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Abstract

In the latent voter model, which models the spread of a technology through a social
network, individuals who have just changed their choice have a latent period, which is
exponential with rate λ, during which they will not buy a new device. We study site
and edge versions of this model on random graphs generated by a configuration model
in which the degrees d(x) have 3 ≤ d(x) ≤ M . We show that if the number of vertices
n → ∞ and log n � λn � n then the fraction of 1’s at time λnt converges to the
solution of du/dt = cpu(1− u)(1− 2u). Using this we show the latent voter model has
a quasi-stationary state in which each opinion has probability ≈ 1/2 and, with high
probability, persists in this state for a time that is ≥ nm for any m < ∞. Thus, even a
very small latent period drastically changes the behavior of the voter model, which has
a one parameter family of stationary distributions and reaches fixation in time O(n).

1 Introduction

In this paper we will study the latent voter model introduced in 2009 by Lambiotte, Saramaki,
and Blondel [13]. In this model each individual owns one of two types of technology, say
an iPad or a Microsoft Surface tablet. In the voter model on the d-dimensional lattice,
individuals at times of a rate one Poisson process pick a neighbor at random and imitate
their opinion. However, in the current interpretation of that model, it is unlikely that
someone who has recently bought a new tablet computer will replace it, so we introduce
latent states 1∗ and 2∗ in which individuals will not change their opinion. If an individual
is in state 1 or 2 we call them active. Letting fi be the fraction of neighbors in state i or i∗,
the dynamics can be formulated as follows

1 → 2∗ at rate f2 1∗ → 1 at rate λ
2 → 1∗ at rate f1 2∗ → 2 at rate λ
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In [13] the authors showed that if individuals in the population interact equally with all
the others then the system converges to a limit in which both technologies have frequency
close to 1/2. Here, we will study the system with large λ, since in this case it is a voter
model perturbation in the sense of Cox, Durrett, and Perkins [5]. To explain this, we will
construct the system using a graphical representation. Suppose first that the system takes
place on Zd and that d ≥ 3. For each x ∈ Zd and nearest neighbor y, we have independent
Poisson processes T x,y

n , n ≥ 1. At each time t = T x,y
n we draw an arrow from (y, t) → (x, t)

to indicate that if the individual at x is active at time t then they will imitate the opinion
at y.

To implement the other part of the mechanism, we introduce for each site x, a Poisson
process T x

n , n ≥ 1 of “wake-up dots” that return the voter to the active state.

• If there is only one voter arrow between two wake up dots, the result is an ordinary
voter event.

• If between two wake up dots there are voter arrows to x from two different neighbors,
an event of probability O(λ−2), then x will change its opinion if and only at least one
of the two neighbors has a different opinion. To check this, we note that if the first
arrow causes a change then the second one is ignored, while if the first arrow comes
from a site with the same opinion as the one at x then there will be a change if and
only if the second site has an opinion different from the one at x.

• If t is fixed then at a given site there are O(λ) wake-up dots by time t. Thus if we
want to see the influence of intervals with two voter arrows then we want to run time
at rate λ. The probability of k voter arrows between two wake-up dots is (1 + λ)−k,
so in the limit the probability of three of more voter events between two wake-up dots
goes to 0 as λ →∞.

If we let λ = ε−2 and let nk(x) be the number of neighbors in state k or k∗ then the rate
of flips from 1 to 2 in the latent voter model when the configuration is ξ is:

ε−2cv
1,2(x, ξ) + h1,2(x, ξ) where cv

1,2(x, ξ) = 1{ξ(x)=1}
n2(x)

2d

If we let y1, . . . y2d be an enumeration of the nearest neighbors of x, the perturbation is

h1,2(x, ξ) = 1{ξt(x)=1}
2

(2d)2

∑
1≤k<`≤2d

1{ξ(yk) or ξ(y`)∈{2,2∗}}

Similar formulas hold when the roles of 1 and 2 are interchanged. h1∗,j = h2∗,j ≡ 0.
If we scale space by ε then Theorem 1.2 of [5] shows that under mild assumptions on the

perturbation, the density of 1’s in the rescaled particle system converges to the solution of
the limiting PDE:

∂u

∂t
=

1

2
∆u + φ(u) with φ(u) = 〈h2,1(0, ξ)− h1,2(0, ξ)〉u (1)

and 〈·〉u denotes the expected value with respect to the voter model with density u.
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Intuitively, (1) holds because of a separation of time scales. The rapid voting means that
the configuration near x looks like the voter model equilibrium with density u(t, x). Later
in the paper will show, see (11), that in the case of the latent voter model

φ(u) = cdu(1− u)(1− 2u).

If we consider the latent voter model on a torus with n sites and let λn → ∞ then the
system can be analyzed using ideas from a recent paper of Cox and Durrett [4]. Define the
density of 1’s at time t by

Un(t) =
1

n

∑
x

1{ξλt(x)=1} (2)

Theorem 1. Suppose n2/d � λn � n. If Un(0) → u0 then Un(t) converges uniformly on
compact sets to u(t) the solution of

du

dt
= cdu(1− u)(1− 2u) u(0) = u0

Remark 1. Note that the only thing we assume about the initial state is that the density
Un(0) → u0. Fast voting will turn the initial condition into a voter model equilibrium in a
time that is o(λn). If we consider the voter model without a latent period then the limiting
differential equation is du/dt = 0. The last conclusion for the voter model is a very simple
special case of the results in [4].

1.1 Random graphs

We will explain the intuition behind Theorem 1 after we state our new result that replaces
the torus by a random graph Gn generated by the configuration model. For the rest of the
paper we will only consider the latent voter model on Gn. In the configuration model vertices
have degree k with probability pk. To create that graph we assign i.i.d. degrees di to the
vertices and condition the sum d1 + · · · + dn to be even, which is a necessary condition for
the values to be the degrees of a graph. We attach di half-edges to vertex i and then pair
the half-edges at random. We will assume that

(A0) the graph Gn has no self-loops or parallel edges.

