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We study the phase transition in a random graph in which vertices and edges are added constant rates.
Two recent papers in Physcial Review E by Callaway, Hopcroft, Kleinberg, Newman, and Strogatz,
and Dorogovstev, Mendes, and Samukhin have computed the critical value of this model, shown that the
fraction of vertices in finite clusters is infinitely differentiable at the critical value, and that in the subcrit-
ical phase the cluster size distribution has a polynomial decay rate with a continuously varying power.
Here we sketch rigorous proofs for the first and third results and a new estimates about connectivity
probabilities at the critical value.
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1 Introduction

In the last few years, physicists, mathematicians, and computer scientists, motivated by the world
wide web (Albert, Jeong, and Barbási 1999, Huberman and Adamic 1999), metabolic networks
(Jeong et al. 2000), and other complex structures (for a survey see Strogatz 2001), have begun to
investigate the difference between static random graphs and networks in which the node set grows
and connections are added over time. Barbási and Albert (1999) considered a model in which
new vertices are attached preferentially to already well connected sites and found a power-law
distribution for vertex degrees. Callaway, Hopcroft, Kleinberg, Newman, and Strogatz (2001)
studied the following model without preferential attachment. At each time a vertex is added to
the graph. Number the vertices 1,2, . . .n in the order they were added. For k ≥ 2 after the kth
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vertex is added we add a number of edges with mean δ. The edges are drawn with replacement
from the

(
k
2

)
possible edges.

In the original CHKNS model the number of edges was 1 with probability δ, and 0 otherwise.
Here, we will primarily study the situation in which a Poisson mean δ number of vertices are
added at each step. We prefer this version since in the Poisson case if we let Ai,j,k be the event

no (i, j) edge is added at time k then P (Ai,j,k) = exp
(
−δ/

(
k
2

))
for and i < j ≤ k and these events

are independent.

P (∩n
k=jAi,j,k) =

n∏

k=j

exp
(
−

2δ

k(k−1)

)
= exp

(
−2δ

(
1

j−1
−

1
n

))
#1

The last formula is somewhat ugly, so we will also consider two approximations

≈ 1−2δ

(
1
j
−

1
n

)
#2

≈ 1−
2δ

j
#3

We will refer to these three models by their numbers, and the original CHKNS model as #0.
The second approximation is not as innocent as it looks. If we let En be the number of edges
then using the definition of the model and 0 ≤ e−x− (1−x)≤ x2 for 0 < x < 1 we see that

EEn ≈





δn #1
δ(n+O(logn)) #2
2δn #3

It turns out however that despite having twice as many edges the connectivity properties of
model #3 is almost the same as that of models #1 and #2. See Theorem 3 below. To prepare
for an intuitive explanation we will give later, recall that the random graph model of Erdős and
Rényi (see Bollobás 1985 for a comprehensive survey) has an edge from i to j with probability
pi,j = λ/n, and note that model #3 corresponds roughly to model #2 plus an independent copy
of an Erdős–Rényi random graph with λ = 2δ.

The CHKNS analysis of their model begins by examining Nk(t) = the expected number of
components of size k at time t. Ignoring terms of O(1/t2), which correspond to differences
between t and t+1 in the denominator or picking the same cluster twice:

N1(t+1) = N1(t)+1−2δ
N1(t)

t

Nk(t+1) = Nk(t)−2δ
kNk(t)

t
+ δ

k−1∑

j=1

jNj(t)
t

· (k− j)Nk−j(t)
t

To explain the first equation, note that at each discrete time t one new vertex is added, and
a given isolated vertex becomes the endpoint of an added edge with probability ≈ 2δ/t. For the
second equation, note that that the probaiblity an edge connects to a given cluster of size is
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≈ 2δk/t, while the second term corresponds to mergers of clusters of size j and k− j. There is
no factor of 2 in the last term since we sum from 1 to k−1.

