the approximating processes from their limits. We write

〈f, g〉 :=
1

L

∑
w∈L−1Z

f(w)g(w)

whenever it is well-defined and adopt the convention that φ(x) := φ(w) when x = (w, i).

3.1 Type 1 particles

Let φ : [0,∞) × L−1Z → R be such that t 7→ φt(x) is continuously differentiable and∫ T
0
〈|φs|+φ2

s + |∂sφs|, 1〉 ds <∞. Applying integration by parts to ξt(x)φt(x), using (2), and
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summing over x, we obtain for all t ∈ [0.T ],

〈unt , φt〉−〈un0 , φ0〉 −
∫ t

0

〈uns , ∂sφs〉ds

= (ML)−1
∑
x

∑
y∼x

∫ t

0

(ξs−(y)− ξs−(x))φs(x) dP x,y
s (10)

+ (ML)−1
∑
x

∑
y∼x

∫ t

0

ξs−(y)(1− ξs−(x))φs(x) dP̃ x,y
s . (11)

Drift term. We break (11) into an average term and a fluctuation term

(ML)−1
∑
x

∑
y∼x

∫ t

0

ξs−(y)(1− ξs−(x))φs(x) θR−1 ds (12)

+ (ML)−1
∑
x

∑
y∼x

∫ t

0

ξs−(y)(1− ξs−(x))φs(x) (dP̃ x,y
s − θR−1 ds). (13)

Recalling the definition of the density, (12) becomes

θ · M
R
· 1

L

∑
w∈L−1Z

∫ t

0

[uns−(w − L−1) + uns−(w + L−1)](1− uns−(w))φs(w) ds

Since M/R→ β, this converges to

θβ

∫ t

0

∫
R

2us(w)(1− us(w))φs(w) dw ds

as n → ∞. Here and in what follows the claimed convergences follow once we have proved
C-tightness. We have established convergence of finite dimensional distributions so the
sequences of processes converge, and we can use Skorokhod’s theorem to show they converge
almost surely.

The second term (13) is a martingale E
(2)
t (φ) with

〈E(2)(φ)〉t ≤
θ

R(ML)2

∑
x

∑
y∼x

∫ t

0

φ2
s(x) ds

≤ 2θ

LR

∫ t

0

〈1, φ2
s〉 ds→ 0 since LR→∞.

White noises. We can rewrite (10) as

(ML)−1
∑
x

∑
y∼x

∫ t

0

{ξs−(y)[1− ξs−(x)]− ξs−(x)[1− ξs−(y)}φs(x) dP x,y
s . (14)

We now rewrite the integrand as

ξs−(y)[1− ξs−(x)]φs(y)− ξs−(x)[1− ξs−(y)]φs(x) (15)

+ ξs−(y)[1− ξs−(x)](φs(x)− φs(y)). (16)
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We work first with (15). Interchanging the roles of x and y in the double sum, this part of
(14) becomes

(ML)−1
∑
x

∑
y∼x

∫ t

0

[1− ξs−(y)]ξs−(x)φs(x) (dP y,x
s − dP x,y

s ). (17)

To prepare for treating the joint SPDE we split (17) into Z0
t (φ) + Z1

t (φ) where

Z0
t (φ) = (ML)−1

∑
x

∑
y∼x

∫ t

0

[1− ξs−(y)ηs−(x)φs(x) (dP y,x
s − dP x,y

s ), (18)

Z1
t (φ) = (ML)−1

∑
x

∑
y∼x

∫ t

0

[1− ξs−(y)](ξs−(x)− ηs−(x))φs(x) (dP y,x
s − dP x,y

s ). (19)

These two martingale terms use the same Poisson processes but the product of their inte-
grands is 0 (since ιt(x)ηt(x) vanishes), so they are uncorrelated.

The variance process 〈P x,y − P y,x〉t = 2rt. Hence ignoring the difference between φs(x)
and φs(y), we have

〈Z0(φ)〉t = 4rL−2

∫ t

0

∑
w∈L−1Z

`ns−(w)(1− uns−(w))φs(w)2 ds+ o(1)

which converges to

4γ

∫ t

0

∫
R
`s(w)(1− us(w))φs(w)2 dw ds since r/L→ γ.

Similarly, 〈Z1(φ)〉t converges to

4γ

∫ t

0

∫
R
(us(w)− `s(w)) (1− us(w))φs(w)2 dw ds.

Laplacian Term. We denote the discrete gradient and the discrete Laplacian respec-
tively by

∇Lf(w) := L
(
f(w + L−1)− f(w)

)
(20)

∆Lf(w) := L2
(
f(w + L−1) + f(w − L−1)− 2f(w)

)
. (21)

We break (16) into an average term and a fluctuation term

(ML)−1
∑
x

∑
y∼x

∫ t

0

ξs−(y)ξcs−(x)[φs(x)− φs(y)] r ds (22)

+ (ML)−1
∑
x

∑
y∼x

∫ t

0

ξs−(y)ξcs−(x)[φs(y)− φs(x)](dP x,y
s − r ds). (23)
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We can replace ξcs− by 1 in (22) without changing its value. Doing the double sum over y
and then over x ∼ y the above is

rM

L2
· 1

L

∑
w

uns−(w)∆Lφs(w) =
rM

L2
〈uns−, ∆Lφs〉.

By assumption rM/L2 → α, so this term converges to α
∫
R us ∆φs. The other term, (23), is

a martingale E
(1)
t (φ) with

〈E(1)(φ)〉t ≤
r

(ML)2

∑
x

∑
y∼x

∫ t

0

(φs(x)− φs(y))2 ds (24)

=
2r

L3

∫ t

0

〈1, |∇Lφs|2〉 ds→ 0 (25)

since r/L→ γ and L→∞.
Combining our calculations, we see that in the limit n→∞,∫

R
ut(w)φt(w) dw−u0(w)φ0(w) dw −

∫ t

0

∫
R
us(w) ∂sφs(w) dw ds (26)

−
∫ t

0

∫
R
αus(w)∆φs(w)− 2θβ us(w)(1− us(w))φs(w) dw ds (27)

is a martingale with quadratic variation

4γ

∫ t

0

∫
R
us(w)(1− us(w))φs(w) dw ds

which is the martingale problem formulation of (4).

