
Approximating Selective Sweeps

by Richard Durrett and Jason Schweinsberg

Dept. of Math, Cornell U.

Corresponding Author: Richard Durrett

Dept. of Mathematics

523 Malott Hall

Cornell University

Ithaca NY 14853

Phone: 607-255-8282

FAX: 607-255-7149

email: rtd1@cornell.edu

1



ABSTRACT

The fixation of advantageous mutations in a population has the effect of reducing varia-

tion in the DNA sequence near that mutation. Kaplan, Hudson, and Langley (1989) used a

three-phase simulation model to study the effect of selective sweeps on genealogies. However,

most subsequent work has simplified their approach by assuming that the number of individ-

uals with the advantageous allele follows the logistic differential equation. We show that the

impact of a selective sweep can be accurately approximated by a random partition created

by a stick-breaking process. Our simulation results show that ignoring the randomness when

the number of individuals with the advantageous allele is small can lead to substantial errors.
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2



When a selectively favorable mutation occurs in a population and is subsequently fixed

(i.e., its frequency rises to 100%), the frequencies of alleles at closely linked loci are altered.

Alleles present on the chromosome on which the original mutation occurred will tend to

increase in frequency, and other alleles will decrease in frequency. Maynard Smith and Haigh

(1974) referred to this as the ‘hitchhiking effect,’ because an allele can get a lift in frequency

from selection acting on a neighboring allele. They considered a situation with a neutral

locus with alleles A and a and a second locus where allele B has a fitness of 1 + s relative

to b. Suppose p0 is the initial frequency of the B allele, and Qn and Rn are the frequencies

in generation n of the A allele on chromosomes containing B and b respectively. If Q0 = 0

(i.e., the advantageous mutation arises on a chromosome with a) and the recombination

probability per generation is r, Maynard Smith and Haigh (1974) showed (see (8) on page

25) that the frequency of the A allele after the selective sweep is reduced from R0 to

lim
n→∞

Qn = R0

∞∑

n=0

r(1 − r)n · 1 − p0

1 − p0 + p0(1 + s)n+1
(1)

This is the frequency of A in the entire population since after the sweep all individuals have

the B allele.

Kaplan, Hudson, and Langley (1989) investigated the effect of selective sweeps on genealo-

gies. The model they analyzed is equivalent to the coalescent in a subdivided population

that consists of one subpopulation with the favored B allele and another with the b allele.

For the size of the B population they used a model running forward in time that consists

of an initial phase in which the number of Bs is a supercritical branching process, a middle

deterministic piece where the frequency of Bs follows the logistic differential equation

dp

dt
= sp(1 − p) (2)

and a final random piece where the number of bs follows a subcritical branching process.

To describe this process in detail, consider a population of N diploid individuals. We

will find it convenient to ignore the fact that these individuals have other chromosomes
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that do not have the two loci of interest, and refer to the population as consisting of 2N

chromosomes. Suppose we trace k copies of the neutral locus backwards in time through

the selective sweep. At the end of the sweep all k lineages will belong to the B population,

however as we go back in time, some of the lineages will jump to the b population because

of recombination. Let M(t) be the number of chromosomes with the B allele at time t, and

let (i, j) be the number of lineages in the B and b populations respectively. Then we get a

coalescent with the following transition rates at time t:

transition rate

(i, j) → (i − 1, j + 1) ir 2N−M(t)−j
2N

(i, j) → (i − 1, j) i
(
(1 − r) i−1

M(t)
+ r i+j−1

2N

)

(i, j) → (i + 1, j − 1) jrM(t)−i
2N

(i, j) → (i, j − 1) j
(
(1 − r) j−1

2N−M(t)
+ r i+j−1

2N

)

To check the rates, note that to have the transition (i, j) → (i−1, j+1), one of the i lineages

in the B population must be chosen, a recombination must occur, and the parent must be

chosen from the b population but not be one of the j existing lineages. The transition

(i, j) → (i − 1, j) can happen in two ways. First, one of the i lineages in the B population

must be chosen. Then, either we have no recombination and choose one of the other i − 1

lineages from the B population as the parent, or a recombination occurs and we choose

one of the existing i + j − 1 lineages as the parent. The last two cases are similar with

the populations reversed. These rates are different from the ones in formula (8) on page

891 of Kaplan, Hudson, and Langley (1989) since we do not ignore the possibility that

recombination and coalescence can both occur in one jump. This probability is significant

when both lineages are in the B population and it is small.

