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Abstract

We study an evolutionary game in which a producer at x gives birth at rate 1 to
an offspring sent to a randomly chosen point in x + Nc, while a cheater at x gives
birth at rate λ > 1 times the fraction of producers in x + Nd and sends its offspring
to a randomly chosen point in x +Nc. We first study this game on the d-dimensional
torus (Z mod L)d with Nd = (Z mod L)d and Nc = the 2d nearest neighbors. If we let
L →∞ then t →∞ the fraction of producers converges to 1/λ. In d ≥ 3 the limiting
finite dimensional distributions converge as t →∞ to the voter model equilibrium with
density 1/λ . We next reformulate the system as an evolutionary game with “birth-
death” updating and take Nc = Nd = N . Using results for voter model perturbations
we show that in d = 3 with N = the six nearest neighbors, the density of producers
converges to (2/λ)−0.5 for 4/3 < λ < 4. Producers take over the system when λ < 4/3
and die out when λ > 4. In d = 2 with N = [−c

√
log N, c

√
log N ]2 there are similar

phase transitions, with coexistence occurring when (1 + 2θ)/(1 + θ) < λ < (1 + 2θ)/θ
where θ = (e3/(πc2) − 1)/2.

1 Introduction

Archetti, Ferraro, and Christofori [1] have recently analyzed the dynamics of the production
of insulin-like growth factor II in tumor cell lines from mouse insulinomas. In this system
some (cooperator) cells produce IGF-II while other mutant (defector) cells that have lost
both copies of this gene “free-ride” on the growth factors produced by other cells. Thus this
system is yet another example of studying the interaction of cooperators and defectors in a
spatial system. For a classic example in which cooperators pay a price c to give a benefit b to
each of their neighbors see Ohtsuki et al. [19], and Section 1.6 in Cox, Durrett, and Perkins
[4].

In our system, space is represented by the d-dimensional lattice or torus (Z mod L)d.
We use very simple dynamics that are a variant of the biased voter model. Let Nc be the
competition neighborhood. Producers (2’s) give birth at rate 1 and if the birth comes from
x it replaces a randomly chosen member of x + Nc. In d ≥ 3, Nc will typically be the 2d
nearest neighbors.
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Cheaters (1’s) have a diffusion neighborhood Nd that they use to compute the local
density of 2’s:

u(t, x) =
1

|Nd|
|{y ∈ Nd : ξt(x+ y) = 2}|,

where |S| is the number of elements in a set S. A 1 at x at time t gives birth at rate
λu(t, x) and sends the offspring to replace a randomly chosen member of x +Nc. Since we
are thinking about diffusion, it would be more natural to replace the simple average by a
weighted average using a p(y) that looks like a truncated normal distribution but here we
will choose simplicity over realism.

To analyze this system, it is useful to observe that it can be reformulated as an evolu-
tionary game with matrix

G =
1 2

1 0 λ
2 1 1

(1)

and “birth-death” dynamics. Let ξt(z) be the strategy being used by the individual at z at
time t. The individual at x has fitness

φ(x) =
1

|Nd|
∑
y∈Nd

G(ξt(x), ξt(y))

gives birth at rate φ(x), and the offspring replaces an individual at a site randomly chosen
from x+Nc.

1.1 Homogeneously mixing dynamics

If Nd = Nc = {1, 2, . . . N} then in the limit as N → ∞ the frequency of players using
strategy i, ui, follows the replicator equation:

dui

dt
= ui(Fi − F̄ ) (2)

where Fi =
∑

j Gi,juj is the fitness of strategy i and F̄ =
∑

i uiFi is the average fitness. See
e.g., Hofbauer and Sigmund’s book [15]. Note that if we add a constant ck to column k we
add ukck to each Fi and hence also to F̄ so the behavior of the replicator equation is not
changed. The replicator equation for (1) is

du2

dt
= u2(1− [u1λu2 + u2 · 1]) = u1u2(1− λu2)

As t → ∞, u2(t) → 1/λ, u1(t) → 1 − 1/λ, which is a mixed strategy equilibrium for the
game.

1.2 Global diffusion, local competition on the torus

Consider now the system on the torus with Nd = (Z mod L)d, Nc the nearest neighbors. For
simplicity we suppose the initial state is a product measure with density u0. Let N = Ld,
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write y ∼ x if y is a nearest neighbor of x, and let

UL(t) =
1

N

∑
x

1{ξt(x)=2},

VL(t) =
1

2dN

∑
x,y∼x

1{ξt(x)=2,ξt(y)=1}.

The system on the torus is difficult to study because its statistics are random, and eventually
it will reach one of the absorbing states ≡ 1 and ≡ 0. To avoid this we will let L → ∞
before taking t→∞.

Theorem 1. As L→∞, UL → u(t) and VL(t) → v(t) with

du

dt
= v(t)(1− λu(t)) where u(0) = u0 and v(0) = u0(1− u0).

In the limiting equation u(t) → 1/λ as t→∞.

To see why this is true, note that the initial density of 2’s u(0) > 1/λ then the density
of 2’s will decrease until u(t) ≈ 1/λ. The difficulty in proving this is the usual one in
interacting particle systems; to bound the decrease of the one-dimensional distribution u(t),
we need information about the two dimensional distribution v(t). A new difficulty is that
the dynamics of the dual coalescing branching random walk depend on the density u(t)

When the density u(t) ≈ 1/λ the system behaves like the voter model. Based on Theorem
1 the following should not be surprising. Let νp be the limit of the voter model starting with
product measure with density p.

Theorem 2. If d ≥ 3 then as L → ∞, all of the empirical finite dimensional distributions
at time t converge to those of a translation invariant distribution µt on {1, 2}Zd

. As t→∞,
µt ⇒ ν1/λ.

Note that Theorem 1 holds in d ≤ 2. The particle system should cluster in d ≤ 2, but the
first step of our proof which is to show that the convergence u(t) → 1/λ in Theorem 1 occurs
exponentially fast uses d ≥ 3.

1.3 Weak selection d ≥ 3

To be able to use machinery we have developed previously, [4, 7], we replace the game by
Ḡ = 1 + wG where 1 is a matrix of all 1’s and w is small:

Ḡ =
1 2

1 1 1 + λw
2 1 + w 1 + w

Note that by a remark after (2), the replicator equation for Ḡ is the same as that for G.
If the game matrix is 1, then dynamics are those of the voter model, so when w is small

this is a voter model perturbation as defined in [4]. To make it easier to compare with [4]
and [7] we will let w = ε2. To be able to just quote the previous results, we will assume
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that Nc = Nd = N . One can prove results when Nc 6= Nd but there are a number of small
changes in the proof and some of the symmetry that is useful in simplifying formulas is lost.