3.2 Labeled Particles

Arguing as for the type 1 particles while using (7) instead of (2), we get

〈`nt , φt〉 − 〈`n0 , φ0〉 −
∫ t

0

〈`ns , ∂sφs〉

= (ML)−1
∑
x

∑
y∼x

∫ t

0

(ηs−(y)− ηs−(x))φs(x) dP x,y
s (28)

+ (ML)−1
∑
x

∑
y∼x

∫ t

0

[ηs−(y)− ξs−(y)ηs−(x)]φs(x) dP̃ x,y
s , (29)

where we have simplified the second term of (7) using ξs−(y)ηs−(y) = ηs−(y).
Drift term. Breaking the second term (29) into an average term and a fluctuation

term as before, we conclude that as n→∞, the average term is

θM

LRn

∑
w∈L−1Z

∫ t

0

[
`ns (w + L−1)− uns (w + L−1)`ns (w)

+ `ns (w − L−1)− uns (w − L−1)`ns (w)
]
φs(w) ds
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which converges to

θβ

∫ t

0

∫
R

2`s(w)(1− us(w))φs(w) dw ds.

White noises. We again change the integrand in (28) to

{ηs−(y)[1− ηs−(x)]− ηs−(x)[1− ηs−(y)]}φs(x)

and then split it into two parts as in (15) and (16). That is, we rewrite the integrand as

ηs−(y)[1− ηs−(x)]ηs(y)− ηs−(x)[1− ηs−(y)]φs(x) (30)

+ ηs−(y)[1− ηs−(x)](φs(x)− φs(y)). (31)

Arguing as in the previous, we obtain the following sum coming from (30).

(ML)−1
∑
x

∑
y∼x

∫ t

0

[1− ξs−(y)]ηs−(x)φs(x) (dP y,x
s − dP x,y

s )

+(ML)−1
∑
x

∑
y∼x

∫ t

0

[ξs−(y)− ηs−(y)]ηs−(x)φs(x) (dP y,x
s − dP x,y

s ). (32)

The first noise is the same as Z0
t (φ) in (18) while the second noise, denoted by Z2

t (φ), has
variance converging to

4γ

∫ t

0

∫
R
`s(w) (us(w)− `s(w))φs(w)2 dw ds.

The product of any two of the three integrands in Zi
t(φ) (i = 0, 1, 2) is 0, so these three

martingales are uncorrelated.
Laplacian term. Breaking (31) into an average term and a fluctuation term as was

done for (16), we see that as n→∞, the average term

rM

L2
〈`ns−,∆Lφs〉 → α

∫
R
`s ∆φs.

Combining our calculations, we see that in the limit, for any φ, ψ ∈ C1,2
c ([0,∞)× R),∫

R
(ut φt − u0 φ0 + `t ψt − `0 ψ0) dw

− α
∫ t

0

∫
R
us (∂sφs + ∆φs) + `s (∂sψs + ∆ψs) dw ds

− 2 θ β

∫ t

0

∫
R
us (1− us)φs + `s (1− us)ψs dw ds (33)

is a continuous martingale with quadratic variation

4 γ

∫ t

0

∫
R
us (1− us)φ2

s + `s (1− `s)ψ2
s + 2φs ψs `s (1− us) dw ds. (34)

Any sub-sequential limit (u, `) solves this martingale problem. It is standard (see p. 536-537
in [32]) to show that (u, `) then solves the coupled SPDE in Theorem 4 weakly, with respect
to some white noises.
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4 Green’s function representation

As remarked earlier our proof follows the approach in [32]. The first step is to prove the
analogue of their (2.11). Observe that unt (z) = 〈unt , L1z〉 and `nt (z) = 〈`nt , L1z〉, where 1z is
the function on L−1Z which is 1 at z and zero elsewhere. Let αn = rnML−2 which converges
to α as n→∞ and let

pnt (w) := LP(Xn
t = w |Xn

0 = 0) (35)

be the transition probability of the simple random walk (X
(n)
t )t≥0 on L−1Z with jump rate

2L2, so that it converges to pt(w) the transition density of Brownian motion run at rate
2. Let {P n

t }t≥0 be the associated semigroup which has generator the discrete Laplacian ∆L

defined in (21).
Applying the approximate martingale problems with test function

φt,zs (w) =

{
pnαn(t−s)(w − z) for s ∈ [0, t],

0 otherwise
(36)

and using the facts that ∂sφs + αn∆Lφs = 0 and 〈un0 , φ
t,z
0 〉 = P n

αntu
n
0 (z), we have

unt (z) = P n
αntu

n
0 (z) + Yt(φ) + Zt(φ) + E1

t (φ) + E2
t (φ) (37)

for t ≥ 0 and z ∈ L−1Z. Here Zt(φ), E
(1)
t (φ) and E

(2)
t (φ) are martingales defined in (17),

(23) and (13) respectively. To describe the other term, we let βn = MR−1 which converges
to β, and let

Yt(φ) :=
θβn
L

∫ t

0

∑
w∈L−1Z

[uns (w − L−1) + uns (w + L−1)](1− uns (w))φs(w) ds. (38)

Repeating the last argument for the unlabeled particles,

`nt (z) = P n
αnt`

n
0 (z) + Y `

t (φ) + Z`
t (φ) + E`,1

t (φ) + E`,2
t (φ). (39)

Here Z
(`)
t (φ) := Z0

t (φ) + Z2
t (φ) is given by (32), E

(`,2)
t (φ) is obtained by replacing (ξ, ξc) by

(η, ηc) in (23), E
(`,2)
t (φ) is the fluctuation term corresponding to (29). The remaining term

is

Y `
t (φ) =

θβn
L

∫ t

0

∑
w∈L−1Z

[
`ns (w + L−1)− uns (w + L−1)`ns (w)

+ `ns (w − L−1)− uns (w − L−1)`ns (w)
]
φs(w) ds.