For a picture of this coalescent see Figure 1, which gives a possible genealogy of a sample

of size 5. Lineages 1 and 2 escape from the sweep due to recombination, while lineages 3, 4,

and 5 coalesce. Analytical results are difficult to obtain for this temporally inhomogeneous
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process, so Kaplan, Hudson, and Langley resorted to simulation. Stephan, Wiehe, and

Lenz (1992) and Wiehe and Stephan (1993) simplified the approach of Kaplan, Hudson,

and Langley (1989) by ignoring the random first and third phases and modeling the change

in the frequency of B’s by the logistic differential equation (2). This approach has also

been popular in simulation studies; see e.g., Simonsen, Churchill, and Aquadro (1995) and

Przeworski (2002).

The results that we present in this section and the next pertain to this model in which the

fraction p(t) = M(t)/2N of individuals with the B allele at time t deterministically follows

(2), which implies that

p(t) =
p(0)

p(0) + (1 − p(0))e−st
(3)

We will assume that initially there is just one individual with the B allele, so p(0) = 1/2N .

We denote by τ the duration of the selective sweep, which we define to be the time such that

p(τ) = 1 − 1/2N . It follows from (3) that τ = (2/s) ln(2N − 1). We assume that k lineages

are sampled at time τ , and these lineages are traced back to the beginning of the sweep. We

refer to this model for a selective sweep as the logistic sweep model.

Let Q(t) and R(t) be the expected frequencies of the A allele in chromosomes containing

B and b respectively at time t. Suppose that the single individual with the B allele at time

zero has the a allele, so Q(0) = 0. Stephan, Wiehe and Lenz (1992) derived the following

analog of (1):

Q(τ) = R(0)

∫ τ

0

re−rt · (1 − 1/2N)

(1 − 1/2N) + (1/2N)est
dt (4)

Let Q1(t) be the solution to (4) with R(0) = 1. A little thought reveals that Q1(τ)

is the probability that the neutral locus of an individual in the B population at time τ

is a descendant of one in the b population at time 0. In words, it is the probability that

recombination allows the lineage to escape from the selective sweep. Formula (4) can be

simplified considerably for large populations. Here and in what follows, r and s may depend
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on N even though we have not recorded that dependence in the notation.

Proposition 1. If N → ∞ and r ln(2N)/s → a then Q1(τ) → 1 − e−a.

Numerical results show that this simple approximation is very accurate. For example if

N = 104, s = 0.1, and r = 0.001064 then 1− e−a = 0.1 while the value from (4) is 0.099832.

The reader should note that this result is a little different from the rule of thumb that

“hitchhiking of the neighboring neutral locus is efficient if r < s and becomes negligible if

r ≈ s,” see e.g. Nurminsky (2001).

Proposition 1 concerns the effect of a sweep on a single lineage. As Kaplan, Hudson, and

Langley (1989) observed in their equation (16), the heterozygosity (i.e., the probability two

randomly chosen individuals differ at the A/a locus) after the sweep, H∞, is related to that

before the sweep, H0, by

H∞/H0 = p22

where p22 is the probability that two lineages sampled from the B population at time τ are

distinct at time 0. As Stephan, Wiehe and Lenz (1992) observed, see their formula (14a),

the reduction in heterozygosity can be approximated for large N by

p22 ≈ 1 − (1 − Q1(τ))2

This formula comes from the fact that, for large N , 1− p22 is approximately the probability

that both lineages get trapped in the B population, and these events are approximately

independent for large N .

Kaplan, Hudson, and Langley (1989), see page 892, developed numerical methods for

computing the probabilities pk,j that k lineages at the end of a selective sweep have j distinct

ancestors at the beginning of the sweep. Our next result extends Stephan, Wiehe and Lenz’s

observation to samples of size k. The reader should note that we are considering the case of
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strong selection, where for example s is held fixed or goes to 0 slowly, which is much different

from the usual diffusion limit in which 2Ns and 2Nr tend to limits.

Proposition 2. For the logistic sweep model, if N → ∞ with r ln(2N)/s → a and

s(ln N)2 → ∞ then for j ≥ 2

pk,k−j+1 →
(

k

j

)
pj(1 − p)k−j where p = e−a

In words, the number of lineages is reduced to k − j + 1 if j lineages are trapped in the

B population and these events become independent as N gets large. The restriction to

j ≥ 2 in the formula above comes from the fact that the number of lineages does not

change if the number of trapped lineages is 0 or 1. It follows from Proposition 2 that

pk,k → (1 − p)k + kp(1 − p)k−1.

SIMULATIONS

To evaluate the quality of the approximation provided by Proposition 2, we will use

simulation and numerical computation. We are interested in the probabilities of five events

associated with a single selective sweep: a lineage escapes the sweep (pinb), two lineages

both escape the sweep and do not coalesce (p2inb), two lineages coalesce and end up in b

(p2cinb), exactly one of the two lineages escapes the sweep (p1B1b), and lineages end up

coalesced in B (p2inB). These can be computed for the logistic sweep model by numerically

integrating the associated differential equations.