The key to the study of voter model perturbations is a result that says when the system
is suitably rescaled in space and time it converges to the solutions of a reaction diffusion
equation. We run time at rate ε−2 so that the perturbation will have an effect, and scale
space by ε. That is, we look at

ξ̄ε
t (x) = ξtε−2(x/ε) for x ∈ εZd.

The last detail before we can state the result is to define the mode of convergence. Pick a
small r > 0 and divide εZd into boxes with side εr. Given an x ∈ Rd let Bε(x) be the box
that contains x, and let ūε

i (t, x) be the fraction of sites in Bε(x) in state i at time tε−2. We
say that the rescaled spatial model ξ̄ε

t converges to u(t, x) if for any L

sup
x∈[−L,L]d

|ūε
i (t, x)− u(t, x)| → 0 as ε→ 0.

Theorem 3. Suppose d ≥ 3. Let vi : Rd → [0, 1] be continuous with
∑

i∈S vi = 1. If the
initial condition ξ̄ε

0 converges to vi in the sense described above then ξ̄ε
t converges to u(t, x)

the solution of the system of partial differential equations:

∂

∂t
ui(t, x) =

σ2

2
∆ui(t, x) + φi(u(t, x))

with initial condition ui(0, x) = vi(x). The reaction term

φi(u) =
∑
j 6=i

〈1(ξ(0)=j)hj,i(0, ξ)− 1(ξ(0)=i)hi,j(0, ξ)〉u

where hi,j(0, ξ) is the rate 0 flips from i to j in the evolutionary game when the configuration
is ξ. The brackets are expected value with respect to the stationary distribution νu for the
d-dimensional nearest neighbor voter model in which the densities are given by the vector u.

To give a formula for the reaction term in the case of a k-strategy evolutionary games
with weak selection, we use results in Section 12 of [7]. Let v1 and v2 be independent and
uniform over N . Let

p1 = Ep(0|v1|v1 + v2) and p2 = Ep(0|v1, v1 + v2).

The reaction term is p1 times the right-hand side of the replicator equation for H = G+ A
where

Ai,j = θ(Gi,i −Gj,i +Gi,j −Gj,j) and θ =
p2

p1

.

Note that if we add ck to column k the perturbation matrix A is not changed, so if we
subtract 1 from the second column of G the reaction term in our situation is p1 times the
right-hand side of the replicator equation for

H =
1 2

1 0 (1 + θ)(λ− 1)− θ
2 1 + θ − θ(λ− 1) 0
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If we suppose that N = the nearest neighbors of 0 then θ ≈ 0.5, see page 13 of [7], and the
game becomes

1 2
1 0 (3/2)λ− 2
2 2− λ/2 0

From this and results in Section 6 of [7], we see that when w is small

• If λ < 4/3 then (3/2)λ− 2 < 0 so strategy 2 dominates strategy 1 and the 1’s die out.

• If λ > 4 then 2− λ/2 < 0 so strategy 1 dominates strategy 2 and the 2’s die out.

• If 4/3 < λ < 4, the replicator equation converges to the mixed strategy equilibrium

(ρ, 1− ρ) = (1.5− 2/λ, 2/λ− 0.5).

It follows that there is coexistence in the spatial game and in all stationary distributions
that assign probability 1 to configurations with infinitely many 1’s and infinitely many
2’s, the probability that x is in state 1 is close to ρ.

The next set of simulations, done by Mridu Nanda, a student at the North Carolina
School for Science and Math, shows that the theory accurately describes the behavior of the
spatial game when w = 1/10 and works reasonably well even when w = 1/2. The numbers
in the next table give the equilibrium frequencies of strategy 1 for the indicated values of w
and λ and compare them with the theoretical predictions about the limit w → 0

λ 4/3 3/2 3 3.5 4
Original game 0.11 0.25 0.75 0.83 0.89

w = 1/2 0.01 0.19 0.79 0.88 0.96
w = 1/10 0.00 0.16 0.82 0.92 0.98

w → 0 limit 0 0.17 0.83 0.93 1

1.4 Two dimensions

One of the drawbacks of the voter perturbation machinery is that it requires the existence
of a stationary distribution for each vector of densities and hence cannot be used in two
dimensions, where the only stationary distributions for the voter model concentrate on ab-
sorbing states ξ(x) ≡ i. To overcome this problem, one can note that for two dimensional
nearest neighbor random walk, the probability a random walk does not hit 0 by time t is
asymptotically c/ log t and then run time at ε−2 log(1/ε) to have particles created at rate
O(1) that don’t coalesce before a fixed finite time T . However, the fact that most particles
do not escape coalescence brings a number of technical difficulties and there are only a few
systems that have been rigorously analyzed, see [9, 11, 5]. A second unfortunate fact is that
the probability that after a branching event that produces three particles, the probability
none of them coalesce by time t is O(1/ log3 t) compared to O(1/ log t) for a pair of particles,
see [5], so the limiting PDE can only have quadratic reaction terms.
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Here will follow in the footsteps of Ted Cox [2] and suppose that when w = 1/N ,

Nd = Nc = [−c
√

logN, c
√

logN ]2.

As we will show in Section 4 this is enough to make our voter random walks transient in the
sense that a random walk starting at 0 has positive probability of not returning to 0 by time
N logN . In a sense we are making a large range assumption but

√
logN grows slowly so

our results should be relevant for processes with fixed finite range. For example if N = 106,√
logN = 3.717.
One should be able to prove results for general “long-range” voter model perturbations

in d = 2, but for simplicity and concreteness, we will only consider k-strategy evolutionary
games with weak selection.

Theorem 4. Suppose d = 2 and the interaction neighborhood is QN = [−c
√

logN, c
√

logN ]2.
If we scale space by dividing by

√
N logN and run time at rate N the spatial game converges

(in the sense described above) to the solution of the system of partial differential equations:

∂

∂t
ui(t, x) =

σ2

2
∆ui(t, x) + φi(u(t, x))

Let b = 3/(2πc2), p1 = e−3b and p2 = (e−b − e−3b)/2. The reaction term is p1 times the
right-hand side of the replicator equation for H = G+ A where

Ai,j =
p2

p1

(Gi,i −Gj,i +Gi,j −Gj,j).

If we consider the special case in (1) and, as before, subtract 1 from the second column
(which does not effect A or the behavior of the replicator equation for H) we see that the
reaction term is p1 times the right-hand side of the replicator equation for

H =
1 2

1 0 (1 + θ)λ− (1 + 2θ)
2 (1 + 2θ)− λθ 0

but now θ = p2/p1 = (e2b − 1)/2. The qualitative behavior is same as in d ≥ 3 but the
locations of the phase transitions have changed. The mixed strategy equilibrium has

ρ1 = (1 + θ)− (1 + 2θ)/λ, ρ2 = (1 + 2θ)/λ− θ

so there is coexistence when
1 + 2θ

1 + θ
< λ <

1 + 2θ

θ

When θ = 1/2 this reduces to the previous answer.
In the analysis above, the long range assumption is needed for the proof but we do not

think it is necessary for the conclusion. See the simulation in Figure 1. The fact that the
interfaces between the regions occupied by the two strategies break down suggests that there
is coexistence in the spatial model. For an explanation of the heuristic see the analysis of
the nonlinear voter model done by Molofsky et al [18]

.
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Figure 1: In this simulation 1’s are white and 2’s are black. The initial state was a black
square in a sea of white.