5 Tightness

Recall that a sequence of probability measures is said to be C-tight, if it is tight in D and
any subsequential limit has a continuous version. The goal of this section is to prove:
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Theorem 5. Suppose the assumptions in Theorem 1 hold. Then the sequence {(un, `n)}n≥1

is C-tight in D([0, T ], Cb(R)× Cb(R)) for every T > 0.

Proof. The compact containment condition (condition (a) of Theorem 7.2 in [16, Chapter
3]) holds trivially as 0 ≤ `n ≤ un ≤ 1. Since Cb(R) × Cb(R) is equipped with the product
metric, the desired C-tightness follows once we can show that for any ε > 0, one has

lim
δ→0

lim sup
n→∞

P
(

sup
t1−t2<δ

0≤t2≤t1≤T

∥∥unt1 − unt2∥∥ > ε

)
= 0, (40)

lim
δ→0

lim sup
n→∞

P
(

sup
t1−t2<δ

0≤t2≤t1≤T

∥∥`nt1 − `nt2∥∥ > ε

)
= 0. (41)

Here and in what follows the norm is the one defined in (3). It is enough to show that (40)
holds with un replaced by any term in the decomposition given in (37), and that (41) holds
with `n replaced by any term in (39).

First term in (37) and (39). By standard coupling arguments for simple random walk,
we can check as in Lemma 7(b) of [32] that, upon linearly interpolating P n

αntu
n
0 (z) in space,

we have
sup
t∈[0,T ]

‖P n
αntu

n
0 − Pαn tf0‖ → 0 as n→∞, (42)

where {Pt}t≥0 is the semigroup for the Brownian motion in R running at rate 2. This implies,
by the continuity of the semigroup Pt, that (40) holds with unt replaced by P n

αntu
n
0 . By the

same reasoning, we have

sup
t∈[0,T ]

‖P n
αnt`

n
0 − Pαn tg0‖ → 0 as n→∞ (43)

Remaining terms in (37) and (39). For simplicity, we write

ût(z) := Yt(φ) + Zt(φ) + E
(1)
t (φ) + E

(2)
t (φ),̂̀n

t (z) := Y
(`)
t (φ) + Z

(`)
t (φ) + E

(`,1)
t (φ) + E

(`,2)
t (φ).

The next moment estimate for space and time increments is similar to Lemma 6 in [32], but
ours implies Hölder continuity of the limits with exponent < 1/2 in space and < 1/4 in time.

Lemma 3. For any p ≥ 2 and T ≥ 0, there exists a constant C(T, p) > 0 such that

E|ûnt1(z1)− ûnt2(z2)|p ≤ CT,p

(
|t1 − t2|p/4 + |z1 − z2|p/2 +M−p

)
(44)

E|̂̀nt1(z1)− ̂̀nt2(z2)|p ≤ CT,p

(
|t1 − t2|p/4 + |z1 − z2|p/2 +M−p

)
(45)

for all 0 ≤ t2 ≤ t1 ≤ T , z1, z2 ∈ L−1Z and n ≥ 1.

The proof of this result is postponed to the next section since it requires a number of
computations. We now argue that (44) implies (40) holds for ûn. This idea is described in the
paragraph before Lemma 7 in [32] and page 648 of [25]: we approximate the càdlàg process
ûn by a continuous process ũ and invoke a tightness criterion inspired by Kolmogorov’s
continuity theorem.

18



Lemma 4. Define ũn ∈ C([0,∞), Cb(R)) by ũt = ût on the grid t ∈ θn Z+ and then linearly
interpolate in t for each w ∈ R. Suppose θn > M−4 and limn→∞ θn = 0. Then there exists
n0 ∈ N such that for any p ≥ 2, T ≥ 0 and K ≥ 0,

E|ũnt1(z1)− ũnt2(z2)|p ≤ CT,p,K

(
|t1 − t2|p/4 + |z1 − z2|p/2

)
, (46)

for all 0 ≤ t2 ≤ t1 ≤ T , zi ∈ R with |zi| ≤ K (i = 1, 2) and n ≥ n0.

By a standard argument (see, for example, Problems 2.2.9 and 2.4.11 of [23]), one can
show that (46) implies that (40) holds when u is replaced by ũn. Finally, by the reasoning
in the proof of Lemma 7(a) in [32], there is a σ > 0 so that

lim sup
n→∞

P
(

sup
t∈[0,T ]

‖ũnt − ûnt ‖ ≥ n−σ
)

= 0.

Therefore (40) holds for ûn. By the same argument, (45) implies (41) holds for ̂̀n.

The proof for Theorem 5 will be complete once Lemmas 3 and 4 are proved.

6 Proofs of Lemmas 3 and 4

Proof of Lemma 3. We prove only (44) for unlabeled particles. The proof of (45) for labeled
particles is similar. The basic ingredients are the following estimates of time and space
increments of the transition probability of simple random walk. Namely, there exists a
constant C > 0 independent of n such that

0 ≤
∫ T

0

pns (0) ds ≤ C
√
T , (47)

0 ≤
∫ ∞

0

pns (0)− pns+θ(0) ds ≤ C
√
θ, (48)

0 ≤
∫ ∞

0

pns (0)− pns (z) ds ≤ C |z| (49)∫ T

0

1

L

∑
w

|pns+θ(w)− pns (w)| ds ≤ C
√
T θ, (50)∫ T

0

1

L

∑
w

|pns (w)− pns (z + w)| ds ≤ C
√
T |z| (51)

for θ ≥ 0, z ∈ L−1Z and T > 0. These estimates can be either found or deduced from
the standard methods described in Chapter 2 in [29]. For completeness, we give precise
references and missing details in the next section.