We will compare our results for the logistic sweep model to those for the Moran model. In

our formulation of that model, we assume that the relative fitnesses of B and b are 1 and 1−s.

Rather than assuming that the fraction of chromosomes with the B allele deterministically

follows the logistic curve, we allow the number of B chromosomes to be random. Following

the dynamics of the Moran model with selection, potnetial replacements occur at times of

a rate 2N Poisson processes. We pick an individual to be replaced, and another individual
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(possibly the same as the first) to be the parent of the new individual. If a b is proposed to

replace a B then to account for the selective advantage of B that replacement only occurs

with probability 1 − s. This leads to the following transition rates:

a chromosome with is replaced by one with with probability
B B (k/2N)(k/2N)
B b (k/2N)(1 − k/2N)(1 − s)
b B (1 − k/2N)(k/2N)
b b (1 − k/2N)(1 − k/2N)

and nothing happens with probability (k/2N)(1 − k/2N)s.

To simulate the Moran model it is sufficient to simulate the embedded Markov chain

Xn, i.e., the sequence of states it visits when the successive replacements are made. There

is no reason to generate the exponential waiting times between jumps. Kaplan, Hudson,

and Langley (1989) do their simulations (see page 889) by producing a large number of

sweeps and only keeping the successful ones. Since the probability of a successful sweep is

approximately s, this is rather inefficient. We avoid this problem by considering the chain

conditional on the event of fixation, F . The first step is to note that

h(x) =
1 − (1 − s)x

1 − (1 − s)2N

is the probability that fixation of B will occur when there are x chromosomes with B (see

e.g., Durrett (2002), (1.2) on page 118). The Markov property implies that if p(x, y) is the

transition probability for Xn and Px denotes the probability distribution of the Markov chain

started at x then

Px(X1 = y|F ) =
Px({X1 = y} ∩ F )

Px(F )
=

p(x, y)Py(F )

Px(F )
=

p(x, y)h(y)

h(x)

so the last formula gives the transition probability for the conditioned chain. Note that

h(x + 1)/h(x− 1) > 1 so this conditioning causes the number of B individuals in the Moran

model initially to rise faster than in the logistic sweep model. See Figure 2 for the results of
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one simulation with N = 104 and s = 0.1. This effect is known and its magnitude has been

estimated by Barton (1998). On page 125 he says that the “expected frequency of an allele

destined for fixation is accelerated by a factor 1/2s relative to that expected in the absence

of stochastic effects.”

Table 1 gives results of a number of simulations. For the moment we will concentrate

on the first two groups of results which both have N = 104 and s = 0.1, but have different

recombination probabilities r = 0.001064 and r = 0.005158, these being chosen so that the

approximations from Proposition 1 of the probability that a lineage ends in b are 0.1 and

0.4 respectively. The approximation provided by Proposition 1 is close to the exact value of

pinb for the logistic sweep model. Turning to the predictions of Proposition 2, we see that

while that approximation says there is no chance that the two lineages will end up coalesced

in b, this has probabilities 0.034 and 0.096 under the logistic sweep model. Since p2cinb is

underestimated, it should be no surprise that p2inb is overestimated. In both cases, p1B1b

is also overestimated, leading to predictions of p22 of 0.19 and 0.64, compared with the values

of 0.1239 and 0.4646 for the logistic sweep model.

The third line of the results has more bad news: the logistic sweep model is not a very

accurate approximation of the Moran model. The values of pinb for the logistic sweep model

differ by 20% from those in the Moran model. The reason for the discrepancy in estimating

pinb can be understood by plotting the probability of a lineage ending up in b versus the time

it takes for the population with the advantageous allele to reach 1000 chromosomes in the

Moran model. As Figure 3 shows there is a strong correlation between these two quantities.

When 1000 chromosomes is reached quickly there is less time for a lineage to escape from

the sweep, and there are fewer recombinations in the late stages of the process that produce

two coalesced lineages in b. Thus, the randomness in the size of the B population at the

beginning of the sweep can cause significant variability in the fraction of lineages that end

up in the b population. Since the logistic sweep model ignores any randomness in the size of
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the B population, it is unable to provide a good approximation of the Moran model.

The values of p2cinb for the logistic sweep model of 0.034 and 0.096 are almost twice the

values in the Moran model of 0.018 and 0.055. Again this comes from the fact that the initial

growth of the B population is faster than predicted by the logistic curve so when we work

backwards there is less time for coalesced lineages to escape at the last minute. Turning to

the last column, we see some surprising good news: values of p22 predicted by the logistic

sweep model never differ by more than 2.2% from the value for the Moran model. This is

consistent with Kaplan, Hudson, and Langley (1989) who report that simulation results for

p22 differ from the analytical ones by at most 2%. However from the rest of the table we

can see this accuracy is a result of fortuitous cancellations which in one case combine a 66%

overestimate of p2cinb with a 14% underestimate of p1B1b to obtain a result for p22 with a

1.4% error.