2 Proof of Theorem 1

The first step is to construct the process from a graphical representation. To make our
process look more like the biased voter model, we will change the notation for producers
from 2 to 0. In the new notation

UL(t) =
1

N

∑
x

1{ξt(x)=0}

Suppose that UL(0) > 1/λ. We will use a biased voter model type construction that only
works up to time T0(L) = inf{t : UL(t) < 1/λ}, but Lemma 2.2 will show that T0(L) → ∞
as L→∞.

For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson process T x,y
n , n ≥ 1 with

rate 1/2d. At time T x,y
n we draw an arrow from x to y and write a δ at y to indicate that y

will take on the “opinion” at x at that time.

For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson process Sx,y
n , n ≥ 1 with

rate (λ − 1)/2d and a collection of independent random variables Rx,y
n that are uniform on

[0, λ− 1]. At time Sx,y
n we draw an arrow from x to y if λUL(Sx,y

n )− 1 ≥ Rx,y
n . These arrows

will create a 1 at y if there is a 1 at x.

Given an initial condition ξ0(x) we view the {x : ξ0(x) = 1} are sources of fluid. The
fluid moves up the graphical representation, being blocked by δ’s and moving across arrows
in the direction of their orientation. In an arrow-δ the δ occurs just before the arrival of the
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arrow, otherwise the arrow would do nothing. It is easy to see that this approach, which
goes back to Harris [14] and Griffeath [13], constructs the process and the density UL(s),
0 ≤ s ≤ t.

As with the ordinary biased voter model we can for each x ∈ (Z mod L)d define a set-
valued dual processes ζx,t

s for 0 ≤ s ≤ t. If one of the particles in ζx,t
s is at y and there is an

arrow-δ from x to y at time t − s then the particle jumps to x. If instead it encounters an
arrow from x to y then the particle at y gives birth to a new particle at x. If the jumping
particle or the new born lands on an occupied site the two coalesce to 1. From the definition
of the dual we see that

{ξt(x) = 0} = {ξ0(y) = 0 for all y ∈ ζx,t
s }

If the initial state is a product measure with density u0 then

P (ξt(x) = 0) = E
[
u
|ζx,t

t |
0

]
Let N = Ld. On (Z mod L)d, we have the following differential equation for uL(t) =

EUL(t):

duL(t)

dt
=

d

dt

1

N

∑
x

P (ξt(x) = 0)

= E
1

N

(
−
∑
y∼x

1{ξt(x)=0,ξt(y)=1}
λUL

2d
+
∑
y∼x

1{ξt(x)=1,ξt(y)=0}
1

2d

)
(3)

= E[VL(t)(1− λUL(t))]

where VL(t) = 1
2Nd

∑
y∼x 1{ξt(x)=0,ξt(y)=1} ≤ 1. Let vL(t) = EVL(t). Note that the capital

letters are random variables while the lower case letters are their expected values.
Our first goal is to show that UL(t) → u(t) and Vl(t) → v(t). To prove this the following

lemma will be useful.

Lemma 2.1. Given u(s) with u(0) = u0 and u(s) ≥ 1/λ for all s ≥ 0 define for each t a
coalescing branching random walk (CBRW) ζt

s on Zd in which branching at time s occurs at
rate λu(t− s)− 1. There is a unique u with u(0) = u0 so that for all t

u(t) = E
[
u
|ζt

s|
0

]
.

Proof. Suppose u1 and u2 are two solutions with u1(0) = u2(0) = u0. Fix t and let ζ1
s , ζ2

s be
the corresponding CBRWs defined for 0 ≤ s ≤ t. Since x → ux

0 is Lipschitz continuous on
[1,∞) with Lipschitz constant 1

|u1(t)− u2(t)| =
∣∣∣E [u|ζ1

s |
0

]
− E

[
u
|ζ2

s |
0

]∣∣∣ ≤ E||ζ1
t | − |ζ2

t ||

Let v(t) = min{u1(t), u2(t)} and w(t) = max{u1(t), u2(t)}. Let ζv
t and ζw

t be the correspond-
ing CBRWs. Clearly, these processes can be constructed on the same space so that:

|ζv
s | ≤ |ζ1

s |, |ζ2
s | ≤ |ζw

s |
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and hence ∣∣|ζ1
s | − |ζ2

s |
∣∣ ≤ |ζw

s | − |ζv
s |

Let zw
t and zv

t be the corresponding BRWs with birth rates λw− 1 and λv− 1. If we couple
the births and random walk steps in the natural way then

|ζw
s | − |ζv

s | ≤ |zw
s | − |zv

s |

The branching processes have

d

dt
(E|zw

t | − E|zv
t |) = λ(w(s)− v(s))

Integrating and the fact that |u1(t)− u2(t)| = w(t)− v(t)

E|zw
s | − E|zv

s | ≤ λ

∫ t

0

|u1(s)− u2(s)| ds

Combining our calculations we see that

|u1(t)− u2(t)| ≤ λ

∫ t

0

|u1(s)− u2(s)| ds

Gronwall’s inequality then implies u1(t) = u2(t).

Lemma 2.2. If uL(0) = u0 for all L then as L → ∞, uL(t) → u(t), the function from
Lemma 2.1.

Proof. Since VL ≤ 1, it follows from (3) that duL/dt ≥ 1− λuL(t), so uL(t) > 1/λ for all t,
Using (3) again we can see that uL(t) is Lipschitz continuous with Lipschitz constant 1. This
implies that uL(t) is tight as a sequence of continuous functions in C[0,∞). It is easy to see
that any subsequential limit will satisfy the conditions of Lemma 2.1. Since the solution is
unique, the sequence converges.

Our next step is to show that the variances of UL(t) and VL(t) tend to 0. To start to
do this we will prove a random walk estimate. For x = (x1, ..., xd) ∈ (Z mod L)d, define the
distance from 0 by

|x| = max
k

min (|xk| , L− |xk|) .