We will show that each of the four terms of ûn satisfies (44). To simplify notation, we
assume, without loss of generality for the proof, that αn ≡ 1. First, we deal with the process
Y that has no jumps. To reduce the size of the formulas we let

vns (w) = [uns (w − L−1) + uns (w + L−1)](1− uns (w)).
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Using the definitions of Y (38) and of our test function (36) we have for t1 > t2

Yt1(φ
t1,z1)− Yt2(φt2,z2) = θβn

∫ t1

t2

1

L

∑
w

vns (w)pnt1−s(z1 − w) ds

+ θβn

∫ t2

0

1

L

∑
w

vns (w)[pnt1−s(z1 − w)− pnt2−s(z2 − w)] ds

≡ θβn(Θ1(Y ) + Θ2(Y )).

The sums are over w ∈ L−1Z, which we have omitted to simplify notation. Since 0 ≤ un ≤ 1
and L−1

∑
w p

n
t (z − w) = 1 (recall the definition in (35)), we have

E|Θ1(Y )|p ≤ 2p (t1 − t2)p. (52)

By the triangle inequality and the translation invariance and symmetry of the transition
density, we obtain∫ t2

0

1

L

∑
w

|pnt1−s(z1 − w)− pnt2−s(z2 − w)| ds

≤
∫ t2

0

1

L

∑
w

(
|pnt1−s(z1 − z2 + w)− pnt1−s(w)|+ |pnt1−s(w)− pnt2−s(w)|

)
ds

≤ CT |z1 − z2|+ C
√
t1 − t2

by (51) and (50). Since 0 ≤ vn ≤ 2,

E
[
|Θ2(Y )|p

]
≤ CT,p

(√
t1 − t2 + |z1 − z2|

)p
(53)

for all 0 ≤ t2 ≤ t1 ≤ T , z1, z2 ∈ L−1Z and n ≥ 1.
It remains to consider E

(1)
t (φ), E

(2)
t (φ) and Zt(φ). Note that for each of them, the largest

possible jump is bounded almost surely by

2(ML)−1 sup
s≥0
‖φs‖∞ ≤ 2M−1.

We shall employ a version of the Burkholder-Davis-Gundy inequality stated at the bottom
of page 527 in [32]. Namely, for any càdlàg martingale X with X0 = 0 and for p ≥ 2,

E[ sup
s∈[0,t]

|Xs|p ] ≤ C(p)E
[
〈X〉p/2t + sup

s∈[0,t]

|Xs −Xs−|p
]
, t ≥ 0. (54)

Writing Nx,y
s for the compensated Poisson process P x,y

s − rns, and
∑

x,y∼x for the double
sum

∑
x

∑
y∼x, we decompose

E
(1)
t1 (φt1,z1)− E(1)

t2 (φt2,z2)

=
1

ML

∑
x,y∼x

∫ t1

t2

ξs−(y)ξs−(x)
(
pnt1−s(z1 − y)− pnt1−s(z1 − x)

)
dNx,y

s

+
1

ML

∑
x∼y

∫ t2

0

ξs−(y)ξs−(x)
(
pnt1−s(z1 − y)− pnt1−s(z1 − x)

− pnt2−s(z2 − y) + pnt2−s(z2 − x)
)
dNx,y

s

≡ Θ1(E(1)) + Θ2(E(1)).
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Writing Ñx,y
s for the compensated Poisson process P̃ x,y

s − θR−1
n s we have

E
(2)
t1 (φt1,z1)− E(2)

t2 (φt2,z2)

=
1

ML

∑
x,y∼x

∫ t1

t2

ξs−(y)(1− ξs−(x)) pnt1−s(z1 − x)
)
dÑx,y

s

+
1

ML

∑
x∼y

∫ t2

0

ξs−(y)(1− ξs−(x))[pnt1−s(z1 − x)− pnt2−s(z2 − x)] dÑx,y
s

≡ Θ1(E(1)) + Θ2(E(1)).

Finally, we have

Zt1(φ
t1,z1)− Zt2(φt2,z2)

=
1

ML

∑
x,y∼x

∫ t1

t2

(1− ξs−(y))ξs−(x)pnt1−s(z1 − x) d(Ny,x
s −Nx,y

s )

+
1

ML

∑
x,y∼x

∫ t2

0

(1− ξs−(y))ξs−(x)[pnt1−s(z1 − x)− pnt2−s(z2 − x)] d(Ny,x
s −Nx,y

s )

≡ Θ1(Z) + Θ2(Z).

Once we use 0 ≤ ξ ≤ 1 to simplify the integrands the three expressions have a similar
structure. E1 will be the smallest since it has a difference of transition densities at adjacent
sites, so we begin by estimating E2. To estimate Θ1(E2), we let

X1
t =

1

ML

∑
x,y∼x

∫ t

0

ξs−(y)ξs−(x)pnt1−t2−s(z1 − x)
)
dNx,y

s .

By Markov property of (ξt)t≥0 and the stationarity of the compensated Poisson process,

E(|Θ1(E2)|p) = EEξt2 (|Xt1−t2|p),
where Eξt2 is the expectation w.r.t. the law of ξ starting at ξt2 .

To prepare for the next calculation we note that using the symmetry of the transition
density and the Chapman-Kolmogorov equation

L−1
∑
w

[pnu(w)]2 = L−1
∑
w

pnu(w)pnu(−w) = 2p2u(0). (55)

The predictable bracket process of X1 is

〈X1〉t =
θ

Rn(ML)2

∑
x,y∼x

∫ t

0

ξs−(y)ξs−(x)[pnt1−t2−s(z1 − x)]2 ds.

Since there are 2M values of y for each x and M values of x for each w ∈ L−1Z, if we let
cn = 2θ/RnL then the above is

≤ cn

∫ t

0

L−1
∑
w

[pnt1−t2−s(w)]2 ds

= 2cn

∫ t

0

pn2(t1−t2−s)(0) ds ≤ C(t1 − t2)1/2,
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where in the second step we have used the (55) and in the last step we used (49), and the
fact that RNL→∞.

If we do the calculation for Z then cn = 2rn/L→ γ so we get the same upper bound. In
E1, cn = rn/L→ γ but we have pnt1−s(z1 − y)− pnt1−s(z1 − x) instead of a singe p, so

L−1
∑
w

[pnt1−t2−s(w)− pnt1−t2−s(w − L
−1)]2 = 2pn2(t1−t2−s)(0)− 2pn2(t1−t2−s)(L

−1).