CHKNS stated the following result without proof. However, due to the triangular nature of
the coupled differential equations, it is not difficult to use a little undergraduate analysis and
induction to show:

Theorem 1. For model #0 or #1, as t →∞, Nk(t)/t → ak where a1 = 1/(1+2δ) and

ak =
δ

1+2δk

k−1∑

j=1

jaj · (k− j)ak−j

To solve for the ak, which gives the limiting number of clusters of size k per site, CHKNS used
generating functions. Let h(x) =

∑∞
k=1 xkak and g(x) =

∑∞
k=1 xkkak. Multiplying the equations

in Theorem 1 by (1+2δk)xk and summing gives

h(x)+2δg(x) = x+ δg2(x)

Since h′(x) = g(x)/x differentiation gives g(x)/x + 2δg′(x) = 1 + 2δg(x)g′(x). Rearranging we
have

(?) g′(x) =
1

2δx
· x−g(x)
1−g(x)

Let bk = kak be the fraction of vertices that belong to clusters of size k. g(1) =
∑∞

k=1 bk gives
the fraction of vertices that belong to finite components. 1−g(1) gives the fraction of sites that
belong to clusters whose size grows in time. Even though it is not known that the missing mass
in the limit belongs to a single cluster, it is common to call 1− g(1) the fraction of sites that
belong to the giant component. The next result gives the mean size of finite components.

Lemma 1. (i) If g(1) < 1 then
∞∑

k=1

kbk = g′(1) = 1/2δ.

(ii) If g(1) = 1 then g′(1) = (1−
√

1−8δ)/4δ.

Proof. The first conclusion is immediate from (?). If g(1) = 1, L’Hôpital’s rule implies

2δg′(1) = lim
x→1

x−g(x)
1−g(x)

= lim
x→1

1−g′(x)
−g′(x)

which gives 2δ(g′(1))2−g′(1)+1 = 0. This solution of this quadratic equation indicated in (ii) is
the one that tends to 1 as δ → 0.

Theorem 2 (Theoem CHKNS). The critical value δc = sup{δ : g(1) = 1}= 1/8 and hence

∑

k

kbk =
{

(1−
√

1−8δ)/4δ δ ≤ 1/8
1/2δ δ > 1/8
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Remarks. (a) Note that this implies that the mean cluster size g′(1) is always finite but is
discontinuous at δ = 1/8 since the value there is 2 but the limit for δ ↓ 1/8 is 4.
(b) We left a few letters out of the word Theorem to indicate that a few things were left out
of the proof. Borrowing a phrase my graduate school roommate Danny Solow invented to vent
his frustrations at steps in the proofs in his analysis class appearing as if by magic, we call the
nonrigorous proof a

Poof. The formula for the derivative of the real valued function g becomes complex for δ > 1/8
so we must have δc ≤ 1. To argue the other direction, CHKNS note that mean cluster size g′(1)
is in general non-analytic only at the critical value and (1−

√
1−8δ)/4δ is analytic for δ < 1/8.

If you are curious about their exact words, see the paragraph above (17) in their paper.

2 Rigorous derivation of the critical value

While the reasoning in the poof is not rigorous, our next result shows that the conclusion is
correct. In contrast to the situation with ordinary percolation on the square lattice where Kesten
(1980) proved the answer was correct nearly twenty year after physicists had guessed it, this time
the rigorous answer predates the question by more than 10 years.

Theorem 3. In models #1, #2, or #3, the critical value δc = 1/8.

To give the promised intuitive explanation of the equality of critical values, recall our remark
that model #3 is roughly model #2 plus an independent copy of an Erdős–Rényi random graph
with λ = 2δ but for the ER model, cluster sizes have exponentially decaying tails for λ < 1.

We begin by describing earlier work on the random graph model on {1,2,3, . . .} with pi,j =
λ/(i∨ j). Kalikow and Weiss (1988) showed that the probability G is connected (ALL vertices
in ONE component) is either 0 or 1, and that 1/4≤ λc ≤ 1. They conjectured λc = 1 but Shepp
(1989) proved λc = 1/4. To connect with the answer in Theorem 3, note that λ = 2δ. Durrett
and Kesten (1990) proved a result for a general class of pi,j = h(i, j) that are homogeneous of
degree −1, i.e., h(ci,cj) = c−1h(i, j). It is their methods that we will use to prove the result.

Proof of δc ≥ 1/8. We prove the upper bound for the largest model, #3. An easy comparison
shows that the mean size of the cluster containing a given point i is bounded above by the
expected value of the total progeny of a discrete time multi-type branching process in which a
particle of type j gives birth to one offspring of type k with probability pj,k (with pj,j = 0) and
the different types of births are independent.

To explain why we expect this comparison to be accurate, we note that in the Erdős–Rényi
random graph with pj,k = λ/n, the upper bound is an ordinary branching process with a Poisson
mean λ offspring distribution so we get the correct lower bound λc ≥ 1. When pj,k = 2δ/(j∨k),
the mean of the total progeny starting from one of type i is

∑∞
m=0

∑
j pm

i,j , which will be finite if
and only if the spectral radius ρ(pi,j) < 1. By the Perron–Frobenius theory of positive matrices,
ρ is an eigenvalue with positive eigenvector.