Lemma 2.3. Suppose St is a continuous time random walk on (Z mod L)d with exponential
rate 2 starting from 0. For all t, δ > 0

lim
L→∞

P
(
|St| ≥ Lδ − 2

)
= 0

Proof. In order to have |St| ≥ Lδ − 2 we must have |Si
t | ≥ Lδ − 2 for some i, so it suffices to

prove the result for a one dimensional random walk. Let ϕ(θ) = (eθ + e−θ)/2 be the moment
generating function for one step. Steps in the direction of the ith component happen at rate
2/d. Using Chebyshev’s inequality, we see that if θ > 0

eθ(Lδ−2)P
(
St ≥ Lδ − 2

)
≤ EeθSt =

∞∑
k=0

e−2t/d (2t/d)k

k!
ϕ(θ)k = e2t(ϕ(θ)−1)/d.
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Taking θ = 1 and rearranging

P (St ≥ Lδ − 2) ≤ exp((2t/d)(ϕ(1)− 1)− Lδ + 2) → 0, ,

as L→∞, which proves the desired result.

Lemma 2.4. As L→∞, var (UL(t)) → 0 and var (VL(t)) → 0.

Proof. Let A = {ξt(x) = 0}, B = {ξt(y) = 0}. If |x− y| ≤ 2Lδ we use |cov (1A, 1B)| ≤ 1. To
bound the covariance when |x − y| > 2Lδ, we use an old trick due to David Griffeath [13].
We construct the dual process ζx,t

s on graphical representation #1, and the dual process ζy,t
s

on an independent graphical representation #2. To have the correct joint distribution we
adopt the priority rule that if a particle z in ζy,t

s occupies the same site as a particle in ζx,t
s ,

the graphical representation #1 is used for moves and births from z in ζy,t
s . Let C be the

event that the duals starting from x and y do not intersect. Let 1∗B be the indicator of the
event that B occurs when only graphical representation #2 is used. Since 1A and 1∗B are
independent

|cov (1A, 1B)| = |E[1A1B − 1A1∗B]| ≤ P (Cc)

To bound P (Cc) let πt
i,j be the probability that by time t the dual starting from x branches

i times and the one starting from y branches j times. Breaking things down according to
the values of i and j

P (Cc) ≤
∑
i,j≥0

πt
i,j(i+ 1)(j + 1)P

(
|St| ≥ Lδ − 2

)
= P

(
|St| ≥ Lδ − 2

)∑
i,j≥0

πt
i,j(i+ 1)(j + 1) → 0,

as L→∞, because comparison with a branching process shows
∑

i,j≥0 πi,j(i+1)(j+1) <∞.
To bound the variance now we note that

var (UL(t)) ≤ 1

N2
[N · (2L)dδ +N2P (Cc)] → 0

as N →∞, The argument for VL(t) is almost the same except that now four dual processes
are involved.

Lemma 2.5. There is a v(t) so that VL(t) → v(t).

Proof. Lemmas 2.2 and 2.4 imply that UL(t) → u(t). This implies that the dual process has
a limit. It follows from this that EVL(t) converges to a limit that we call v(t) and the result
follows from another application of Lemma 2.4 .

To prove Lemmas 2.1–2.5 when u(0) < 1/λ, we use a different graphical representation.
For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson process T x,y

n , n ≥ 1 with
rate 1/2d, and a collection of independent random variables Rx,y

n that are uniform on [0, 1].
At time T x,y

n , if λUL(T x,y
n ) ≥ Rx,y

n , then we draw an arrow from x to y and write a δ at y to
indicate that y will take on the “opinion” at x at that time. Otherwise, we draw an arrow
from x to y. These arrows will create a 0 at y if there is a 0 at x.

With this new dual, we have 1 − u(t) = E(1 − u(0))N(t), where N(t) is the number of
particles at time t. The proof of Lemma 2.1 goes through with minor changes. Lemma
2.2 follows as before. Lemma 2.3 is a random walk estimate. The proof of the covariance
estimate Lemma 2.4 needs only minor changes and then Lemma 2.5 follows as before.
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2.1 Convergence of u(t) to 1/λ

Again we begin with the case u(0) > 1/λ. Using (3) with Lemmas 2.2 and 2.5 we have

du

dt
= v(t) (1− λu(t)) ,

Lemma 2.6. Let u(t) be the global density of producer cells at time t, and suppose the system
starts from the product measure with u(0) > 1/λ. Then u(t) → 1/λ as t→∞.

Proof. Take an ε > 0. We want to find a constant, Cε such that if u ≥ (1/λ) + ε on [0, Cε),
then u(Cε) < 1/λ. First pick m, s.t. u(0)m < 1/(2λ). The branching rate of the dual process
is bounded from below by ελ. Hence there is a K > 0, which does not depend on ε, such
that Cε = K/(ελ) satisfies P (N (Cε) < m) < 1/(2λ). Then

u(Cε) = Eu(0)N(Cε) ≤ u(0)m + P (N(Cε) < m) < 1/λ.

Thus, the density u(t) cannot stay away from 1/λ. Since 1/λ is an equilibrium for the ODE
of u(t), the convergence is established by contradiction.

Up to this point all of our calculations are valid in any dimension. We will now show
that if d ≥ 3, the convergence mentioned in the lemma occurs exponentially fast. The next
lemma controls the covariance between neighbors. Let pt(x|y) be the probability that walks
starting from x and y do not collide by time t.

Lemma 2.7. Suppose that the initial distribution is product measure with u(0) > 1/λ and∫ t

0
(λu(s)− 1) ds ≤ 1. If δ0 = [u(0)− u(0)2]e−2p(0|e1) then

sup
x 6=y

P (ξt(x) = 0, ξt(y) = 0)− P (ξt(x) = 0) ≤ −δ0

Proof. Let ζA,t
t be the dual coalescing random walk starting from A occupied at time t. Let

Nx = |ζx,t
t | and Nx,y = |ζ{x.y},t

t |. We have

P (ξt(x) = 0) = Eu(0)Nx P (ξt(x) = 0, ξt(y) = 0) = Eu(0)Nx,y

Notice that Nx,y ≥ Ny so u(0)Nx,y − u(0)Nx ≤ 0. Let G be the event that the duals starting
from x and y do not branch and the random walks starting from x and y do not hit. Since∫ t

0
(λu(s)− 1) ds ≤ 1

P (G) ≥ e−2pt(x|y) ≥ e−2p(0|e1)

Combining our estimates

P (ξt(x) = 0, ξt(y) = 0)− P (ξt(x) = 0) ≤ E[u(0)Nx,y − u(0)Nx ;G]

≤ [u(0)2 − u(0)]e−2p(0|e1) = −δ0

which completes the proof.

We will now combine the last two lemmas to prove exponential convergence. Let Tm =
inf{t : u(t) ≤ 1/λ+ 2−m}. By Lemma 2.6, Tm <∞.

11



Lemma 2.8. Let t0 = 2/[λp(0|e1)δ0]. If
∫ Tm+t0

0
(λu(s)− 1) ds ≤ 1 then Tm+1 − Tm ≤ t0.