If
∑

k k2pk < ∞ then the probability of (A0) is bounded away from 0 as n → ∞. See
Theorem 3.1.2 of [8]. The reader can consult Chapter 3 of that reference for more on the
configuration model.

It seems likely that the results we prove here are true under the assumption that the
degree distribution has finite second moment, but the presence of vertices of large degrees
causes a number of technical problems. To avoid these we will assume:

(A1) pm = 0 for m > M , i.e., the degree distribution is bounded.

In addition, we want a graph that is connected and has random walks with good mixing
times, so we will also suppose:

(A2) pk = 0 for k ≤ 2.
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The relevance of (A2) for mixing times will be explained in Section 2. Assumptions (A0),
(A1) and (A2) will be in force throughout the paper.

On graphs that are not regular there are two versions of the voter model.

(i) The site version in which sites change their opinions at rate 1, and imitate a neighbor
chosen at random,

cs
i,j(x, ξ) = 1{ξ(x)=i}

nj(x)

d(x)

where nj(x) is the number of neighbors of x in state j, and d(x) is the degree of x.

(ii) The edge version in which each neighbor that is different from x causes its opinion to
change at rate 1,

ce
i,j(x, ξ) = 1{ξ(x)=i}nj(x).

The site version is perhaps the “obvious” generalization of the voter model on Zd, e.g.,
it is a special case of the general formulation used in Liggett [15]: x imitates y with proba-
bility p(x, y), where p is a transition probability. However, the edge version has two special
properties. First, in the words of [23] “magnetization is conserved,” i.e., the number of 1’s
is a martingale. Second, if we consider the biased version in which after an edge (x, y) is
picked a 1 at x always imitate a 2 at y but a 2 at x imitates a 1 at y with probability ρ < 1
then the probability a single 2 takes over a system that is otherwise all 1 is the same as the
probability a simple random walk that jumps up with probability 1/(1 + ρ) and down with
probability ρ/(1 + ρ) never hits 0. This observation is due to Maruyama in 1970 [17], but
has recently been rediscovered by [14], who call this version of the voter model “isothermal”.

From our discussion of the graphical representation for latent voter model on Zd it should
be clear that the latent voter model on Gn is a voter model perturbation. If we let y1, . . . yd(x)

be an enumeration of the neighbors of x, then in the site version

hs
1,2(x, ξ) = 1{ξt(x)=1}

2

(d(x))2

∑
1≤k<`≤d(x)

1{ξ(yk) or ξ(y`)∈{2,2∗}}

while in the edge version

he
1,2(x, ξ) = 1{ξt(x)=1} · 2

∑
1≤k<`≤d(x)

1{ξ(yk) or ξ(y`)=∈{2,2∗}}

As before interchanging the roles of 1 and 2 we can define hs
2,1(x, ξ) and he

2,1(x, ξ) while
hs

i,j(x, ξ) = he
i,j(x, ξ) = 0 when i = 1∗ or 2∗.

The last detail is to define the density Un(t). To do this we note that a random walk that
jumps to a neighbor chosen at random has stationary distribution π(x) = d(x)/D, where
D =

∑
y d(y), while a random walk that jumps to each neighbor at rate 1 has stationary

distribution π(x) = 1/n. To treat the two cases in one definition we let

Un(t) =
∑

x

π(x)1{ξλt(x)=1} (3)
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Theorem 2. Suppose that log n � λn � n. If Un(0) → u0 then Un(t) converges in
probability and uniformly on compact sets to u(t), the solution of

du

dt
= cpu(1− u)(1− 2u) u(0) = u0. (4)

where the value of cp depends on the degree distribution and the version of the voter model.

Remark 2. Again in the voter model without a latent period the limit is du/dt = 0. That
result can be easily proved using the arguments for Theorem 2.

1.2 Duality

To explain why Theorems 1 and 2 are true, we will introduce a dual process that is the key
to the analysis. The dual process was first introduced more than 20 years ago by Durrett
and Neuhauser [11], and is the key to work of Cox, Durrett, and Perkins [5]. To do this, we
construct the process using a graphical representation that generalizes the one introduced
for Zd. For each x ∈ Zd and neighbor y, we have independent Poisson processes T x,y

n , n ≥ 1.
At each time t = T x,y

n we draw an arrow from (y, t) → (x, t) to indicate that if the individual
at x is active at time t then they will imitate the opinion at y. In the edge case all these
processes have rate 1. In the site case T x,y

n , n ≥ 0 has rate 1/d(x). To implement the
other part of the mechanism, we have for each site x, a rate λ Poisson process T x

n , n ≥ 1 of
“wake-up dots” that return the voter to the active state.

To compute the state of x at time t we start with a particle at x at time t. To be precise
ζx,t
0 = {x}. As we work backwards in time the particle does not move until the first time s

there is an arrow (y, t− s) → (x, t− s).

• If this is the only voter arrow between the two adjacent wake-up dots then the particle
jumps to y.

• If in the interval between the two adjacent wake-up dots there are arrows from k
distinct yi then the state changes to {x, y1, . . . yk} since we need to know the current
state of all these points to know what change should occur in the process. In the limit
as λ → ∞ we will only see branchings that add two yi. We include the case k > 2 to
have the dual process well-defined.

• We do not need to know the order of the arrows because x will change if at least one of
the yi has a different opinion. When λ is small some of the yi might change their state
during the interval between the two wake-up dots but this possibility has probability
zero in the limit.

• To complete the definition of the dual, we declare that if a branching event adds a point
already in the set, or if a particle jumps onto an occupied site then the two coalesce to
one.

The dual process can be used to compute the state of x at time t. The first step is to
work backwards in time to find ζx,t

t the set of sites at time 0 that can influence the state
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of x at time t. We note the states of the sites at time 0 and then work up the graphical
representation to determine what changes should occur at the branching points in the dual.