If we used (51) now we would get an upper bound of CTL
−1 Ignoring the cancellation we

get the same upper bound. Using (54) now, we have

E(|Θ1|p) ≤ Cp(|t1 − t2|p/4 +M−p). (56)

for E1, E2 and Z.
Similarly, E(|Θ2(E2)|p) = E(|X2

t2
|p), where

X2
t =

1

ML

∑
x,y∼x

∫ t

0

ξs−(y)(1− ξs−(x))[pnt1−s(z1 − x)− pnt2−s(z2 − x)], dÑx,y
s

is a càdlàg martingale for t ≤ t2 with predictable bracket process

〈X2〉t ≤ cn

∫ t

0

L−1
∑
w

[pnt1−s(z1 − w)− pnt2−s(z2 − w)]2.

Arguing as before using (55) we get

≤ cn

∫ t

0

pn2(t1−s)(0) + pn2(t2−s)(0)− 2pnt2+t1−2s(z1 − z2)

a result that also holds for E1 and Z. Adding and subtracting 2pnt2+t1−2s(0) and using (50)
and (51) the above is

≤ C
√
t1 − t2 + CT |z1 − z2|).

Using (54) now, we have

E(|Θ2|p) ≤ Cp,T (|t1 − t2|p/4 + |z1 − z2|p/2 +M−p). (57)

which holds for E1, E2 and Z and the proof is complete.

Proof of Lemma 4. It suffices to consider the case |t1− t2|1/4 ≤M−1 and |z1− z2|1/2 ≤M−1,
since otherwise Lemma 3 easily implies (46). The triangle inequality gives

|ũnt1(z1)− ũnt2(z2)| ≤ |ũnt1(z1)− ũnt2(z1)|+ |ũnt2(z1)− ũnt2(z2)|. (58)

We first estimate the time difference on the right. Write sk := kθn for k ∈ Z+. Since
|t1− t2| ≤M−4 < θn, we have either sk ≤ t2 < t1 ≤ sk+1 for some k or t2 < sk < t1 for some
k. Since ũn is linear between grid points, in either case

|ũnt1(z)− ũnt2(z)| ≤ 2
(
|ûnsk+1

(z)− ûnsk(z)| ∨ |ûnsk(z)− ûnsk−1
(z)|
) |t1 − t2|

θn
.
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Hence Lemma 3, the assumption M−4 < θn and |t1 − t2| ≤M−4 imply that

E|ũnt1(z)− ũnt2(z)|p ≤ CT,p
|t1 − t2|p

θpn

(
θp/4n +M−p)

≤ CT,p

( |t1 − t2|
θ

3/4
n

)p
≤ CT,p |t1 − t2|p/4.

Next, we estimate the space difference on the right of (58). Take n large so that M−1 <
(1 + γ)L−1 and (1 + γ)2L−2 < L−1 (this is possible by our assumptions on scalings, even if
γ = 0). Then |z1 − z2| < (1 + γ)2L−2 < L−1. By almost the same argument used above, we
easily obtain

E|ũnt (z1)− ũnt (z2)|p ≤ C(T, p) |z1 − z2|p Lp
(
L−p/2 +M−p)

≤ C(T, p) |z1 − z2|p (Lp/2 + (1 + γ)p)

≤ C(T, p)
[

(1 + γ)p/2 |z1 − z2|3p/4 + (1 + γ)p |z1 − z2|p
]
.

The proof of Lemma 4 is complete.

7 Random walk estimates

The first two, (47) and (48), follow directly from the local central limit theorem (LCLT) (see,
for example, Proposition 2.5.6 in [29]). (50) follows from (51) and the Chapman-Kolmogorov
equation: the integrand can be written as

pns+θ(w)− pns (w) =
1

L

∑
z∈L−1Z

pnθ (z)
(
pns (w − z)− pns (w)

)
.

It remains to prove (49) and (51).
By scaling, pnt (w) = LpL2t(Lw) where pt(k) is the transition density of the simple random

walk on Z. The integral of (49) is therefore

1

L

∫ ∞
0

ps(0)− ps(Lz) ds.

Splitting this integral into two parts according to whether s ≤ L|z|2 or s > L|z|2, the first

part is bounded by L−1
∫ L|z|2

0
ps(0) ds ≤ C|z|/

√
L according to (47). The second part is

bounded by C|z| by the LCLT.
Formula (51) is similar to Proposition 2.4.1 in [29] which says that∑

k∈Z

∣∣qm(k)− qm(k + j)
∣∣ ≤ C j√

m
, (59)

where qm(k) is the transition density for the discrete time simple random walk on Z. Hence,
by using scaling and an independent Poisson process Nt, we rewrite the left hand side of
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(51) as

1

L2

∫ L2T

0

∑
k∈Z

|ps(k)− ps(k + Lz)| ds

=
1

L2

∫ L2T

0

∑
k∈Z

∣∣ ∞∑
m=0

P(Ns = m)
(
qm(k)− qm(k + Lz)

)∣∣ ds
which is at most

C |z|
L

∫ L2T

0

∞∑
m=0

P(Ns = m)√
m

ds

by (59). Arguing as in the proof of Proposition 2.5.6 in [29] by using Proposition 2.5.5 (the
LCLT for Poisson processes), we obtain that the integral is of order

√
L2T and hence (51)

holds.

8 Proof of Lemma 2

To prepare for the proof for the SPDE, we begin by considering the diffusion process

dU = βU(1− U) dt+ σ
√
U(1− U) dB. (60)

Following the approach of Doering, Mueller and Smereka [11], we change variables Z = 1−U
to get (recall dZ = −dU)

dZ = −βZ(1− Z) dt− σ
√
Z(1− Z) dB. (61)

The minus in front of the diffusion term is not important here but it will be in the next
calculation in (64). Using Itô’s formula and ignoring the martingale terms

drift(Zm) = mZm−1(−βZ(1− Z)) +m(m− 1)Zm−2σ
2

2
Z(1− Z)

= βm[Zm+1 − Zm] +
σ2m(m− 1)

2
[Zm−1 − Zm]).