Proof. Suppose Tm+1 − Tm ≥ t0. Since u(s) ≥ 1/λ + 2−(m+1) on [Tm, Tm + t0] the prob-
ability that the dual has a branching event and the two particles do not coalesce is ≥
(1− e−λ2−(m+1)

)p(0|e1) so using Lemma 2.7

u(Tm + t0)− u(Tm) ≤ (1− e−λ2−(m+1)t)p(0|e1)(−δ0)
≤ −λ2−(m+2)p(0|e1)δ0t0 = −2−(m+1)

so we have Tm+1 ≤ Tm + t0 and the proof is complete.

Proof of Theorem 1 when u(0) > 1/λ. Lemma 2.8 implies that∫ Tm+1

Tm

(λu(s)− 1) ds ≤ λ2−mt0 = 21−m/[p(0|e1)δ0]

From this we see that if u(0) = 1/λ+ 2−M and M is large enough then∫ t

0

(λu(s)− 1) ds ≤ 1

for all t and we have TM+k ≤ kt0 for all k which proves exponential convergence.

When u(0) < 1/λ the branching rate is different and we need to look at 1 − λu(t), but
otherwise the proofs go through as before. This completes the proof of Theorem 1.

3 Proof of Theorem 2

The first step is to show that the the empirical finite dimensional distributions converge to
those of a translation invariant measure µt. The convergence of their means follows from the
proof of Lemma 2.5. Their variance can be shown to go to 0 using the proof of Lemma 2.4.

In this section we will show that if t is large, then the finite dimensional distribution of
µt are close to those of the voter model stationary distribution ν1/λ. To begin we assume
u(0) > 1/λ. The next lemma bounds the covariance of well separated sites.

Lemma 3.1. Fix T, δ > 0. There is an R2 > 0, so that when |x− y| > R2,

|P (ξT (x) = 0, ξT (y) = 0)− u(T )2| ≤ δ.

Proof. In the dual process, the branching rate is bounded by λ−1. Let Zt(x) be the number
of particles at x at time t in a branching random walk that starts with one particle at 0,
jumps at rate 1 and branches at rate λ− 1. Let mt(x) = EZt(x). By considering the rates
at which things happen we see that mt (x) satisfies

dmt(x)

dt
= −mt(x) + λ

∑
y

mt(y)p(y, x). (4)

12



Note the the second term accounts for jumps at rate 1 and branching at rate λ− 1. Let St

be a continuous-time random walk starting from the origin with jumps at rate 1. We will
show

mt (x) = e(λ−1)tP (Sλt = x) . (5)

Both sides agree at time 0. Thus it suffices to show the RHS satisfies (4).

d

dt
e(λ−1)tP (Sλt = x) = (λ− 1)e(λ−1)tP (Sλt = x) + e(λ−1)t d

dt
P (Sλt = x)

= (λ− 1)e(λ−1)tP (Sλt = x)

+ e(λ−1)t

(
−λP (Sλt = x) + λ

∑
y∼x

P (Sλt = y)p(y, x)

)
= −e(λ−1)tP (Sλt = x) + λ

∑
y∼x

e(λ−1)tP (Sλt = y)p(y, x)

Thus we have shown (5) satifies (4).
We can bound the decay of mt(x) by using the argument in Lemma 2.3. Again it suffices

to consider d = 1.

exP (Sλt = x) ≤ EeSλt =
∞∑

k=0

e−λt (λt)
k

k!
ϕ(1)k = eλt(ϕ(1)−1).

which implies mt(x) ≤ et(λϕ(1)−1)−x, i.e., mt(x) decays exponentially in x. Note that branch-
ing in the actual dual always has a lower rate and the branching random walk ignores
coalescence, so mt(x) gives an upper bound of the probability that the dual has a particle
at x at time t.

Using the reflection principle

P (ζ0,T
t ∩ [x,∞)× Zd−1 6= ∅ for some t ≤ T ) ≤ 2

∞∑
y=x

eT (λϕ(1)−1)−y ≤ CT e
−x

Considering all of the coordinates, we see that if R2 is large and D = {x : ‖x‖∞ ≤ R2/2}

P (ζ0,T
t ∩Dc for some t ≤ T ) ≤ δ/4

This implies that if |x− y| ≥ R2 then

P (ζx,T
t ∩ ζy,T

t = ∅ for all t ≤ T ) ≥ 1− δ/2

When this occurs we say that the duals starting from x and y do not collide. We denote the
event by B.

Let A = {ξT (x) = 0, ξT (y) = 0}.

|P (A)− u(T )2| = |P (A ∩B) + P (A ∩Bc)− u(T )2|
= |P (B)u(T )2 + P (A ∩Bc)− u(T )2|
≤ u(T )2P (Bc) + P (Bc) ≤ 2P (Bc) ≤ δ,

which proves the desired result.
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Our next step is to generalize Lemma 3.1 to m sites.

Lemma 3.2. Fix T, δ > 0. Suppose we have sites xk, 1 ≤ k ≤ m with m ≥ 3. There is an
Rm > 0, so that if |xi − xj| > Rm, for 1 ≤ i < j ≤ m, we have

|P (ξT (xk) = 0 for 1 ≤ k ≤ m)− u(T )m| ≤ δ.

Proof. Let Am = {ξT (xk) = 0 for 1 ≤ k ≤ m}, and Bm be the event that the duals starting
from x1, . . . , xm do not collide. By Lemma 3.1, there is an Rm so that if |x − y| > Rm,
P (Bc

2) ≤ δ/m2. From this it follows that P (Bc
m) ≤ δ/2. Computing as in the previous

lemma gives

|P (Am)− u(T )m| = |P (Am ∩B) + P (Am ∩Bc)− u(T )m|
= |P (B)u(T )m + P (Am ∩Bc)− u(T )m|
≤ u(T )mP (Bc) + P (Bc) ≤ 2P (Bc) ≤ δ

For the next proof it is convenient to note that if we take Rm to be as small as possible
m→ Rm is increasing.

To show the convergence of finite dimensional distributions, it is enough to consider prob-
abilities that a set of sites are all in state 0, because all the finite dimensional distributions
can be computed from these values.

Lemma 3.3. Let ε > 0. Suppose we have sites xk, 1 ≤ k ≤ m. If ε > 0, then there is a
t1 > 0, for all time t ≥ t1,∣∣P (ξt(xk) = 0 for 1 ≤ k ≤ m)− ν1/λ(η(xk) = 0 for 1 ≤ k ≤ m)

∣∣ < ε.

Proof. Since we have proved exponential convergence of u(t) → 1/λ, can choose T , so that

|u(T )k − (1/λ)k| ≤ ε

10
for all 1 ≤ k ≤ m (6)

exp

(
−
∫ ∞

T

λu(t)− 1 dt

)
> 1− ε

10
. (7)

Let ηT
t be a voter model starting at time T from a product measure with probability 1/λ

for a site to be in state 0. Since ηT
t ⇒ ν1/λ as t→∞ it suffices to show that if t ≥ t2 then∣∣P (ξt(xk) = 0 for 1 ≤ k ≤ m)− P (ηT

t (xk) = 0 for 1 ≤ k ≤ m)
∣∣ < ε/2.