To prove Theorem 1, Cox and Durrett [4] show that after a branching event any coales-
cence between the particle that branched and the two newly created particles will happen
quickly, in time O(1) or these particles will need time O(n) to coalesce. (here we are using
the original time scale.) Let L = n1/d be the side length of the torus. When λn � n2/d the
particles will come to equilibrium on the torus before the next branching occurs in the dual,
so we can forget about the relative location of the particles and we end up with an ODE
limit. On the random graph, our assumption that all vertices have degree ≥ 3 implies that
the mixing time for random walks on these graphs is O(log n). Thus when λn � log n, we
have the situation that after a branching event there may be some coalescence in the dual at
times O(1) but then the existing particles will come to equilibrium on the graph before the
next branching occurs in the dual. In both cases λn � n is needed for the perturbation to
have a nontrivial effect. Otherwise a collection of k random walks might all coalesce before
the first branching arrow.

Remark 3. There is no reason for having vertices of degree 0 in our graph. If p2 > 0 and we
look at the dynamics on the giant component then Theorem 2 will hold if log2 n � λn � n.
The increase in the lower bound is needed to compensate for the fact that the mixing time for
random walks on the graph is O(log2 n). See e.g., Section 6.7 in [8]. Allowing p1 > 0 should
not change the behavior but, for simplicity, we derive our results under the assumption
d(x) ≥ 3.

1.3 Long time survival

The latent voter model has two absorbing states ≡ 1 and ≡ 2. On a finite graph the latent
voter model is a finite state Markov chain, so we know it will eventually reach one of them.
However by analogy with the contact process on the torus [18] and on power-law random
graphs, [19], this result should hold for times up to exp(γn) for some γ > 0. Unfortunately
we are only able to prove survival for any power of n. This failure is to due to our estimate
of P (Ωc

1) which appears on the right-hand side of Theorem 4.

Theorem 3. Suppose that log n � λn � n. Let ε > 0 and k < ∞. If Un(0) → u0 ∈ (0, 1)
there is a T0 that depends on the initial density so that for any m < ∞ if n is large then
with high probability

|Un(t)− 1/2| ≤ 5ε for all t ∈ [T0, n
m].

Remark 4. Here and in what follows “with high probability” means with probability → 1
as n → ∞. Cox and Greven [6] have shown that for the nearest neighbor voter model on
the torus in d ≥ 3 that if we let θt be the fraction of sites in state 1 at time Nt then the
configuration at time nt looks like the voter model equilibrium with density θt and θt changes
according to the Wright-Fisher diffusion

dθt =
√

βd · 2θt(1− θt) dBt

with βd the probability that two random walks starting from adjacent sites never hit.
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To prove Theorem 3, we use Theorem 4.2 of Darling and Norris [7]. To state their result
we need to introduce some notation. To make it easier compare with their paper we use
their notation even though in some cases it conflicts with ours. Let ξt be a continuous time
Markov chain with countable state space S and jump rates q(ξ, ξ′). In our case ξt will be
the state of the voter model on the random graph. For their coordinate function x : S → Rd

we will take d = 1 and
x(ξ) =

∑
x∈Gn

π(x)1{ξ(x)=1}.

We are interested in proving an ODE limit for Xt = x(ξλt). Here and in what follows we
drop the subscript n. To compare with the paper note that our ξt is their Xt and our Xt is
their Xt.

If we set U = [0, 1] in [7] then we always have x(ξt) ∈ U so their condition (2) is not
needed. For each ξ ∈ S we define the drift vector

β(ξ) =
∑
ξ′ 6=ξ

(x(ξ′)− x(ξ))q(ξ, ξ′)

We let b be the drift of the proposed deterministic limit xt:

xt = x0 +

∫ t

0

b(xs) ds.

In our case b(y) = cy(1 − y)(1 − 2y). To measure the size of the jumps we let σθ(y) =
eθ|y| − 1− θ|y| and let

φ(ξ, θ) =
∑
ξ′ 6=ξ

σθ(x(ξ′)− x(ξ))q(ξ, ξ′).

Consider the events Ω0 = {|X0 − x0| ≤ η},

Ω1 =

{∫ t

0

|β(ξλs)− b(Xs)| ds ≤ η

}
,

and Ω2 =

{∫ t

0

φ(ξs, θ) ds ≤ θ2At/2

}
.

The parameters in these events are coupled by the following relationships. If we let K be
the Lipschitz constant of the drift b then η = εe−Kt0/3 and θ = η/(At) where A > 0. We
have changed their δ to η because we use δ in a number of our arguments in Section 3.

Theorem 4. Under the conditions above, for each fixed t

P

(
sup
s≤t0

|Xs − xs| > ε

)
≤ 2e−η2/(2At0) + P (Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

In our application t0 will be fixed and K is independent of n so η does not depend on n. To
make the first term vanish in the limit we will take A = n−1/2. To bound the probabilities
on the right-hand side, we note
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• We have jumps that change the density by 1/n at times of a Poisson processes at
total rate ≤ Mλn. If θ|y| is small σθ(±1/n) ∼ θ2/2n2. So if n is large enough so
that Mλ/n ≤ n−1/2t0/2 then a standard large deviations estimate for the P (Ωc

2) ≤
exp(−cλn).

• Our assumption that Un(0) → u0 implies that Ωc
0 = ∅ for large n.

• The hard work comes in estimating P (Ωc
1), i.e., estimating the difference in the drift

in the particle system from what we compute on the basis of the current density. We
do this in Section 3.3-3.4 by computing the expected value of the mth moment of the
difference |β(ξs)− b(Xs)| so we end up with estimates that for a fixed time are ≤ n−m.

Once these three steps are done, the remainder of the proof of Theorem 3 given in
Section 3.5 is routine.By subdividing the interval into small pieces we can use the single
time estimates to control the supremum and hence the integral but only over a bounded
time interval. However this is enough since it allows us to show that when the density
wanders more than 4ε away from 1/2, we can return it to within 2ε with probability n−m,
and in addition never have the difference exceed 5ε.

