Typos in "Essentials of Stochastic Processes" by R. Durrett

(Page numbers are on the left; the arrows $A \rightarrow B$ means that B should replace A.)

vi Family Update: out \rightarrow our vii 3. Poisson Process: Compund \rightarrow Compound 16 Solution to Ex 2.11 : "we must have $V \leq 1$, so that $U \geq x - 1$ ". Also, the lower limit on the integral is x - 1 instead of 1 - x. 24 $Z \to X$ in the last display. 41, line 2: properly \rightarrow property 44 Not all the arrows in the diagram are correct. 45 Line 13. $(3.3) \rightarrow (3.4)$. 45 proof of theorem: $x \to y, y \not\to x$ 47 proof of Lemma 3.9: $\rho_{xy}^{k-1} \rightarrow \rho_{yy}^{k-1}$ 48 Here N_y is used for N(y). 50, Exercise 4.1: $i, j \rightarrow i + j$. 50, line 6. $i \to x$. $52\ 225{\rightarrow}\ 210$ 53, line 3. $I_x \to I_y$. 53 Ex 4.6: go to the left from $1 \rightarrow$ go to the left from 0 53 definition of stationary dist: add in the fact that it sums to 1. Also, n means different things in $p^n(x, y)$ and in $1 \times n$ matrix. 55 very top: $4.4 \rightarrow 4.5$ 58 very top: always start with day \rightarrow always start every day 58, line after the first matrix: states 2,3,4 should be 1,2,3. 59 $I_n = 2$ and $D_n = 3$ in line 4 are not defined here. Actually, $I_n = X_n$ is the chain (I stands for inventory) and D was defined on page 32 (D stands for demand). 60 Example 5.2: For a new of example \rightarrow For a new example 60 Exercise 5.1: even \rightarrow odd 61 top: lim should be in Roman 62, diagram: the probabilities are not right. 63, (5.5): $c \to \pi(l)$. 64 Example 5.5: Denominator of $\pi(3)$ should be 116, not 176 66 Ex 6.1: win with $\$1 \rightarrow win \1 with 67 Solution to Ex 6.2: $6.2 \rightarrow 6.1$ 67 Middle: $(6.1) \to (*)$ 68 Statement of Ex 6.3: $20/18 \rightarrow 20/38$. Also, $.005127 \rightarrow .005128$. 71 top and 86 middle: Do not need aperiodicity here. 72 Back to TT: it take longer \rightarrow it takes longer

1

73 end of Ex 6.8: are TH... are TT \rightarrow are TT... are TH 73 Third line of Example 7.1. $p \rightarrow 1 - p$. 73 Bottom line: $i + 1 \rightarrow i$ in one place. 74 I. When p < 1/2: One the other hand \rightarrow On the other hand 77 Ex 7.2: there were are \rightarrow there we are 79 Proof: $7.8 \rightarrow 7.6$ 85 Theorem 4.7: remove comma after S, or add one before S. 86 Theorem 7.2: remove "then" 90 Ex. 9.9 spelling: "likley" 91 9.12b: stationary distribution of p or p^2 ? (One might as well compute both.) 95 Exercise 34. "if we each time" should be fixed. Also $n \to N$. 97 Problem 9.41. The " after $\frac{2}{3}$ is misplaced. 97 Problem 9.42. Example $6.2 \rightarrow$ Example 6.3. 98 Problem 9.49. The probabilities do not add up to 1. 98 Problem 9.51. Assume infinitely many p_i 's are > 0. Also, there is a typo in "probability". 130, top display: Some n's should be n + 1's, etc. 130, Definition: of \rightarrow be 130, diagram: $S \rightarrow s$ 130 3 lines from the bottom: $s < T_{n-1} \rightarrow s < T_{n+1}$ 132 line 6: fourth \rightarrow fifth 135, middle: (i) is a very strong assumption... 153 7.13: The problem has an (a) but no (b). 153 7.16(b): Unclear wording. 154 7.21: $\frac{2}{3}$ of a vehicle... Also passes in an hour? 163, top line: $P_1(T_{\infty} < \infty) = 1$. 167, line 3: $t - s \rightarrow t + s$. 168 display 2.9. The binomial coefficient should be $\binom{j-1}{j-i}$. In the proof, $n_k \ge 0$ should be $n_k \geq 1.$ 200 bottom line: $p_{i,j}(t) \rightarrow p_t(i,j)$ Same comment about the answer on page 276. 201 8.5: sales may reduce the inventory to 0.... 273 1.25: Ans. = 2/n (By the way this page is unnumbered) 273 2.17: $m \rightarrow n-2$; also reverse the roles of p and 1-p. 274 9.7: 5 is not recurrent 274 9.9a: J, T, and H \rightarrow J, T, and M 275 9.33b: 13.7 \rightarrow 14.7 275 7.15(b): There is a missing $\frac{1}{8}$.

2