Let η̃ be the dual of η starting at time t > T with particles at x1, ..., xm. Let ξ̃ be the
dual of ξ starting at time t with particles at x1, ..., xm. Let Rm be the value from Lemma
3.2 for δ = ε/8m. Let Sx

t and Sy
t be independent random walks starting at x and y. By the

local central limit theorem,

lim
s→∞

sup
x,y

P (|Sx
s − Sy

s | ≤ Rm) = 0

14



We pick t1 so large that for t ≥ t1,

sup
x,y

P (|Sx
t−T − Sy

T−t| ≤ R) ≤ ε/(5m2).

It follows that the probability that there is a non-coalesced pair in ξ̃t within distance Rm of
each other at time T is < ε/10.

Let A be the event that there is no branching in the dual from t to T , and any pair that
has not coalesced is at least Rm away from each other. Combining the computations above,
P (Ac) ≤ 2ε/10. Let

B = {ξt(xk) = 0 for 1 ≤ k ≤ m}
C = {ηT

t (xk) = 0 for 1 ≤ k ≤ m}
Dk = A ∩ {ξ̃ has k particles time T}
Ek = {η̃ has k particles time T}

On the no branching event, the random walks in the two duals can be coupled, so (7) implies
m∑

k=1

|P (Dk)− P (Ek)| ≤
ε

10
(8)

Breaking thing down according to the number of particles in the dual at T

|P (B)− P (C)| =

∣∣∣∣∣
m∑

k=1

P (B ∩Dk) + P (B ∩ Ac)−
m∑

`=k

P (C ∩ Ek)

∣∣∣∣∣
≤ 2ε

10
+

m∑
k=1

|P (B ∩Dk)− P (C ∩ Ek)|

Lemma 3.2 and the choice of Rm implies

|P (B ∩Dk)− u(T )kP (Dk)| ≤
ε

10
· P (Dk) (9)

Since ηT starts from product measure with density 1/λ at time T

P (C ∩ Ek) = (1/λ)kP (Ek) (10)

Using the triangle inequality and (10)

|P (B ∩Dk)− P (C ∩ Ek)| ≤|P (B ∩Dk)− u(T )`P (Dk)|
+ P (Dk)|u(T )k − (1/λ)k|+ |P (Dk)− P (Ek)|(1/λ)k

Summing k = 1 to m and using (9), (6), and (8) we have
m∑

k=1

|P (B ∩Dk)− P (C ∩ Ek)| ≤
ε

10
+

ε

10
+

2ε

10
< ε/2

completing the proof.

As in the previous section, only minor changes are needed to treat the case u(0) < 1/λ.
The formula for mt(x) changes but the rest of the proof of Lemma 3.1 stays the same. The
proofs of Lemmas 3.2 and Lemma 3.3 only use the exponential convergence and the estimate
in Lemma 3.1, so they go through as before and the proof of Theorem 2 is complete.

15



4 Two dimensions

We begin by describing the construction of the process and duality on Zd for general Nc and
Nd. The details are different from Section 2. There we used a percolation style dual which
only works for “additive processes.” Here we use the approach taken in [10] and [4] which
works for any process.

Recall that we are considering birth-death dynamics for the evolutionary game

Ḡ =
1 2

1 1 1 + λε2

2 1 + ε2 1 + ε2

Construction. Our process has voter events at rate 1 per site. If ξt(y) = 2 then at rate
ε2, the 2 gives birth onto a randomly chosen x ∈ y + Nc. If ξt(y) = 1 then at rate λε2 y
chooses a neighbor z from y+Nd at random. If ξt(z) = 2 then y gives birth onto a randomly
chosen x ∈ y +Nc. Here we have replaced the computation of the fitness by averaging over
the neighborhood (as was done in [4] and [7]) by the equivalent act of making a random
choice from x+Nd to simplify the perturbation. In two dimensions this drastically reduces
the size of the dual.

To construct the process we use a large number of Poisson processes. For each ordered
pair (x, y) with x ∈ y + Nc we have a Poisson process {T x,y

n , n ≥ 1} with rate 1/|Nc| and
{Sx,y

n , n ≥ 1} with rate ε2/|Nc| At times T x,y
n , x imitates the opinion at y, so we draw an

arrow from x to y. At times Sx,y
n , x imitates the opinion at y if it is a 2, so we draw an arrow

from x to y and write a 2 above it. Finally, for each triple with x ∈ y +Nc, z ∈ y +Nd we
have Poisson processes Rx,y,z

n with rate ε2/|Nc||Nd|. A times Rx,y,z
n y will give birth onto x

if y is in state 1 and z is in state 2, so we draw an arrow from y to x and write a 1 above it.
We then draw an unnumbered line segment with no arrows from y to z.

Duality. We have used an explicit construction so that we can define a set valued dual
process ζx,t

s by working backwards starting with ζx,t
0 = {x}. Here we are working on the

original time scale. If a particle is at x and t − s = T x,y
n then it jumps to y at time s. If a

particle is at x and t− s = Sx,y
n then it gives birth to a particle at y at time s. If a particle is

at x and t− s = Rx,y,z
n , then it gives birth to particles at y and z at time s. If the jumps or

births cause two particle to be on the same site they coalesce to 1. ζx,t
s is called the influence

set because if we know the states of all the sites in ζx,t
s at time t − s then we can compute

the state of x at time t.

Two dimensions. Let N = ε−2 and take Nc = Nd = QN where

QN = [−c
√

logN, c
√

logN ]2 ∩ Z2

and c is a fixed constant. To carry out our proofs we will need a local central limit theorem
that is uniform in N . Let X1, X2, . . . be uniform on QN and let Sn = X1 + · · · +Xn. This
and the next few things we define should have superscript N ’s but we suppress this to avoid
clutter. The uniform distribution on QN has variance ∼ (c2/3) logN . Let σ2 = c2/3 and let

pn(x) = P (Sn/
√
n logN = x) for x ∈ Ln = {z/

√
n logN : z ∈ Z}

n(x) = (2πσ2)−1/2 exp(−x2/2σ2) for x ∈ (−∞,∞)
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Theorem 5. If n,N →∞, and h = 1/
√

logN then

sup
x∈Ln

∣∣∣∣n1/2

h
pn(x)− n(x)

∣∣∣∣→ 0

The proof is a small modification of the proof of Theorem 3.5.2 in [8]. To encourage the
reader to skip it, we put the proof in Section 5.

Convergence of the dual to branching Brownian motion. Our next goal is to show
that when space is scaled by dividing by (N logN)1/2 and time is run at rate N the dual
converges to a branching Brownian motion. To make this possible we do not add newly born
particles to the dual until time

tN = N/(log1/3N)

has elapsed since the branching occurred. In the next lemma and in what follows “with high
probability” means that the probability tends to 1 as N → ∞. To make it easier to say
things we call the parent and its children a family.