Theorem 2 is proved in Section 2 and Theorem 3 in Section 3. These results hold for
other voter model perturbations such as the evolutionary games considered in [4]. However,
the main obstacle to proving a general result is to find a formulation that works well on
graphs with variable degrees. The arguments in the first proof closely parallel arguments in
[4] but now use estimates for random walks on random graphs.

The keys to the second proof are results concerning the behavior of coalescing random
walks (CRWs). There have been a number of studies of the time it takes for CRWs starting
from every site of a random graph to coalesce to 1. Cooper et al [2, 3] and Oliveira [20]
considered coalescing random walks with one particle at each site and obtained results on
the time needed for all particles to coalesce to 1. In [21] sufficient conditions were given for
the number of particles in the coalescing random walk to converge to Kingman’s coalescent.
However, here we need estimates on the number of coalescences that can occur by time
C log n. This is done in Section 3.2.

2 Proof of Theorem 2

2.1 Mixing times for random walks

Bounds for the mixing times come from studying the conductance

Q(x, y) = π(x)q(x, y)

where π is the stationary distribution and q(x, y) is the rate of jumping from x to y. In
the site version q(x, y) = 1/d(x) while π(x) = d(x)/D when y is a neighbor of x, y ∼ x, so
Q(x, y) = 1/D when y ∼ x. In the edge version, q(x, y) = 1 if y ∼ x, while π(x) = 1/n
where n is the number of vertices, so Q(x, y) = 1/n when y ∼ x. When degrees are bounded,
the two conductances are the same up to a constant.
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Define the isoperimetric constant by

h = min
π(S)≤1/2

Q(S, Sc)

π(S)

where π(S) =
∑

x∈S π(x) and Q(S, Sc) =
∑

x∈S,y∈Sc Q(x, y). Cheeger’s inequality, see e.g.
Theorem 6.2.1. in [8] implies that the spectral gap of Q, β = 1− λ1 has

h2

2
≤ β ≤ 2h (5)

Using Theorem 6.1.2 in [8] we see that if pt(x, y) is the transition probability associated with
Q

∆(t) ≡ max
x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ ≤ e−βt

πmin

(6)

where πmin = min π(x).
Gkantsis, Mihail, and Saberi [12] have shown, see Theorem 6.3.2. in [8]:

Theorem 5. Consider a random graph in which the minimum degree is ≥ 3. There is a
constant α0 so that with high probability h ≥ α0.

Combining the last result with (5), (6), and the fact that πmin ≥ 1/(C0n) for large n, we see
that

∆(t) ≤ C0ne−γt where γ = α2
0/2.

If we let C1 = (6/α2
0) then n large we have for t ≥ C1 log n

∆(t) ≤ 1/n (7)

2.2 Our random graph is (almost) locally a tree

Recall that to construct our random graph we let d1, d2, . . . dn be i.i.d. from the degree
distribution conditioned on d1 + · · · + dn to be even and then we pair the half-edges at
random. Given a vertex x with degree d(x), we let y1(x) . . . yd(x)(x) be its neighbors. To
grow the graph we let V0 = {x}. On the first step we draw edges from x to y1(x) . . . yd(x)(x)
and let V1 = {y1(x), . . . , yd(x)(x)} which we consider to be an ordered list. If Vt has been
constructed we let xt be the first element of Vt and draw edges from xt to y1(xt) . . . yd(xt)(xt).
To create Vt+1 we remove xt and add the members of y1(xt) . . . yd(xt)(xt) not already in Vt.

We stop when we have determined the neighbors of all vertices at distance < (1/5) logM n
from x. A simple calculation using branching processes shows that the total number of
neighbors within that distance of x is ≤ n1/5 log n for large n. The log n takes care of
the limiting random variable. Thus in the construction we will generate ≤ Mn1/5 log n
connections. We say that a collision occurs at time t if we connect to a vertex already in Vt.
The probability of a collision on single connection is ≤ Mn−4/5 log n. The expected number
of collisions involving the first n1/5 log n sites is ≤ CMn−3/5 log2 n, so for most starting points
(but not all) the graph will be a tree. To get a conclusion that applies to all starting points
we note that the probability of two collisions in the construction starting from one site is

≤
(

CMn1/5 log n

2

)
(n−4/5 log2 n)2 = O(n−6/5 log6 n)
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As we build up the graph we first find all of the neighbors of vertices at distance 1 from
x then distance 2, etc. Thus when a collision occurs it will connect a vertex at distance k
with one at distance k or to one at distance k + 1 that already has a neighbor at distance k.
As we will explain after the proof of the next lemma, this makes very little difference.

2.3 Results for hitting times

Lemma 2.1. Once two particles are at distance rn with 1 ≤ rn ≤ (1/25) log n then with
probability ≥ 1− 21−rn, they will reach a distance 5rn before hitting each other.

Proof. For the proof we will pretend that the graph is exactly a tree up to distance 5rn.
We return to this issue in a remark after the proof. Let Zt be the distance between these
two particles and let Tm be the first time the distance is m. Note that on each jump, with
probability p ≥ 2/3, the particles get 1 step further apart, while with probability ≤ 1/3, the
particles get one step closer. This implies that φ(z) = (1/2)z is a supermartingale, so

φ(rn) ≥ Prn(T0 < T5rn)φ(0) + (1− Prn(T0 < T5rn))φ(5rn).

Rearranging gives

Prn(T0 < T5rn) ≤ φ(5rn)− φ(rn)

φ(5rn)− φ(0)
≤ 2−rn

1− 2−5
≤ 21−rn (8)

as n →∞ which proves the desired result.