A BETTER APPROXIMATION

A significant problem with the approximation provided by Proposition 2 is that it predicts

that two lineages will never end up coalesced in the b population. Our simulation results

for the Moran model show that this indeed does occur, typically when two lineages coalesce

while in the B population and then recombine into the b population. In this section, we

explain an improved approximation that allows for this possibility. Our approach is quite

different from Barton’s which is based on differential equations, and gives a simple explicit

approximation for the effect of a sweep on the genealogy of a sample of size k.

We will describe the genealogy of k lineages during a sweep by using a random partition

of {1, . . . , k}. The integers i and j will be in the same block of the partition if and only if

the ith and jth lineages in the sample coalesce. In the approximation of Proposition 2, this

partition has only one block with more than one integer, because only the lineages that get

trapped in the B population coalesce. Here we will allow multiple blocks to have more than
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one integer.

To define the random partition, we will use a stick-breaking construction, which is essen-

tially the same as the paintbox construction of Kingman (1978). The construction is simple

to describe, but it will take us a while to explain the intuition behind it. The ingredients for

the construction are as follows:

• Let M = b2Nsc, where bmc denotes the greatest integer less than or equal to m.

• Let ξl, 2 ≤ l ≤ M be independent Bernoulli random variables that are 1 with proba-

bility r/s and 0 otherwise.

• Let Wl, 2 ≤ l ≤ M be independent random variables with Wl having a beta(1, l − 1)

distribution.

• For 2 ≤ l ≤ M , let Vl = ξlWl, and let Tl = Vl

∏M
i=l+1(1 − Vi).

• Let T1 =
∏M

l=2(1 − Vl).

Now, divide the interval [0, 1] into M subintervals (some of which may be empty) as

follows. Let aM+1 = 1 and for 1 ≤ l ≤ M , let al = al+1 − Tl. Since
∑M

l=1 Tl = 1, we have

a1 = 0. Let Il = [al, al+1]. To obtain a partition of {1, . . . , k}, let U1, . . . , Uk be i.i.d. random

variables with a uniform distribution on [0, 1]. We declare i and j to be in the same block

of the partition if and only if Ui and Uj are both in the interval Il for some l.

Since we wish also to keep track of which lineages are descended from the B population

and which come from the b population, we will mark, with probability s/(r(1 − s) + s),

the block of the partition containing all of the i such that Ui is in I1 to indicate that these

lineages did not escape from the sweep.

Our approximation is based on the following ideas:
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• We ignore the possibility that a lineage experiences two recombinations during the

sweep, taking it from the B population to the b population and back to the B popu-

lation.

• When the number of chromosomes with the B allele is much smaller than the pop-

ulation size, the number of individuals with the B allele can be approximated by a

continuous-time branching process, in which each individual splits into two at rate 1

and dies at rate 1-s.

• It is known, see for example O’Connell (1993), that the lineages in a branching process

that do not die out are themselves a branching process. In our case the lineages that

don’t die out are a Yule process, a continuous time branching process in which each

particle splits into two at rate s. Since each lineage has an infinite line of descent with

probability s, the number of such lineages at the end of the sweep is approximately

M = b2Nsc.

• When there are l ≥ 2 lineages in the Yule process, the time to the next birth is

exponentially distributed with mean 1/sl, and recombinations occur at rate lr, so the

expected number of recombination events is r/s. We assume that the number of such

events is always 0 or 1. The Bernoulli variables ξl, 2 ≤ l ≤ M tell us whether one

occurs or not.

• In the first period the probability a recombination happens before the first birth is

r(1− s)/(r(1− s) + s). In this case, no lineage for the neutral locus comes from the B

population.

• As time tends to infinity the number of individuals in the Yule process divided by

its mean converges to an exponential distribution with mean 1. (See e.g., Joyce and

Tavaré 1987.) This implies that when there are l lineages, the fraction of individuals
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at the end of the sweep that are descendants of a given lineage has roughly the same

distribution as ξ1/(ξ1 + · · · + ξl) where ξi are independent exponentails. The ratio

has a beta(1, l − 1) distribution. Thus, the Wl, 2 ≤ l ≤ M represent the fraction of

descendants of an individual in the Yule process when there are l individuals.