Let N(t) be a Markov process with Q matrix

Qm,m+1 = βm Qm,m−1 = σ2m(m− 1)

2

Qm,m = −βm− σ2m(m− 1)

2
. (62)

Combining our calculations,
d

dt
EZm =

∑
n

Qm,nEZ
n

Letting P`,m(t) = P(N(t) = m |N(0) = `) be the transition probabilities, we have
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Lemma 5. For fixed T > 0 and ` ≥ 1, Mt =
∑∞

m=1 P`,m(T − t)Zm(t) is a martingale.

Proof. Differentiating we have

d

dt
EMt =

∑
m

EZm(t)
d

dt
P`,m(T − t) + P`,m(T − t) d

dt
EZm(t)

=
∑
m

−EZm(t)
∑
n

P`,n(T − t)Qn,m + P`,m(T − t)
∑
n

Qm,nEZ
n(t) = 0

if we interchange the roles of m and n in the second sum.

From Lemma 5 we get
EZN(0)(T ) = EZN(T )(0). (63)

Now consider the system

dZ = −βZ(1− Z) dt− σ
√
V Z dB0 − σ

√
Z(1− Z − V ) dB1, (64)

dV = βV Z dt+ σ
√
V Z dB0 + σ

√
V (1− V − Z) dB2.

where the Bi are independent Brownian motions. To get our second dual function, we
consider Yn =

∑n
m=1 Z

m−1V . Using Itô’s formula and for the second term recall (61),

drift

(
n∑

m=1

Zm−1V

)
= V

n∑
m=2

(m− 1)Zm−2(−βZ(1− Z))

+
σ2

2
V

n∑
m=3

(m− 1)(m− 2)Zm−3Z(1− Z)

+
n∑

m=1

Zm−1βZV − σ2

n∑
m=2

(m− 1)Zm−2V Z,

where the last term comes from the fact that the covariance of Z and V is −V Z. Collecting
the terms with β, and changing variables k = m− 1 in the second sum we get

= βV

[
n∑

m=2

(m− 1)Zm −
n−1∑
k=1

kZk +
n∑

m=1

Zm

]
.

Adding the third sum to the first

= βV

[
n∑

m=1

mZm −
n−1∑
k=1

kZk

]

= nβV Zn = nβ

(
n+1∑
m=1

Zm−1V −
n∑

m=1

Zm−1V

)
which corresponds to jumps from n to n + 1 at rate βn. Collecting the terms with σ2 and
changing variables to have Zk−1, we get

= σ2V

[
n−1∑
k=2

k(k − 1)

2
Zk−1 −

n∑
k=3

(k − 1)(k − 2)

2
Zk−1 −

n∑
k=2

(k − 1)Zk−1

]
.
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Moving terms k = 2 to n− 1 from the last sum into the first one

= σ2V

[
n−1∑
k=2

(k − 2)(k − 1)

2
Zk−1 −

n∑
k=3

(k − 1)(k − 2)

2
Zk−1 − (n− 1)Zn−1

]
.

The k = 2 term in the first sum vanishes. Terms 3 to n− 1 in the first sum cancel with the
second sum leaving

= −σ2V
n(n− 1)

2
Zn−1 = σ2n(n− 1)

2

(
n−1∑
m=1

Zm−1V −
n∑

m=1

Zm−1V

)

which corresponds to jumps n to n− 1 at rate σ2n(n− 1)/2.
Combining our calculations

d

dt
EYn =

∑
m

Qm,nEYn.

where Qm,n is given in (62). Using Lemma 5 again,

E

N(0)∑
m=1

Zm−1(T )V (T )

 = E

N(T )∑
m=1

Zm−1(0)V (0)

 .

8.1 Duality for the Wright-Fisher SPDE

We begin by proving the duality result for the equation for single SPDE (4). This is a known
result due to Shiga [38]. However, he did not give many details and we need to generalize
his result to our coupled SPDE, so we will follow the approach of Athreya and Tribe [1]. Let
z = 1 − u. Define z̄t(x) =

∫
zt(y)pε(y − x) dy where pε is the normal density with mean 0

and variance ε. Noting that x→ z̄t(x) is smooth and using the weak formulation of (4) with
test function φε,x(y) = pε(y − x), we have

z̄t(x)− z̄0(x) =

∫ t

0

α∆z̄s(x) ds

− θβ
∫ t

0

∫
2zs(y)(1− zs(y))pε(y − x) dy ds (65)

+

∫ t

0

∫ √
4γzs(y)(1− zs(y))pε(y − x) dW.

Using Itô’s formula (each z̄t(x) is a semi-martingale so this is legitimate) and writing
Lz for the generator of (z̄t(x1), . . . , z̄(xn)) with x1, . . . xn fixed, we see that (ignoring the
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martingale terms)

drift

(
Lz̄
∏
i

z̄t(xi)

)
=

n∑
i=1

∏
j 6=i

z̄t(xj)α∆z̄t(xi)

+ 2θβ
n∑
i=1

∏
j 6=i

z̄t(xj)

∫
[z2
t (y)− zt(y)]pε(y − xi) dy (66)

+ 4γ
n−1∑
i=1

n∑
j=i+1

∏
k 6=i,j

z̄t(xk)

∫
[zt(y)(1− zt(y))]pε(y − xi)pε(y − xj) dy.

The dual process is a system of branching coalescing Brownian particles. During their lifetime
the particles are Brownian motions run at rate 2α with each giving birth at rate 2θβ. In
addition, for i < j, particle j is killed by particle i at rate 4γLi,jt where Li,jt denotes the local
time of the process xj − xi at 0. Writing Lx for the generator, we have

drift

(
Lx
∏
i

z̄t(xi)

)
=

n∑
i=1

∏
j 6=i

z̄t(xj)α∆z̄t(xi)

+ 2θβ
n∑
i=1

∏
j 6=i

z̄t(xj) · [z̄2
t (xi)− z̄t(xi)] (67)

+ 4γ
n−1∑
i=1

n∑
j=i+1

∏
k 6=i,j

z̄t(xk) · [z̄t(xi)(1− z̄t(xj))] δ{xj=xi}

in which we used the formal notation dLi,jt = δ{xj(t)=xi(t)} dt. The precise meaning of the last
term involves integration w.r.t. local times and is explained in (71).