Remark 5. As noted after the construction, when a collision occurs it will connect a vertex
at distance k with one at distance k or to one at distance k + 1 that already has a neighbor
at distance k. In the first case at distance k the comparison chain moves towards x with
probability ≤ 1/3, the chain stays at the same distance with probability ≤ 1/3 and moves
further away with probability ≥ 1/3. In the second case at distance k + 1 the comparison
chain moves toward the root with probability ≤ 2/3 and further away with probability ≥ 1/3.

If we have a birth and death chain Xn that jumps p(k, k + 1) = pk, p(k, k) = rk and
p(k, k − 1) = qk then

φ(k + 1)− φ(k) =
qk

pk

[φ(k)− φ(k − 1)]

recursively defines a function φ so that φ(Xn) is a martingale. In our comparison chain
qk/pk = 1/2 for all but one value of k, which has qk/pk ≤ 1, so calculations like the one
in (8) will work but give a slightly larger constant. Because of this, we will suppress these
annoying details by assuming the graph is exactly a tree up to distance (1/5) log n.

To prepare for the next result we need

Lemma 2.2. If Sk is the sum of k independent mean one exponentials then

P (Sk ≤ ak) ≤
(

ae

1 + a

)k

10



Remark 6. This holds for all a but is only useful when ae/(1 + a) < 1, which holds if
a < 1/2.

Proof. Let θ > 0 and note
∫∞

0
e−θxe−x dx = 1/(1 + θ). Using Markov’s inequality we have

e−θakP (Sk ≤ ak) ≤ (1 + θ)−k

Taking θ = 1/a and rearranging gives the desired result.

Lemma 2.3. Suppose two particles are a distance rn = 2 log2 log n. Then with high proba-
bility the two particles will not collide by time log2 n.

Proof. By Lemma 2.1 the probability of hitting 5rn before 0 starting from rn is

≥ 1− 2/(log n)2 (9)

A particle must make 4rn jumps to go from distance 5rn to rn. Since jumps occur at rate
1 in the site model and at rate ≤ M in the edge model, the last lemma implies that the
probability of k = rn jumps in time ≤ arn/M is

≤ (ae)rn ≤ 1/(log3 n)

for large n if a is small enough. If a particle makes 2M(log2 n)/arn attempts to reach 0 before
5rn starting from rn then (9) implies that with high probability it will not be successful,
while the last bound implies that this number of attempts will take time ≥ 2 log2 n with
high probability.

Lemma 2.4. Suppose two particles are a distance rn = 2 log2 log n and let sn/n → 0. Then
with high probability the two particles will not hit by time sn.

Proof. Lemma 2.3 takes care of times up to log2 n. The result in (7) implies that if n is
large then for t ≥ log2 n, pt(x, y) ≤ 2/n. Summing we see that if the two particle move
independently the expected amount of time the two particles spend at the same site at times
in [log2 n, sn] is ≤ 2sn/n → 0. Since the jump rates are bounded above this implies the
desired result.

In the proof of Lemma 3.10 we need the following result for hitting times.

Lemma 2.5. Let L = (1/5) logM n. Suppose two particles performing independent continu-
ous time (site or edge) random walks start at points are separated by distance k. Then there
is a constant so that the probability the two particles hit by time C1 log n is ≤ C2−(k∧L/2).

Proof. Using the bound in Lemma 2.2 as in the proof of Lemma 2.3, if we replace C1 by
C2 = 4MC1 then we can treat the discrete time random walk in which on each step, one
of the particles is picked at random to jump. L is chosen so that arguments in Section 2.2
show that when either particle looks at the ball of radius L around them, what they see
differs from like a tree by at most one edge. If we ignore the extra edge, which is justified by
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Remark 5, and if we let Dn be the distance between the two particles after n jumps, then
(8) implies that if k ≤ L/2

Pk(T0 < TL) ≤ 2−k − 2−L

1− 2−L
≤ 2 · 2−k

if n is large.
Suppose now that the distance between the two points is ≥ L/2. The particles cannot hit

until they first reach a distance of L/2, at which point the previous estimate can be applied.
The journey from k ≤ L/2 to L takes at least L/2 steps. Thus if a particle makes K cycles
from L/2 to L it has used up KL/2 units of time which is larger than C2 log n if K is chosen
large enough. This shows that the estimate holds with C = 2K.

2.4 Results for the dual process

In this section we will consider the dual process on its original time scale, i.e., jumps occur
at rate O(1). In either version of the model, the rate at which branching occurs is ≤ L/λ
where L = M2. (Here we are using the fact in the edge model the degree is bounded.) Let
Rn be time of the nth branching. If tn = c2 log n for some constant c2 > 0 then

P (R1 ≤ tn) → 0 as n →∞

Let N(t) be the number of branching events by time λt. Comparing with a branching process
we have EN(t) ≤ eLt. The expected number of branchings in the interval [λt − tn, λt] is
≤ eLt(c2 log n)/λ so as n →∞,

P (λt−RN(t) ≤ tn) → 0 (10)

In the next three results C1 is the constant defined in (7) and we make the following as-
sumption:

(?) Suppose there are k particles in the dual at time 0, and each pair are separated by a
distance rn = 2 log2 log n.

Lemma 2.6. Suppose that at time 0, the first particle encounters an branching event. By
time C1 log n, there may be coalescences between new born particles or with their parent, but
with high probability there will be no other coalescences.

Proof. This follows from Lemma 2.3.

Lemma 2.7. At time C1 log n all the particles are almost uniformly distributed on the graph
with the bound on the total variation distance uniform over all configurations allowed by (?).

Proof. This follows from (7).

Lemma 2.8. After time C1 log n, with high probability there is no coalescence between par-
ticles before the next branching event, and right before the next branching event, all the
particles are rn apart away from each other.

12



Proof. The claim about coalescence follows from Lemma 2.4. The branching time is random
but it is independent of the movement of the particles, so the result about the separation
between particles follows from (7).