• If ξl = 0 there is no recombination and Vl = 0. If ξl = 1 there is a recombination that

removes a fraction Vl of the remaining population, i.e., the fraction of individuals that

recombine at time l is Tl. T1 =
∏M

l=2(1 − Vl) is the fraction of the initial population

that trace their ancestry back to the B population at the time when there was one

lineage with an infinite line of descent.

Turning to the definition of the partition, the integers i such that Ui is in Il correspond

to the lineages in the sample that recombine when there are l members of the B population

with an infinite line of descent. If Ui and Uj are both in the interval Il then they have the

same parent so they belong in the same block.

The procedure described above translates directly into a procedure for simulating ge-

nealogies. However, in the case of one or two lineages one can compute the probabilities of

interest analytically.

Proposition 3. For the above approximation, we have

pinB =
s

r(1 − s) + s

M∏

l=2

(
1 − r

sl

)

p2inB =
s

r(1 − s) + s

M∏

l=2

(
1 − 2r

s(l + 1)

)

p2cinb =
r(1 − s)

r(1 − s) + s

M∏

l=2

(
1 − 2r

s(l + 1)

)
+

M∑

i=2

2r

sl(l + 1)

M∏

l=i+1

(
1 − 2r

s(l + 1)

)

From pinB, p2inB, and p2cinb, we can calculate the remaining quantities of interest. Note,

in particular, that pinb = 1 − pinB, and since pinB = p2inB + 1
2
p1B1b, we have p1B1b =
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2(pinB − p2inB). Finally, p2inb = 1 − p1B1b − p2inB − p2cinb.

The expressions in Proposition 3 are exact but can be simplified without much loss of

accuracy by using 1 − x ≈ e−x. Consider for example pinB. Rewriting the first fraction and

dropping the r(1 − s) from the denominator,

pinB =

(
1 − r(1 − s)

r(1 − s) + s

) M∏

l=2

(
1 − r

sl

)
≈ exp

(
−r(1 − s)

s
−

M∑

l=2

r

sl

)

= exp

(
−r

s

[
−s +

M∑

l=1

1

l

])
≈ exp

(
−r

s
[ln(2Ns) + γ − s]

)

where γ = limk→∞
∑k

j=1
1
j
− ln k ≈ 0.57721 is Euler’s constant.

The approximation we have just described is somewhat complicated and relies on a

number of simplifications. In the companion paper Schweinsberg and Durrett (2003), we

investigate its properties mathematically. Here we content ourselves to demonstrate by

simulation that it works quite well. We have considered five combinations of population size

n and selective advantage s of the newly introduced allele. For each we have chosen values of

the recombination rate r to make the value given by Proposition 1 for probability a lineage

escapes the sweep equal to 0.1 and to 0.4. In all cases the coalescent with simultaneous

multiple collisions provides an excellent approximation to the results for the Moran model.

The worst result that occurs for Proposition 3 is the 12% relative error in the approx-

imation of p2cinb for the case N = 106, s = 0.01, r = 7.3 × 10−5. However, in this case

individual replicates take 6 hours so our estimates of the value for the Moran model are based

on only 100 simulations. Also, this is a relative error and the probability being estimated is

small, so the absolute error is only 0.00167. In contrast the relative errors from the logistic

approximation range from 75-183% for this quantity. The easy quantity to estimate is pinb

since it involves only one lineage. The relative errors from Proposition 3 range from 0.1-1.8%

while those from the logistic sweep model range from 18-47%.

To verify that we are computing things correctly for the logistic sweep model we have
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considered the case treated in Table 1 on page 245 in Stephan, Wiehe, and Lenz (1992):

N = 108, s = 0.001, and various values of r. The results are recorded in our Table 2.

Readers who look at Table 1 in Stephan, Wiehe, and Lenz (1992) will note that they have

2N = 108. The difference in population size comes from the fact that we are considering the

Moran model while Stephan, Wiehe, and Lenz (SWL) and Kaplan, Hudson, and Langley

(KHL) used the Wright-Fisher model. A second difference is that KHL and SWL only follow

the logistic from the time that the frequency of the favored allele is ε = 10−6 to the time that

it is 1 − ε. Thus we have done our Euler method for this set-up as well as our usual choice

of ε = 1/2N . Finally the fifth row gives the approximation that comes from Proposition 3.

The five sets of numbers agree remarkably well. However, as the last four rows show the

logistic with ε = 1/2N and the Proposition 3 approximation arrive at similar answers by

giving very different values to p2inb and p1B1b. The pattern of the logistic overestimating

p2inb and underestimating p1B1b is the same as in the simulations in Table 1.