Lemma 4.1. With high probability, at time tN after a birth event, all noncoalesced family
members are separated by LN = N1/2 log1/4N .

Proof. Pick two family members, assign to them independent random walks and let Sx
t be

the difference in their x coordinates t units of time after the birth event.

var (Sx
tN

) ∼ tN(c2/3) logN = (c2/3)N log2/3N

which corresponds to a standard deviation of O(N1/2 log1/3N) so by the local central limit
theorem, P (|Sx

tN
| > LN) → 1 as N →∞. The last conclusion also holds for the y coordinate,

which gives the result.

Lemma 4.2. Suppose at time 0, two particles are separated by LN . The probability that they
hit by time N logN goes to 0 as N →∞.

Proof. From the previous proof we see that var (Sx
t ) ≤ Ct logN . When t = N/ log2/3N

this is CN log1/3N , which corresponds to a standard deviation of CN1/2 log1/6N . so using
the L2 maximal inequality on the martingale Sx

t we see that with high probability that the
two particles do not hit before time N/ log2/3N . Let St ∈ R2 be the difference in the two
particles locations when they use independent random walks and VN be the amount of time
that St = (0, 0) in [N/ log2/3N,N logN ]. By the local central limit theorem, if N is large

EVN ≤ C

∫ N log N

N/ log2/3 N

1

t logN
dt

=
C

logN
(log(N logN)− log(N log−2/3N) = (5C/3)

log logN

logN

which converges to 0 as N → ∞. Since the random walks jump at rate 1, if they hit they
will spend an exponential amount of time with mean 1/2 together which gives the result.
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Combining Lemmas 4.1 and 4.2 we see that if all particles in the dual are separated by
LN just before at time of the kth branching event (i.e., at Tk−) then all of the noncoalesced
family members will be sepearated by LN at time Tk +tN . There will be no more coalescence
within the family before time Tk+1, and there will be no coalescences between the family
and other particles during [Tk, Tk+1]. Since the time of the next birth has an exponential
distribution and is O(N), another use of the local central limit theorem shows that at time
Tk+1− all of the existing particles are separated by distance LN . Convergence of the rescaled
dual to branching Brownian motion follows easily from this. More details than you want to
read can be found in Chapter 2 of [4]. A more succinct proof with a structure that parallels
the one used here can be found in Section 10 of [3].

Computation of the reaction term. Let vi be independent and uniform on QN . Let
pN,M(0|v1) be the probability that random walks starting from 0 and v1 do not hit by time
M . Let pN,M(0|v1|v1 + v2) be the probability that random walks starting from 0, v1 and
v1 + v2 do not hit by time M . Let pN,M(0|v1, v1 + v2) be the probability that at time M the
random walks starting from v1 and v1 + v2 have coalesced but have not hit the one starting
from 0. Ultimately we will show that if N →∞ and N/ logN ≤M(N) ≤ N logN then the
pN,M hitting probabilities converge to limits p(0|v1), p(0|v1|v1 + v2) and p(0|v1, v1 + v2).

Once this is done we can use result in Section 12 of [7] to compute the reaction term. To
state the result we begin by recalling that the faction of individuals playing strategy i in a
homogeneously mixing system satisfies the replicator equation (2), which can be written as:

dui

dt
=
∑
j 6=i

∑
k

uiujuk(Gi,k −Gj,k) ≡ φi
R(u)

Here ≡ indicates we are defining φR
i (u). Formula (12.4) from [7] then implies that the

reaction term for our birth-death updating is

φi
B(u) = p(0|v1|v1 + v2) · φi

R(u)

+ p(0|v1, v1 + v2) ·
∑
j 6=i

uiuj(Gi,i −Gj,i +Gi,j −Gj,j)

Coalescence probabilities. We begin by computing EpN,M(0|v1). It is easier to do the
calculation for a discrete time random walk Sn with jumps uniform on QN that starts at v1.
In order for Sn to be at 0 at time n ≥ 1, Sn−1 has to be close enough to 0, and the jump Xn

has to be exactly the right size so

P (Sn = 0) ≤ 1/|QN | ∼ 1/4c2 logN (11)

This bound implies that as N →∞

P (Sn = 0 for some n ≤
√

logN ) → 0

For n ≥
√

logN we can use the local limit theorem to conclude

P (Sn = 0) ∼ 1

(2πc2/3)n logN
≡ b

n logN
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where we have set b = 3/(2πc2). In time M there are ∼ 2M jumps and

2M∑
n=0

P (Sn = 0) =
b log(2M)

logN
. (12)

Note that if M(N) = N s this converges to bs.

Lemma 4.3. Let RN(s) be the number of returns of Sn to 0 by time N s. As N → ∞,
RN(s) ⇒ R(s) is a Poisson process with rate b. This implies that if N/ logN ≤ M(N) ≤
N logN

EpN,M(0|v1) → e−b

Proof. It suffices to show

(i) If 0 ≤ a1 < b1 ≤ a2 < b2 . . . an < bn then R(bi)−R(ai) are independent.

(ii) E[R(t)−R(s)] = b(t− s)

(iii) P (R(t+ h)−R(t) > 1) = o(h)

To see this is sufficient note that if we subdivide [s, t] into n intervals and let Xn,i be the
number of arrivals in the ith interval then (i) implies the Xn,i are independent, while (ii) and
(iii) imply nP (Xn,i > 1) → 0 and nP (Xn,i = 1) → b so using a standard Poisson convergence
result, see e.g., Theorem 3.6.1 in [8] that N(t)−N(s) is Poisson.

To check (i), it suffices to prove that this holds when bi < ai+1 for 1 ≤ i ≤ n− 1 for then
a limiting argument gives the general case. To prove this weaker result we use induction.
Condition on the path of the random walk up to time N b(n−1). With high probability
|S(N b(n−1))| ≤ N b(n−1)/2 logN . When this is true, |S(Na(n)) − S(N b(n−1))| � |S(N b(n−1))|,
so the conditional probability of a return to 0 in [Na(n), N b(n)] is in the limit, independent of
the value of S(N b(n−1)).

Condition (ii) follows from the derivation of (12). To check (iii) we start with the obser-
vation that (11) implies that after a return to 0 there will not be one for the next

√
logN

units of time. Using the proof of (12) again we see that the conditional probability of another
return to 0 by time N t+h is ≤ Ch.