We now follow Proposition 1 in [1] to use the duality method encapsulated in Theorem
4.4.11 of Ethier and Kurtz [16]. In their notation α = β = 0.

F (z̄, x) =
n∏
i=1

z̄(xi) if x = (x1, · · · , xn).

They suppose F (z̄t, x)−
∫ t

0
G(z̄s, x) ds and F (z̄, x(t))−

∫ t
0
H(z̄, x(s)) ds are martingales and

conclude that for t ≥ 0,

EF (z̄t, x(0))− EF (z̄0, x(t)) = E
∫ t

0

G(z̄t−s, x(s))−H(z̄t−s, x(s)) ds. (68)

In our situation, (68) holds with G(z̄, x) = Lz̄F (z̄, x) and H(z̄, x) = LxF (z̄, x).
By the continuity of x 7→ zt(x), we have F (z̄t, x(0)) → F (zt, x(0)) and F (z̄0, x(t)) →

F (z0, x(t)) a.s. as ε→ 0, so using the bounded convergence theorem,

EF (z̄t, x(0))− EF (z̄0, x(t))→ EF (zt, x(0))− EF (z0, x(t)).

To prove the desired duality formula

E
n(0)∏
i=1

zt(xi(0)) = E
n(t)∏
i=1

z0(xi(t)), t ≥ 0, (69)
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it remains to argue that the RHS of (68) tends to zero as ε→ 0.
The first term in (66) agrees with that of (67). For the second terms, omitting 2θβ, the

integrand of the difference is

E
∫ t

0

n(s)∑
i=1

∏
j 6=i

z̄t−s(xj(s))
[ ∫

z2
t−s(y)pε(y − xi(s)) dy − z̄2

t−s(xi(s))
]
ds→ 0 (70)

a.s. for s ∈ (0, t), by continuity of y 7→ zs(y) and dominated convergence. The contribution
to (68) from the third term of (67) is (omitting 4γ)

E
∫ t

0

n(s)−1∑
i=1

n(s)∑
j=i+1

∏
k 6=i,j

z̄t−s(xk(s)) · [z̄t−s(xi(s))
(
1− z̄t−s(xj(s))

)
] dLi,js (71)

which converges, by dominated convergence to

E
∫ t

0

n(s)−1∑
i=1

n(s)∑
j=i+1

∏
k 6=i,j

zt−s(xk(s)) · [zt−s(xi(s))
(
1− zt−s(xj(s))

)
] dLi,js . (72)

Finally, we consider the contribution to (68) from the third term of (66). After the substi-
tution y 7→ y + xi(s), we have (omitting 4γ)

E
∫ t

0

n(s)−1∑
i=1

n(s)∑
j=i+1

∫
pε(y)pε(y + xi(s)− xj(s))Y i,j

s,t (y) dy ds, (73)

where for any i, j,

Y i,j
s,t (y) =

∏
k 6=i,j

z̄t−s(xk(s)) · [zt−s(y + xi(s))(1− zt−s(y + xi(s)))].

At this point we would like to apply Lemma 2 of [1], to obtain∫ t

0

pε(y + xi(s)− xj(s))Y i,j
s,t (y) ds =

∫ ∫ t

0

pε(y + z)Y i,j
s,t (y) dLi,j,zs dz, (74)

where Li,j,zt denotes the local time of the process xj − xi at z. Their formula asssumes Y
is predictable, so we substitute s− for s and note that this does not change the integral in
(73).

Putting (74) into (73), then using the continuity of the local time and that of Y i,j
s,t (y) (see

details in pages 1724–1725 of [1]), the integrand of (73) converges a.s. to the integrand of
(72). Convergence of expectations then follows from dominated convergence and the proof
of (69) is complete.
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8.2 Duality for the coupled SPDE

To prove the duality formula for the coupled SPDE, we order the particles in xi(t), i ≤ n(t) in
such a way that (i) when two particles coalesce we keep the smaller index and (ii) immediately
after particle i gives birth, its offspring has index i and all particles with index ≥ i (including
the one that just game birth) increase their index by 1. Adding the number of particles in
the dual as another variable to help clarify things, we let

F2((z, `), (x, n)) =
n∑
j=1

j−1∏
i=1

z(xj) · `t(xj).

The following duality formula is motivated by (6):

EF2((zt, `t), (x0, n0)) = EF2((z0, `0), (xt, nt)) (75)

Once we have shown (75) the uniqueness claimed in Lemma 2 follows, since it allows us
to conclude that the distribution at a fixed time is unique and uniqueness of the law of the
process follows from Theorem 4.2 in Chapter 4 of Ethier and Kurtz [16]. To prove (75), we
let ¯̀

t(x) =
∫
`t(y)pε(y − x) dy and note

z̄t(x)− z̄0(x) =

∫ t

0

α∆z̄s(x) ds− 2θβ

∫ t

0

∫
zs(y)(1− zs(y))pε(y − x) dy ds

−
∫ t

0

∫ √
4γzs(y)`s(y) pε(y − x)dW 0

−
∫ t

0

∫ √
4γzs(y)(1− zs(y)− `s(y)) pε(y − x)dW

¯̀
t(x)− ¯̀

0(x) =

∫ t

0

α∆¯̀
s(x) ds+ 2θβ

∫ t

0

∫
zs(y)`s(y)pε(y − x) dy ds

+

∫ t

0

∫ √
4γzs(y)`s(y) pε(y − x)dW 0

+

∫ t

0

∫ √
4γ`s(y)(1− zs(y)− `s(y)) pε(y − x)dW 2.
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Writing Lz̄,¯̀ for the generator of (z̄t(x1), . . . , z̄(xk−1), ¯̀(xk)) with x1, . . . xn and n fixed,

drift
(
Lz̄,¯̀F2((z̄t, ¯̀

t), (x, n))
)