CONCLUSIONS

The evaluation of probabilities associated with a selective sweep via simulation is time

consuming for large populations. Here we have shown that a stick breaking construction

provides an easily computed and accurate approximation. The simulations we have used to

investigate our approximation have shown that the common practice of using the logistic

curve to model population size changes during the sweep, and ignoring the randomness in

the size of the B population at the beginning of the sweep, leads to substantial errors in

the approximation of some probabilities. Remarkably, these errors approximately cancel out

when the probability two lineages are not coalesced during the sweep, p22, is computed.
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APPENDIX: PROOFS

Proof of Proposition 1. By (4) the probability a lineage escapes from the selective sweep

is

Q1(τ) = (1 − 1/2N)

∫ τ

0

re−rt

(1 − 1/2N) + (1/2N)est
dt

Writing ∼ to denote that the ratio of the two sides tends to 1 as N → ∞, we have r ∼

as/ ln(2N) and therefore

Q1(τ) ∼
∫ τ

0

as
ln(2N)

e−ast/ ln(2N)

(1 − 1/2N) + (1/2N)est
dt

Changing variables u = st/ ln(2N), du = sdt/ ln(2N) and recalling t = 2 ln(2N)/s ∼ τ

corresponds to u = 2, the above becomes

Q1(τ) ∼
∫ 2

0

ae−au

(1 − 1/2N) + (2N)u−1
du

When u > 1 the denominator tends to ∞, and when u < 1 it approaches 1. Therefore,

lim
N→∞

Q1(τ) =

∫ 1

0

ae−au du = 1 − e−a

Proof of Proposition 2. Supposing that the sweep takes place between times 0 and

τ = (2/s) ln(2N − 1), let σ = (2/s) ln ln(2N). We will argue that working backwards from

time τ the lineages that are in the B population at time σ do not escape and all coalesce

between times 0 and σ, while none of the ones that are in the b population at time σ coalesce.

From (3) with p(0) = 1/2N , we get

p(t) =
1

1 + (2N − 1)e−st

There are p(t)N lineages in the B population at time t, so the probability that two lineages

in the B population coalesce between times σ and τ is at most
∫ τ

σ

1

p(t)N
dt =

1

N

∫ τ

σ

1 + (2N − 1)e−st dt

≤ 1

N

(
τ +

2N − 1

s
e−sσ

)
≤ 2 ln 2N

sN
+

2

s(ln 2N)2
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Thus, we can ignore coalescence in the B population during the time interval [σ, τ ]. By

a symmetric argument, we can ignore coalescence in the b population in the time interval

[0, τ − σ].

The expected number of recombinations between times 0 and σ for a sample of size k,

regardless of whether the lineages are in the B or b population, is at most

krσ ∼ ka
s

ln 2N
· 2 ln ln(2N)

s

Therefore, we can ignore recombinations during [0, σ] and, by the same argument, we can

ignore recombinations during [τ−σ, τ ]. It follows from these observations that we may ignore

the possibility that two lineages may coalesce in the B population and then recombine

into the b population, as well as the possibility that two lineages may both recombine,

and then coalesce in the b population. Thus, in the limit, the lineages that coalesce are

precisely those that get trapped in the B population. Furthermore, it follows from these

observations that the events that different lineages get trapped in the B population are

approximately independent. Therefore, if p is the probability that a lineage escapes the

sweep, the probability that exactly j lineages get trapped is approximately

(
k

j

)
pj(1 − p)k−j

Combining this result with Proposition 1 gives Proposition 2.

Proof of Proposition 3. Since Wl has a beta(1, l − 1) distribution, which has density

function (l − 1)(1 − x)l−2, integration shows that E[Wl] = 1/l and E[W 2
l ] = 2/l(l + 1). To

calculate pinB, first note that pinB = [s/(r(1 − s) + s)]P (U1 ∈ I1) where U1 is uniform on

(0, 1). If U1 is not in any of the intervals Il+1, . . . , IM , then the probability, conditional on

Vl, that U1 ∈ Il is Vl. Therefore, for 2 ≤ l ≤ M , we have

P (U1 ∈ Il|U1 /∈ Il+1 ∪ · · · ∪ IM) = E[Vl] = E[ξl]E[Wl] =
r

sl
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It follows that

P (U1 ∈ I1) =

M∏

l=2

P (U1 /∈ Il|U1 /∈ Il+1 ∪ · · · ∪ IM) =

M∏

l=2

(
1 − r

sl

)

which implies the first statement of Proposition 3.

Next, note that if U2 is independent of U1 and uniform on (0, 1), then

p2inB =
s

(r(1 − s) + s)
P (U1 ∈ I1 and U2 ∈ I1)

If U1 and U2 are not in any of the intervals Il+1, . . . , IM , then the probability, conditional on

Vl, that either U1 or U2 is in Il is 1 − (1 − Vl)
2. A little calculation shows

E[1 − (1 − Vl)
2] = 2E[Vl] − E[V 2

l ] = E[ξl](2E[Wl] − E[W 2
l ]) =

r

s

(
2

l
− 2

l(l + 1)

)
=

2r

s(l + 1)

and the formula for p2inB now follows by the same reasoning as the formula for pinB.