Following Shepp (1989) we now make a good guess at this eigenvector.
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n∑

j=1

1
i∨ j

· 1
j1/2

=
1
i

i−1∑

j=1

1
j1/2

+
n∑

j=i+1

1
j3/2

≤ 1
i

(
1+
∫ i

1

1
x1/2

dx

)
+
∫ n

i

1
x3/2

dx

=
1
i
(1+2i1/2−2)+2(i−1/2−n−1/2) ≤ 4

i1/2

This implies
∑

j i1/2pi,jj
−1/2 ≤ 8δ so if we let bn,k be the expected fraction of vertices in clusters

of size k in the model on n vertices, and |Ci| be the size of the cluster Ci that contains i,

∑

k

kbn,k =
1
n

n∑

i=1

E|Ci| ≤
1
n

∑

m

∑

i,j

pm
i,j

≤
2
n

∞∑

m=0

∑

i≥j

i1/2pm
i,jj

−1/2 ≤ 2
∞∑

m=0

(8δ)m ≤
2

1−8δ

which completes the proof of the lower bound.

Proof of δc ≤ 1/8. In this case we need to consider the smallest model, so we set:

Q(i, j) =
1

i∨ j
− 1

n
when K ≤ i, j ≤ n

For those who might expect to see some −1’s in the denominator, we observe that they can be
eliminated by shifting our index set. By the variational characterization of the largest eigenvalue

ρ(Q) ≥

(
n∑

i=1

v2
j

)−1

vT Qv

Again we take vj = 1/
√

j.

vT Qv = 2
n∑

i=K

n∑

j=i+1

1
i1/2

1
j3/2

− 1
n




n∑

j=K

1
j1/2




2

The second term is ≥−4. Bounding sums below by integrals the first is

≥ 2
n∑

i=K

2(i+1)−1−2i−1/2(n+1)−1/2 ≥ 4
n∑

i=K

(i+1)−1−4

This implies ρ(Q) ≥
(
4
∑n

i=K(i+1)−1−8
)
/
∑n

i=K i−1.

Letting q(i, j) = 2δ
(

1
i∨j −

1
n

)
for K ≤ i, j < KN ≤ n we have

ρ(q) ≥ 8δ
logN −3

logN
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If 8δ = 1+4ε > 1 and N = e12+(3/ε) we have ρ(q) ≥ 1+3ε for all K ≥ 1 and the desired result
follows from

(2.16) in Durrett and Kesten (1990). Consider the q random graph in [K,NK). There are
positive constants γ and β so that if K ≥ K0 then with probability at least β, K belongs to a
component with at least γNK vertices.

The proof of (2.16) has two steps:
(i) Let M = 1+(1/ε), L = K/M , subdivide [K,KN) into intervals [K +(m− 1)L,K +mL) for
1≤m≤MN to define a multitype branching process with MN types with spectral radius of the
mean matrix ≥ 1+2ε if K is large.
(ii) Argue that until some interval has more than a fraction ε of its sites occupied the percolation
process dominates a branching process with spectral radius 1+ ε, so the percolation process will
be terminated by this condition with probability ≥ β > 0. For further details see Durrett and
Kesten (1990).

The proof of (2.16) gives a very tiny bound on the fraction of vertices in the large component

γ =
ε

MN
= Cε2e−3/ε

However it turns out that this estimate is not too bad. By numerically solving (?), CHKNS
showed 1− g(1) ≈ exp(α(δ − δc)−1/2). Inspired by their conjecture Dorogovstev, Mendes, and
Samukhin (2001) showed:

Theorem 4 (Theoem DMS). As δ ↓ 1/8,

S ≡ 1−g(1)≈ cexp(−π/
√

8δ−1)

Note that this implies that the percolation probability S is infinitely differentiable at the critical
value, in contrast to the situation for the Erdős–Rényi model and for percolation on Zd, in which
S ∼ (δ− δc)β as δ ↓ δc with β ≤ 1. See Bollobás (1985) or J.T. Chayes and L. Chayes (1986).