Together with (10), Lemma 2.8 implies that there is no coalescence in the dual [RN(t), λt]
and particles are at least rn apart right before RN(t). According to Lemma 2.7, the coales-
cences between new born particles and their parents can only happen before RN(t) +C1 log n,
with no other coalescences. Lemma 2.7 tells us at times ≥ RN(t) + C1 log n, all the particles
are almost uniformly distributed over the graph. Thus when we feed values into the dual
process to begin to compute the state of x at time t the values are independent and equal
to 1 with probability u.

Lemma 2.9. EUn(t) converges to a limit u(t).

Proof. Let Z(s), s ≤ t be the number of particles in the dual process, when we impose the rule
that the number of particles is not increased until time (C1 log n)/λ after a branching event.
Our results imply that Z(s) converges to a branching process. The last result shows that
when we use the dual to compute the state of x at time t we put independent and identically
distributed values at the Z(t) sites. The result now follows from results in [5].

Lemma 2.10. Un(t)− EUn(t) converges in probability to 0.

Proof. It follows from Lemma 2.4 that if |x−y| > rn then there will be no collisions between
particles in the dual processes starting from x and y, and hence the values we compute for
x and y are independent. The result now follows from Chebyshev’s inequality.

2.5 Computation of the reaction term

The final step is to show that u(t) satisfies the differential equation. To warm up for the
real proof, we begin by doing this on Zd If νu is the voter model stationary distribution with
density u and v1 and v2 are randomly chosen neighbors of x then

〈h1,2(x, ξ)〉u = νu(ξ(x) = 1, ξ(v1) = 2 or ξ(v2) = 2)

The right-hand side can be computed using the duality between the voter model and co-
alescing random walk. Following the approach in Section 4 of [10] if we let p(x|y|z) be
the probability the random walks starting from x, y, and z never hit and p(x|y, z) be the
probability y and z coalesce but don’t hit x then

νu(ξ(x) = 1, ξ(y) = 2 or ξ(z) = 2) = p(x|y|z)u(1− u2) + q(x, y, z)u(1− u)

where q(x, y, z) = p(x|y, z) + p(x, y|z) + p(x, z|y)
Using this identity we can compute the reaction term defined in (1)

φ(u) = 〈h2,1(x, ξ)− h1,2(x, ξ)〉u
= p(x|v1|v2)(1− u)(1− (1− u)2) + q(x, v1, v2)u(1− u)

− [p(x|v1|v2)u(1− u2) + q(x, v1, v2)u(1− u)] (11)

= p(x|v1|v2)[(1− u)u(2− u)− u(1− u)(1 + u)]

= p(x|v1|v2)u(1− u)(1− 2u)
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The computations for the random graph are similar but in that setting we have to take
into account the degree of x and what the graph looks like locally seen from x. Let qk be
the size-biased distribution kpk/µ where µ =

∑
k pk is the mean degree. Let Pk be a Galton

Watson tree in which the root has degree k and the other vertices have j children with
probability qj+1.

In the site version a dual random walk path will spend a fraction πs(k) = qk at vertices
with degree k so

〈hs
2,1 − hs

1,2〉u =
∑

k

qkPk(x|v1|v2)u(1− u)(1− 2u)

where v1 and v2 are randomly chosen neighbors of the root. In the edge version πe(k) = pk

so
〈he

2,1 − he
1,2〉u =

∑
k

pkPk(x|y|z)u(1− u)(1− 2u)

3 Proof of Theorem 3

Recall that the density in the time-rescaled latent voter model is given by:

Xt =
∑
x∈Gn

π(x)1(ξλt(x)=1). (12)

To complete the proof of Theorem 3 using the result of Darling and Norris [7] given in
Theorem 4 we need to estimate the probability of

Ωc
1 =

{∫ t

0

|β(Xs)− b(Xs)| ds > η

}
(13)

where β(ξ) =
∑

ξ′ 6=ξ(x(ξ′) − x(ξ))q(ξ, ξ′) is the drift in the particle system and b(u) =
cpu(1− u)(1− 2u) is the drift in the ODE.

To begin to do this, we define ξ̃s to be the same as ξs for time s ≤ λt−C1 log n, while on
the time interval (λt−C1 log n, λt], ξ̃ only follows the paths from voter events of ξ, ignoring
those from branching events. Let

X̃t =
∑
x∈Gn

π(x)1{ξ̃λt(x)=1}

be the density of this new process ξ̃. In order to determine ξ̃λt, we run the coalescing random
walks backward in time, starting from time λt and stopping at time λt− C1 log n.

We will first outline the proof then go back and fill in the details. In Section 3.1 we will
prove

Lemma 3.1. For any ε > 0 and m < ∞ the probability that more than εn sites are changed
by branching arrow is ≤ n−m for large n.

Let ũ = x(ξλt−C1 log n). To bound P (Ωc
1) we will prove:
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Lemma 3.2. Suppose log n � λn � n and m > 0. There is a δ > 0 independent of m and
constants Cm so that for any ε > 0 if n ≥ n0(m)

P
(
|X̃t − ũ| > ε|Ft−(C1 log n)/λ

)
≤ Cm

ε2mnδm
(14)

This will follow from Chebyshev’s inequality once we have a suitable estimate on the
2mth moment (see Lemma 3.3 below). Using (12) we have

Xt − ũ =
∑
x∈Gn

π(x)[1(ξλt(x)=1) − ũ],

so if we let Y (x) = 1(ξλt(x)=1) − ũ then

E(Xt − ũ)2m =
∑

x1,...x2m

π(x1) · · ·π(x2m) · Y (x1) · · ·Y (x2m).

We will use πk to denote the distribution π × · · · × π on Gk
n. If we introduce the dual

coalescing random walks W1, . . . ,W2m starting from distribution π2m and let r = C1 log n
then we can write this as

E[Y (W1(r)) . . . Y (W2m(r))]

To estimate probabilities for coalescing random walks we introduce independent random
walks W ′

1, . . . ,W
′
2m starting from distribution π2m, and use these to construct the W1, . . . ,W2m

by dropping the higher number after collisions. To simplify notation let Zi = Y (Wi(C1 log n))
and Z ′

i = Y (W ′
i (C1 log n)).