=
n∑
k=2

k−1∑
i=1

∏
1≤j≤k
j 6=i

z̄t(xj) · α∆z̄t(xi) · ¯̀t(xk) +
k−1∏
j=1

z̄t(xj)α∆¯̀
t(xk) (76)

+
n∑
k=2

2θβ
k−1∑
i=1

∏
j 6=i

z̄t(xj) · ¯̀t(xk)
∫

[z2
t (y)− zt(y)]pε(y − xi) dy (77)

+
n∑
k=1

2θβ
k−1∏
j=1

z̄t(xj) ·
∫
zt(y)`t(y)pε(y − xk) dy (78)

+
n∑
k=3

4γ
k−1∑
j=2

j−1∑
i=1

∏
1≤h≤k−1

h 6=i,j

z̄t(xh) · ¯̀t(xk)
∫

[zt(y)(1− zt(y))]pε(y − xi)pε(y − xj) dy (79)

−
n∑
k=2

4γ
k−1∑
i=1

∏
1≤h≤k−1

h 6=i

z̄t(xh)

∫
[zt(y)`t(y)]pε(y − xi)pε(y − xk) dy. (80)

Writing Lx,n for the generator of the dual ordered particle system, we want to compute

drift
(
Lx,nF2((z̄, ¯̀), (x, n))

)
. (81)

and to show, as in (68), that

E
∫ t

0

Lz̄,¯̀F2((z̄t−s, ¯̀
t−s), (x(s), n(s)))− Lx,nF2((z̄t−s, ¯̀

t−s), (x(s), n(s))) ds→ 0. (82)

The terms coming from particle Brownian motions are

n∑
k=1

k−1∑
i=1

∏
1≤j≤k−1

j 6=i

z̄t(xj)α∆z̄t(xi) · ¯̀t(xk) +
k−1∏
i=1

z̄t(xi) ·∆¯̀
t(xk)

 (83)

which agree with (76), and hence cancel in (82).
Birth terms. Given a vector x = (x1, . . . xn), let xi = (x1, . . . xi, xi, . . . xn) be the vector

of length n + 1 with the i coordinate duplicated. The total change in the drift (81) due to
births is (omitting the 2θβ)

n∑
i=1

[
n+1∑
k=i+1

k−1∏
j=1

z̄t(x
i
j)`t(x

i
k)−

n∑
k=i+1

k−1∏
j=1

z̄t(xj)`t(xk)

]
. (84)

Here i is the location of the duplication and there is no change in the drift for terms with
k ≤ i. The difference

n+1∑
k=i+2

−
n∑

k=i+1

= [z̄t(xi)− 1]
n∑

k=i+1

k−1∏
j=1

z̄t(xj)`t(xk) (85)
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since when k ≥ i + 2, we have xik+1 = xk and z̄t(xi) appears twice in the product. After we
interchange the order of the summation this agrees with (77) if we replace pε(y− xi) in that
formula by a pointmass at xi. The remaining term (k = i+ 1) in the first sum in (84) is

n∑
i=1

i∏
j=1

z̄t(xj)`t(xi) (86)

since xii = xii+1 = xi. This agrees with (78) if we again replace pε(y − xi) by a pointmass at
xi. As we argued in (70) it follows that

E
∫ t

0

(77)− (85) + (78)− (86) ds→ 0

Killing terms. Given a vector x = (x1, . . . xn) let x̂j = (x1, . . . xj−1, xj+1, . . . xn) be the
vector of length n− 1 with the j coordinate removed. The total change in the drift (81) due
to deaths is (omitting the 4γ)

n∑
j=2

j−1∑
i=1

[
n−1∑
k=j

k−1∏
h=1

z̄t(x̂
j
h)`t(x̂

j
k)−

n∑
k=j

k−1∏
h=1

z̄t(xh)`t(xk)

]
δ{xj=xi}. (87)

Here j is the location of the deletion and there is no change in the drift for terms with k < j.
When j ≤ k, x̂jk = xk+1 so we have

n−1∑
k=j

−
n∑

k=j+1

=
n∑

k=j+1

∏
1≤h≤k−1

h 6=j

z̄t(xh)[1− z̄t(xj)]¯̀t(xk).

The remaining term coming from k = j in the second sum is

−
j−1∏
h=1

z̄t(xh)¯̀
t(xj).

Using these results in (87) and noting that in the first case j = n is impossible, we have

n−1∑
j=2

j−1∑
i=1

n∑
k=j+1

∏
1≤h≤k−1

h 6=i,j

z̄t(xh) · ¯̀t(xk) · z̄t(xi)[1− z̄t(xj)] δ{xj=xi} (88)

−
n∑
j=2

j−1∑
i=1

∏
1≤h≤j−1,h6=i

z̄t(xh) · z̄t(xi)¯̀
t(xj) δ{xj=xi}.

where in the second sum we have changed j to k, and in both terms we have removed
an additional term from the product over h. On other hand, interchanging the order of
summation in (79)

n∑
k=3

k−1∑
j=2

j−1∑
i=1

=
n−1∑
j=2

n∑
k=j+1

j−1∑
i=1

=
n−1∑
j=2

j−1∑
i=1

n∑
k=j+1
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Hence formulas (79) and (80) become

n−1∑
j=2

j−1∑
i=1

n∑
k=j+1

∏
1≤h≤k−1

h 6=i,j

z̄t(xh) · ¯̀t(xk)
∫

[zt(y)(1− zt(y))]pε(y − xi)pε(y − xj) dy (89)

−
n∑
k=2

4γ
k−1∑
i=1

∏
1≤h≤k−1

h 6=i

z̄t(xh)

∫
[zt(y)`t(y)]pε(y − xi)pε(y − xk) dy.

Arguing as in (71)–(74) now completes the proof of (82). The proof of (75) is complete, and
hence that of Lemma 2.
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