Poof. To derive this result DMS change variables u(ξ) = 1−g(1− ξ) in (?) to get

u′(ξ) =
1

2δ(1− ξ)
·
u(ξ)− ξ

u(ξ)

They discard the 1− ξ in the denominator (without any justification or apparent guilt at do-
ing so) and note that the solution to the differential equation is the solution of the following
transcendental equation

− 1√
8δ−1

arctan
(

4δ[u(ξ)/ξ]−1√
8δ−1

)
− ln

√
ξ2 −u(ξ)ξ +2δu2(ξ)

= − π/2√
8δ−1

− ln
√

2δ− lnS

This formula is not easy (for me at least) to guess but with patience is not hard to verify. Once
this is done, the remainder of the proof is fairly routine asymptotic analysis.
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3 Results at the critical value

It would indeed be a thankless job to fill in details in steps in the last proof that DMS didn’t feel
the need to justify, so we turn now to an analysis of our model(s) at the critical value. Yu Zhang
(1991) studied the percolation process with pi,j = (1/4)/(i∨j) on {1,2, . . .} in his Ph.D. thesis at
Cornell written under the direction of Harry Kesten. This is a rigorous result, so we modify our
naming convention accordingly.

Theorem 5. If i < j and i ≥ log6+δ j then

c1 log(i+1)√
ij

≤ P (i → j) ≤ c2 log(i+1)√
ij

By adapting Zhang’s method we can prove a similar result for model #3:

Theorem 6. If i < j then P (i → j) ≤ (3/8)Γn
i,j .

If (i) (2/ε)3 log6(4/ε) ≤ i < j ≤ n1−ε, (ε ≤ ε0) or (ii) (logn)3 ≤ i < j ≤ n, (n ≥ n0),
then

P (i → j) ≥ cΓn
i,j where Γn

i,j =
(log i+2)(logn− logj +2)

(logn+4)
.

Remarks. (a) The proof of Theorem 6 is a refinement of the proof of Theorem 5. In particular
our version of Lemma 2 below allows the condition i≥ log6+δ j to be removed from Zhang’s result.
Unfortunately, the fact that Γn

i,j vanishes at j = n forces us to keep one of the points away from
the boundary. (b) From the upper bound in Theorem 6 and some routine summation it follows
that

1
n

n∑

i=1

E|Ci| ≤ 2
∑

i<j

P (i → j) ≤ 6

This shows that the expected cluster size is finite at the critical value. This upper bound is only
3 times the exact value of 2 given in Theoem 2.

Proof. The expected number of self-avoiding paths from i to j is

EVi,j =
∞∑

m=0

∑

∗
h(i,z1)h(z1,z2) · · ·h(zm, j)

where h(x,y) = (1/4)/(x∨ y) and the starred sum is over all self-avoiding paths. The sum re-
stricted to paths with all zi ≥ 2 has

Σ1
i,j ≤

∞∑

m=0

∫ n

1

dx1 · · ·
∫ n

1

dxmh(i,x1)h(x1,x2) · · ·h(xm, j)

Introducing

π(u,v) = eu/2h(u,v)ev/2 =
{

(1/4)e(u−v)/2 u ≤ v
(1/4)e(v−u)/2 u ≥ v
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and setting logxi = yi, dxi = eyi dyi we have

Σ1
i,j ≤

1√
ij

G0,logn(log i, logj)

where G is the Green’s function for the bilateral exponential random walk killed when it exits
[0, logn].

Suppose the jump distribution is (λ/2)e−λ|z|. Since boundary overshoots are exponential, a
standard martingale calculation applied at the exit time from (u,v) shows

Px(T(−∞,u] < T[v,∞)) =
(v +1/λ)−x

(v +1/λ)− (u−1/λ)

the exit probability for Brownian motion from the interval (u−1/λ,v +1λ). Using this formula
and standard reasoning about hitting times, one can show that for the case λ = 1/2.

GK,L(x,z) =

{
1
4 ·

(L−x+2)(z−K+2)
L−K+4 z ≤ x

1
4 ·

(L−z+2)(y−K+2)
L−K+4 z ≥ x

If we discard the +2’s and +4’s this is exactly the formula for the Green’s function of
√

8Bt.
Taking x = log i, z = logj and bounding the paths that visit 1 by Σ1

i,1 ·Σ1
1,j , the upper bound

follows.
To get a lower bound we have to remove the terms from the sum that visit a site more than

once. A somewhat lengthy calculation gives:

Lemma 2. If log(κ−1)≥ 6 then for κ2 ≤ i < j ≤ n we have

EVi,j ≥
1

8
√

ij

[
(log i+2)(logn− logj +2)

logn+4
− (logκ)3

κ−1

]

If conditions (i) or (ii) in Theorem 6 hold then the second term is at most half the first one so
EVi,j ≥ (1/16)Γn

i,j .