Lemma 3.3. There is δ > 0 so that for each m we have

|E[Z1 . . . Z2m]| ≤ Cmn−δm

This will be proved in Section 3.3 after we bound the coalescence probabilities in Section
3.2.

3.1 Ignoring branching

To prove Lemma 3.1 we begin by noting that since the branching rate is 1/λ we can suppose
without loss of generality that λ ≤ n1/2. In order for a site to be changed a branching
arrow must hit the dual process for the site but one branching arrow can change multiple
sites. Consider the coalescing random walk starting from all sites occupied and let Tk be
the amount of space time in [0, C1 log n] occupied by k-particles, i.e., a particle that is a
coalescence of k particles. Clearly

∞∑
k=1

kTk = C1n log n (15)

Let Πk be the number of branching arrows that hit k-particles. A standard large deviations
result (see e.g., (2.6.2) and Exercise 3.1.4 in [9]) shows that there is a constant c2 so that if
Zµ = Poisson(µ) then

P (Zµ > 2µ) ≤ exp(−C2µ)
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If Tk ≥ n2/3 then P (Πk > 2Tk/λ) ≤ exp(−C2n
2/3/λ), so if K = {k : Tk ≥ n2/3} then using

(15)

P

(∑
k∈K

kΠk > 2C1(n log n)/λ

)
≤ |K| exp(−C2n

1/6)

To control the contribution from particles of large weight, we will get a bound on the
largest particle weight seen. Let Nx(s) be the size of the cluster containing the particle that
started at x at time t when we run the coalescing random walk to time t− s and let Nmax(s)
be the size of the largest cluster. We will show

Lemma 3.4. If α > 0 and m < ∞ and t = C1 log n then for large n

P (Nmax(t) > nα) ≤ n−m.

When k 6∈ K monotonicity implies P (Πk > 2n2/3/λ) ≤ exp(−c2n
1/6), so if n is large

P

(∑
k 6∈K

kΠk > n2αn2/3/λ

)
≤ n−m + nα exp(−c2n

1/6)

which proves Lemma 3.1. It remains then to prove Lemma 3.4.
We begin by considering the edge model.

Lemma 3.5. If s ≥ 1/2M then E(Nx(s)− 1) ≤ 4Mes.

Proof. Let y 6= x and W y be the edge random walk starting from y. Noting that when W x

and W y hit, they stay together for a time ≥ 1/2M with probability e−1 gives

P(W x and W y hit by time s)× 1

2Me
≤
∫ s+1/2M

0

∑
z

pr(x, z)pr(y, z) dr

Since the edge random walks are reversible with respect to the uniform distribution, the
transition probability is symmetric∫ s+1/2M

0

∑
z

pr(x, z)pr(y, z) dr =

∫ s+1/2M

0

∑
z

pr(x, z)pr(z, y) dr (16)

=

∫ s+1/2M

0

p2r(x, y) dr (17)

Using this we have

ENx(s) =
∑

y

P(W x and W y hit by time s) ≤ 2Me

∫ s+1/2M

0

dr ≤ 4Mes

where in the last step we have used s ≥ 1/2M

Our next step is to bound the second moment of Nx(t).
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Lemma 3.6. If s ≥ 1/2M then E(Nx(s)− 1)(Nx(s)− 2) ≤ 3(4Mes)2.

Proof. We begin by observing that

E(Nx(s)− 1)(Nx(s)− 2) =
∑
x1,x2

P (x1, x2 ∈ Nx(s)).

where the sum is over xi 6= x and x1 6= x2. We first consider the case in which x and x1 are
the first to collide, and we bound

∑
x1,x2,y,z

∫ s+1/2M

0

pr(x, y)pr(x1, y)pr(x2, z)P (z ∈ Ny,r(s)) dr

where Ny,r(s) is the cluster at time s of the random walk that starts at y at time r. As in
the previous proof 2Me times this quantity will bound the desired hitting probability. By
symmetry

∑
x2

p(x2, z) =
∑

x2
p(z, x2) = 1. Using Lemma 3.5∑

z

P (z ∈ Ny,r(s)) ≤ 4Mes

Using reversibility we can write what remains of the sum as

∑
x1,y

∫ s+1/2M

0

pr(x, y)pr(y, x1) dr =
∑
x1

∫ s+1/2M

0

p2r(x, x1) dr ≤ 2s (18)

The second case to consider is when x1 and x2 are the first to collide, and we bound

∑
x1,x2,y,z

∫ s+1/2M

0

pr(x1, y)pr(x2, y)pr(x, z)P (z ∈ Ny,r(s)) dr

Using symmetry pr(x1, y)pr(x2, y) = pr(y, x1)pr(y, x2) then summing over x1, x2 we have

≤
∑
y,z

∫ s+1/2M

0

pr(x, z)P (z ∈ Ny,r(s)) dr

We have P (z ∈ Ny,r(s)) = P (y ∈ Nz,r(s)) because either event says y and z coalesce in [r, s],
so summing over y and using Lemma 3.5 the above is

≤ (4Mes)
∑

z

∫ s+1/2M

0

pr(x, z) dr ≤ (4Mes) · 2s (19)

Combining our calculations proves the desired result.

Lemma 3.7. If s ≥ 1/2M then E[(Nx(s)− 1) · · · (Nk(s)− k)] ≤ Ck(4Mes)k and hence

ENm
x (s) ≤ Cm,M(1 + s)m
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Proof. The second result follows easily from the first since

xm = 1 +
m∑

k=1

cm,k(x− 1) · · · (x− k)

The first case is∑
x1,...,xk,

y,z1,...zk−1

∫ s+1/2M

0

pr(x, y)pr(x1, y)pr(x2, z1) . . . pr(xk, zk−1)P (z1, . . . zk−1 ∈ Ny,r(s)) dr

Using symmetry and summing over x2, . . . , xk removes the pr(x2, z1) . . . pr(xk, zk−1) from the
sum. Next we sum over z1, . . . zk−1 (which are distinct) and use induction to bound the sum
by Ck−1(4Mes)k−1. Finally we finish up by applying (18).