Lemma 4.4. Let S0
t , S

1
t , S

2
t be independent continuous time random walks that take jumps

uniform on QN and start at 0, v1, and v1 +v2. Let R3
N(s) be the number of collisions between

these random walks up to time N s. Then as N →∞, R3
N(s) ⇒ R(s) a Poisson process with

rate 3b. It follows that if N/ logN ≤M(N) ≤ N logN then

EpN,M(0|v1|v1 + v2) → e−3b

Proof. The main difficulty is to control the correlation between hits of the different pairs.
Define a six dimensional random walk by Vt = (S1

t −S0
t , S

2
t −S1

t , S
0
t −S2

t ). Since the sum of
the three differences is 0 this walk lies in a four dimensional subspace. The possible values
of Vt are a four dimensional lattice, so the random walk is “genuinely four dimensional”
and hence transient. In 1951 Dvoretsky and Erdös [12] proved a rate of escape for simple
random walk Wn. Here we have used 2 instead of 1 in the integral test to avoid the fact that
log(1) = 0. One can of course use any fixed value K.
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Lemma 4.5. Suppose that ψ : [2,∞) → (0,∞) satisfies t−1/2ψ(t) ↓ 0 then ψ(n)Wn →∞ if
and only if ∫ ∞

2

ψ(t)d−2t−d/2 dt = ∞

Later Kesten [16] showed that this holds for any genuinely d-dimensional random walk. If
we let ψ(t) = t1/2 log−α(t) then the integral is∫ ∞

2

t−1 log(t)−(d−2)α dt

which diverges if α(d− 2) < 1. If d = 4 this holds if α = 1/3. This implies that

Lemma 4.6. If two random walks hit at time t then the other one is with high probability
at least a distance t1/2 log−1/3 t away.

To prove Lemma 4.4 now we have to check (i), (ii), and (iii) from the previous proof. To
check (i), it again suffices to prove that this holds when bi < ai+1 for 1 ≤ i ≤ n − 1. The
argument is almost the same as before. We are considering independent random walks so
if t→∞ then V (t)/

√
t logN has a limiting multivariate normal distribution. Condition on

the path of the random walk Vt up to time N b(n−1). With high probability |V (N b(n−1))| ≤
N b(n−1)/2 logN . When this is true, |V (Na(n))−V (N b(n−1))| � |S(N b(n−1))|, so the conditional
probability of a return to 0 in [Na(n), N b(n)] is in the limit, independent of the value of
S(N b(n−1)).

Condition (ii) follows from the derivation of (12) since in this calculation we are com-
puting an expected value and don’t have to worry about the correlation between the three
differences. To check (iii) we start with the observation that (11) implies that after a return
to 0 there will not be one for the next

√
logN units of time. Using Lemma 4.6 we see that

during these
√

logN steps there will be no collision with the other random walk. Using the
proof of (12) again we see that the conditional probability of another return to 0 by time
N t+h is ≤ Ch.

Lemma 4.7.

EpN,M(0|v1, v1 + v2) →
e−b − e−3b

2
Proof. By Lemma 4.4 the time of the first collision is exponential with rate 3b. All three
pairs has aysmptotically the same probability to coalesce. Using Lemma 4.6 we see that the
time to a collision between the coalesced pair and the remaining particle is exponential with
rate b so

EpN,M(0|v1, v1 + v2) →
1

3

∫ 1

0

3be−3bue−b(1−u) du

=
e−b

2

∫ 1

0

2be−2bu du =
e−b

2
· (1− e−2b)

which gives the desired result.

Convergence to the limiting PDE. With the convergence of the dual to branching
Brownian motion, the convergence to the PDE is the same as in [10], [11], and in Section
2.6–2.10 of [4].
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5 Proof of local CLT

Proof of 5. Let Y be a random variable with P (Y ∈ θZ) = 1 and ψ(t) = E exp(itY ). It
follows from part (iii) of Exercise 3.3.2 in [8] that

P (Y = x) =
1

2π/θ

∫ π/θ

−π/θ

e−itxψ(t) dt

Using this formula with θ = 1/
√
n logN , ψ(t) = E exp(itSn/

√
n logN) = ϕn(t/

√
n logN),

and then multiplying each side by 1/θ gives

(n1/2 log1/2N)pn(x) =
1

2π

∫ π
√

n log N

−π
√

n log N

e−itxϕn(t/
√
n logN) dt

Using the inversion formula for continuous densities, Theorem 3.3.5 in [8], on n(x), which
has ch.f. exp(−σ2t2/2), gives

n(x) =
1

2π

∫
e−itx exp(−σ2t2/2) dt

Subtracting the last two equations gives (recall π > 1, |e−itx| ≤ 1)∣∣∣(n1/2 log1/2N)pn(x)− n(x)
∣∣∣ ≤ ∫ π

√
n log N/h

−π
√

n log N/h

|ϕn(t/
√
n logN)− exp(−σ2t2/2)| dt

+

∫ ∞

π
√

n log N/h

exp(−σ2t2/2) dt

The right-hand side is independent of x, so to prove the theorem it suffices to show that
it approaches 0. The second integral clearly → 0. To estimate the first integral, we observe
that ϕn(t/

√
n logN) → exp(−σ2t2/2), so the integrand goes to 0.

To prove that the integral converges to 0, we will divide the integral into three pieces.
The bounded convergence theorem implies that for any A < ∞ the integral over (−A,A)
approaches 0. To estimate the integral over (−A,A)c, we let ϕ̄(t) = φ(t/

√
logN) be the

characteristic function of YiXi/
√

logN and note that since EYi = 0 and EY 2
i = σ2, formula

(3.3.3) from [8] and the triangle inequality imply that

|ϕ̄(u)| ≤ |1− σ2u2/2|+ u2

2
E(min(|u| · |Y |3, 6|Y |2))

The last expected value → 0 as u → 0 uniformly in N . This means we can pick δ > 0 so
that if |u| < δ, it is ≤ σ2/2 and hence

|ϕ̄(u)| ≤ 1− σ2u2/4 ≤ exp(−σ2u2/4),

since 1− x ≤ e−x. Applying the last result to u = t/
√
n we see that for t ≤ δ

√
n

(∗) |ϕ(t/
√
n)n| ≤ exp(−σ2t2/4)
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So the integral over (−δ
√
n, δ

√
n)− (−A,A) is smaller than

2

∫ δ
√

n

A

exp(−σ2t2/4) dt

which is small if A is large.
To estimate the rest of the integral we observe that if t ∈ −[−π, π]

ϕ̄(u) ≈
∫ c

−c

cos(tx)
dx

2c
=

sin(tc)

tc

where the error in ≈ comes from the difference between the uniform and the distribution
of Yi, and hence is O(1/

√
logN). From this it follows that there is an η < 1 so that

|ϕ̄(u)| ≤ η < 1 for |u| ∈ [δ, π], uniformly in N . Letting u = t/
√
n again, we see that the

integral over [−π
√
n, π

√
n]− (−δ

√
n, δ

√
n) is smaller than

2

∫ π
√

n/h

δ
√

n

ηn + exp(−σ2t2/2) dt

which → 0 as n→∞. This completes the proof.
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