Finally, to obtain the formula for p2cinb, we note that

p2cinb =
r(1 − s)

r(1 − s) + s
P (U1 ∈ I1 and U2 ∈ I1) +

M∑

i=2

P (U1 ∈ Ii and U2 ∈ Ii).

From the calculation for p2inB, we know that the probability that U1 and U2 are not in any

of the intervals Ii+1, . . . , IM is
M∏

l=i+1

(
1 − 2r

s(l + 1)

)

This formula when i = 1 gives P (U1 ∈ I1 and U2 ∈ I1). Conditional on the event that U1

and U2 are not in any of the intervals Ii+1, . . . , IM , the probability that U1 and U2 are both

in Ii is E[V 2
i ] = E[ξi]E[W 2

i ] = 2r/[sl(l + 1)]. By combining these observations, we obtain

the desired formula for p2cinb.
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Figure 1. Hypothetical genealogy of a sample of size five. The curve is the solution of the

logistic differential equation. Dotted lines mark recombination events that change the state

of the selected locus. Lineages 1 and 2 undergo recombination once and escape the selective

sweep. Lineage 3 recombines twice returning to the B population where it coalesces with

the genealogies 4 and 5 that did not experience recombination.
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pinb p2inb p2cinb p1B1b p22

N = 104 s = 0.1 r = 1.064 × 10−3

Prop. 2 0.1 0.01 0 0.18 0.19

Logistic 0.09983(21%) 0.00845(36%) 0.03365(84%) 0.11544(0.3%) 0.12390(2.1%)

Moran 0.08203(11) 0.00620(2) 0.01826(8) 0.11513(6) 0.12134

Prop. 3 0.08235(0.4%) 0.00627(1.1%) 0.01765(-3.4%) 0.11687(1.5%) 0.12314(1.5%)

N = 104 s = 0.1 r = 5.158 × 10−3

Prop. 2 0.4 0.16 0 0.48 0.64

Logistic 0.39936(18%) 0.13814(31%) 0.09599(75%) 0.32646(-7.3%) 0.46460(1.5%)

Moran 0.33656(38) 0.10567(21) 0.05488(23) 0.35201(16) 0.45769

Prop. 3 0.34065 (1.2%) 0.10911(3.2%) 0.05100 (-7.1%) 0.36112 (2.6%) 0.47023(2.7%)

N = 104 s = 0.03 r = 3.192 × 10−4

Logistic 0.09983(41%) 0.00723(64%) 0.04677(130%) 0.09164(-1.1%) 0.09888(1.8%)

Moran 0.07099(12) 0.00440(1) 0.02026(10) 0.09265(7) 0.09706

Prop. 3 0.07121(0.3%) 0.00452(2.7%) 0.01873(-7.6%) 0.09592(3.5%) 0.10044(3.5%)

N = 104 s = 0.03 r = 1.547 × 10−3

Logistic 0.39763(35%) 0.12025(55%) 0.14497(117%) 0.26427(-13%) 0.38453(1.2%)

Moran 0.29546(43) 0.07734(19) 0.06678(28) 0.30266(17) 0.38001

Prop. 3 0.30084(1.8%) 0.08238(6.5%) 0.05945 (-11%) 0.31803 (5.1%) 0.40041(5.4%)
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N = 105 s = 0.03 r = 2.590 × 10−4

Logistic 0.09989(30%) 0.00837(51%) 0.03034(133%) 0.11097(-0.46%) 0.11935(2.0%)

Moran 0.07675(33) 0.00554(4) 0.01545(25) 0.11149(18) 0.11704

Prop. 3 0.07671(-0.1%) 0.00553(-0.1%) 0.01494(-3.4%) 0.11249(-0.9%) 0.11803(0.8%)

N = 105 s = 0.03 r = 1.256 × 10−3

Logistic 0.39826(25%) 0.13808(43%) 0.10204(123%) 0.31627(-10%) 0.45437(1.2%)

Moran 0.31846(106) 0.09641(57) 0.04581(64) 0.35246(46) 0.44888

Prop. 3 0.32074(0.7%) 0.09790(1.5%) 0.04409 (-3.8%) 0.35750 (1.4%) 0.45540(1.5%)

N = 105 s = 0.01 r = 8.632 × 10−5

Logistic 0.09989(47%) 0.00753(78%) 0.04531(183%) 0.09409(-1.2%) 0.10162(2.2%)