By using Zhang’s (1991) argument one can show

Lemma 3. EV 2
i,j ≤ CΓn

i,j

Combining the last two lemmas we have EV 2
i,j ≤ CEVi,j . The Cauchy–Schwarz inequality

implies

EVi,j = E(Vi,j1{Vi,j>0}) ≤
√

E(V 2
i,j)P (Vi,j > 0)

Rearranging gives P (i → j) = P (Vi,j > 0) ≥ EVi,j/C which gives the lower bound.



Rigorous Result for the CHKNS Random Graph Model 103

4 The subcritical case

It is straightforward to generalize the proof of the upper bound in Theorem 7 to show that when
δ < 1/8,

P (i → j) ≤ 1√
ij

G8δ(i, j)

where G8δ is the Green’s function for the bilateral exponent on R killed on each step with
probability 1− 8δ. (One can get lower bounds but they are even worse than our results for

the critical case.) Using Fourier transforms one can easily compute G8δ(x,y) =
2δ√

1−8δ
e−r|x−y|

where r =
√

1−8δ/2 which gives for i < j: P (i → j) ≤ c

i1/2−rj1/2+r
. Setting i = 1 and summing

over 1 < j ≤ n and doing the same thing to the upper bound in Theorem 7 gives

E|C1| ≤
{

cn(1−
√

1−8δ)/2 0 < δ < 1/8
cn1/2/ logn δ = 1/8

I have tried a number of techniques to bound the variance of |C1|. Thus I leave to the reader to
consider:

Problem. Is |C1| = O(E|C1|)?
Of course making this statement precise is part of the problem. Note that p1,j = 2δ/j for

1≤ j ≤ n so with high probability the number of edges incident to 1 will be 2δ logn+O(
√

logn).
Given this it seems likely that the component containing 1 will with high probability be the
largest component, but this also needs to be proved.

Dorogovstev, Mendes, and Samukhin (2001) studied the preferential attachment model in which
one new vertex and an average of δ edges were added at each time and the probability of an edge
from i to j is proportional to (di +α)(dj +α) where dk is the degree of k. The CHKNS model
arises as the limit α →∞. Taking this limit of the DMS results suggests that the probability a
randomly chosen vertex belongs to a cluster of size k has

bk ∼
2

k2 lnk
if δ = 1/8.

In the subcritical regime one has (see their (B16) and (B17) and not (21) which is wrong)

bk ∼ Cδk
−2/(1−

√
1−8δ) if δ < 1/8.

As the next result shows, once again the physicists are right.

Theorem 7. The formulas for bk hold for model #0 and #1.

Proof. As in the first steps of the poof of Theoem 4, we let u(y) = 1− g(1− y) and u(y) =
y(u′(0)−v(y))

u′(y) =
1

2δ(1−y)
· u(y)−y

u(y)
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Unfortunately, we cannot give ourselves the luxury of discarding the 1−y (we could for δ > 1/9
but not for later stages of the argument), so when we plug in the formulas above to get

v′(y) =
(1−4δu′(0))v(y)+2δv(y)2

2δy(1−y)(u′(0)−v(y))
+

1
1−y

(u′(0)−v(y))

≈ av(y)
y

+
v(y)2

u′(0)y
+u′(0)

where the constant

a =
1−4δu′(0)

2δu′(0)
=
{

0 if δ = 1/8
< 1 if δ > 1/9

Asymptotic analysis of the differential equation implies

v(y) ∼





u′(0)/(− logy) δ = 1/8
ya δ ∈ (1/9,1/8)
u′(0)y(− logy) δ = 1/9
cy δ < 1/9

where c = 2δu′(0)2/(1−6δu′(0)). From this it follows that

∑

k

kbk(1− (1−y)k−1) = g′(1)−g′(1−y) = yv′(y)+v(y) ∼
{

2/ log(1/y) δ = 1/8
(1+a)ya 1/9 < δ < 1/8

To check the guesses we note
∑

k>1/y

1
k(logk)2

≈
1

log(1/y)
and

∑

k>1/y

k−ρ+1 ≈ (1/y)2−ρ so ρ =

a+2 = 1/2δu′(0) = 2/(1−
√

1−8δ).
When δ < 1/9, u has two continuous derivatives, so we have taken away more smooth terms to

find the singular part. In general if k < 1
2δu′(0) −1≤ k+1 we can write (recall u(y) = 1−g(1−y))

u(y) = −
k∑

i=1

ci(−y)i +(−y)kv(y)

and analyze v(y) as before. Results of Flajolet and Odlyzko (1990) then allow us to get the
desired asymptotics.
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