Moran 0.06783(33) 0.00422(4) 0.01599(26) 0.09524(18) 0.09947

Prop. 3 0.06807(0.3%) 0.00426(0.9%) 0.01537(-3.9%) 0.09687(1.7%) 0.10113(1.7%)

N = 105 s = 0.01 r = 4.185 × 10−4

Logistic 0.39826(39%) 0.12595(66%) 0.13616(164%) 0.27230(-14%) 0.39826(1.4%)

Moran 0.28575(118) 0.07580(55) 0.05158(77) 0.31674(48) 0.39255

Prop. 3 0.28935(1.3%) 0.07822(3.2%) 0.04875(-5.5%) 0.32478(2.5%) 0.40300(2.6%)

N = 106 s = 0.01 r = 7.262 × 10−5

Logistic 0.09992(34%) 0.00835(59%) 0.03709(163%) 0.10898(-0.6%) 0.11733(2.1%)

Moran 0.07447(96) 0.00526(12) 0.01440(77) 0.10962(47) 0.11489

Prop. 3 0.07321(-1.7%) 0.00510(-3.1%) 0.01273(-12%) 0.11075(1.0%) 0.11585(0.8%)
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N = 106 s = 0.01 r = 3.521 × 10−4

Logistic 0.39877(30%) 0.13823(52%) 0.10485(169%) 0.31190(-12%) 0.45015(0.9%)

Moran 0.30752(318) 0.09106(168) 0.03895(200) 0.35502(136) 0.44608

Prop. 3 0.30821(0.2%) 0.09135(0.3%) 0.03798 (-2.5%) 0.35776 (0.8%) 0.44911(0.7%)

Table 1. We have considered five combinations of population size n and selective advantage

s of the newly introduced allele. For each we have chosen values of the recombination rate

r to make the value given by Proposition 1 for the probability that a lineage escapes the

sweep equal to 0.1 and to 0.4. Here we investigate five quantities: the probability a lineage

escapes the sweep (pinb), the probability two lineages both escape the sweep and do not

coalesce (p2inb), the probability both escape and coalesce (p2cinb), the probability exactly

one of the two lineages escapes the sweep (p1B1b), and the probability that the two lineages

do not coalesce (p22). Note that p2inB is not given but can be computed by taking 1 - p2inb

- p2cinb - p1B1b. Also, note that p22 = p2inb + p1B1b. The rows marked Moran give

estimates based on simulation with the numbers in parentheses being 105 times the standard

deviation of the estimate. 10,000 simulations were used when N = 104, 1,000 for N = 105

and 100 for N = 106. The rows marked Logistic and Proposition 3 give the approximations

that come from the logistic sweep model and Proposition 3. The numbers in parentheses

give the relative percentage error (i.e., the difference between the approximation and the

value for the Moran model divided by the value for the Moran model and then multiplied

by 100).
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-log10(r/s) 1.6 1.8 2.0 2.2 2.4 2.6
KHL 0.419731 0.291868 0.195660 0.128580 0.083376 0.053477

SWL 0.420186 0.291707 0.195883 0.128650 0.083279 0.053409

ε = 10−6 0.420186 0.291707 0.195881 0.128648 0.083278 0.053408

ε = 1/2N 0.420158 0.291689 0.195870 0.128641 0.083273 0.053405

Prop. 3 0.417977 0.289382 0.193937 0.127199 0.082265 0.052727

p2inb ε = 1/2N 0.124168 0.057335 0.025114 0.010627 0.004398 0.001795

p2inb Prop. 3 0.073382 0.032632 0.013946 0.005809 0.002380 0.000965

p1B1b ε = 1/2N 0.295990 0.234354 0.170757 0.118014 0.078875 0.051610

p1B1b Prop. 3 0.344595 0.256750 0.179991 0.121390 0.079885 0.051763

Table 2. Comparison of results for a population of size 108 with s = 0.001 for various values

of the recombination rate r. In the top half of the table we give values of p22 computed

by various methods. The first two rows are simulation results of Kaplan, Hudson, and

Langley (1989) and numerical integration of the differential equations by Stephan, Wiehe,

and Lenz (1992) using a fourth-order Runge-Kutta method. These authors only follow the

sweep from an initial frequency of Bs of 10−6 so in the third and fourth rows we give results

from our Euler method for that initial density and for our usual choice of ε = 1/2N . The

fifth row gives the approximation that comes from Proposition 3. The five sets of numbers

agree remarkably well. However, as the last four rows show the logistic with ε = 1/2N and

approximation in Proposition 3 arrive at similar answers by giving very different values to

p2inb and p1B1b.
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Figure 2. Number of chromosomes with the favorable allele in the Moran model 
compared to the logistic sweep model. 
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Figure 3. Probability of ending in the b population compared to the time to reach 1000 
chromosomes with the favored B allele. 