The second case is∑
x1,...,xk,

y,z1,...zk−1

∫ s+1/2M

0

pr(x1, y)pr(x2, y)pr(x3, z1) . . . pr(xk, zk−2)

pr(x, zk−1)P (z1, . . . zk−1 ∈ Ny,r(s)) dr

Using symmetry and summing over x1, . . . , xk removes the

pr(x1, y)pr(x2, y)pr(x3, z1) . . . pr(xk, zk−2).

As in the previous proof P (z1, . . . zk−1 ∈ Ny,r(s)) = P (z1, . . . zk−2, y ∈ Nzk−1,r(s)), so sum-
ming over z1, . . . , zk−2, y and using induction we can bound the sum by Ck−1(4Mes)k−1.
Finally we finish up by applying (19) with z = zk−1

Remark 7. To extend to the site case where we do not have symmetry, we note that
reversibility of this model with respect to π(y) = d(y)/D implies

pr(y, z) ≤ d(y)pr(y, z) = d(z)pr(z, y) ≤ Mpr(z, y)

so the proof works as before but we accumulate a factor of M each time we use symmetry.

Now we are ready to give an upper bound on the size of the maximal cluster Nmax(t) at
time λt. Here and for the rest of the proof of Lemma 3.2, we only use moment bounds so
the proof is the same for the edge and site models

Proof of Lemma 3.4. By Chebyshev’s inequality

nαkP (Nx(t) > nα) ≤ Ck,M(1 + t)k

If we pick k > (m + 1)/α then

P
(
max

x
Nx(t) > nα

)
≤ n

nkα
Ck,M(2 log2 n)k = o(n−m)

which proves the desired result.
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3.2 Bounds on coalescence probabilities

Recall that W1, . . . ,W2m are coalescing random walks starting from distribution π2m

Lemma 3.8. Let H12 be the event that W1 and W2 hit by time C1 log n.

P (H12) ≤ (C log n)/n.

Proof. Let ∆ = {(v, v) : 1 ≤ v ≤ n} ⊂ Gn × Gn be the “diagonal.” Let W ′
1 and W ′

2 be
independent random walks. Since (W ′

1(t), W
′
2(t)) =d π2 for all t ≥ 0, the expected occupation

time of ∆ is (C1 log n)π2(∆). In the edge case π is uniform so π2(∆) = 1/n. In the site case
if we let d(x) be the degree of x and D =

∑
x d(x) then π(x) = d(x)/D so

π2(∆) =
∑

x

d(x)2

D2
≤ M2

n

since d(x) ≤ M , D ≥ n, and |Gn| = n.
The jump rate for (W ′

1(t), W
′
2(t)) is 2 in the site case and ≤ 2M in the edge case, so when

W ′
1 and W ′

2 hit the expected time they spend together is ≥ 1/2M , and we have

P (H12) ≤ (C1 log n)
M2

n
· 2M

which proves the desired result.

Remark 8. In what follows we will prove the result only for the site case, since the time
change argument in the last paragraph of the proof can be used to extend the argument to
the edge case.

The computation of higher order coalescence probabilities is made complicated by the
fact that if particles 1 and 2 are the first to coalesce at time T1,2 then the joint distribution of
(W1, W3, W4) at time T12 is not π3. To avoid some of these difficulties, we will estimate the
probability that coalescences occur in a specific pattern, and ignore collisions not consistent
with the pattern. For example let H12,34 be the event that

• 1 and 2 coalesce at T12. We ignore collisions involving particles 3 and 4 before that
time.

• At time T12,34 > T12 particles 3 and 4 coalesce. We ignore particle 1 on [T12, T12,34].

We say particle 1 in the second bullet because, in our coupling, at time T12 we drop W ′
2 and

use W ′
1 to move the coalesced particle.

The act of ignoring particles may look odd but the reasoning is legitimate. Doing this
enlarges the event that the coalescences occurred in the indicated pattern leading to an over
estimate of the probabilities of interest.

Lemma 3.9. P (H12,34) ≤ C(log2 n)/n2.
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Proof. By Lemma 3.8, the probability of the event H12 that 1 and 2 hit by time C1 log n is
≤ C(log n)/n. Since we are ignoring particles 3 and 4 up to time T12, their joint distribution
at time T12 conditional on H1,2 is π2. This implies that

P (H12,34) ≤ P (H12) · (C log n)/n

which proves the desired result.

Consider now the event H12,3

• 1 and 2 coalesce at time T12. We ignore collisions involving particles 3 and 4 before
that time.

• 3 coalesces with particle 1 at T12,3 > T12. We ignore particle 4 during [T12, T12,3].

Lemma 3.10. There is an δ > 0 so that P (H12,3) ≤ C log n/n1+δ

Proof. As in the previous argument the probability that 1 and 2 hit is ≤ C(log n)/n and at
time T12 the location of W ′

3 has distribution π and is independent of W ′
1. Unfortunately W ′

1

does not have distribution π since it may be easier for particles 1 and 2 to coalesce at some
points than others.

Let πmin be the minimal value of π(x) and let L = (1/5) logM n. Using the observations
that (i) since the max degree is M ≥ 3, the number of vertices at distance k from a fixed
vertex is ≤ Mk and (ii) by Lemma 2.5 the probability two particles separated by k ≤ L hit
by time C1 log n is ≤ C2−k, and (iii) two particles that are separated by more that L must
come to within distance L before they hit.

P (H12,3|H12) ≤
L/2∑
k=1

2−kMkπmin + 2−L/2(n−ML/2)πmin

≤ 2−L/2nπmin

∞∑
j=0

(2/M)j ≤ C2−(1/10) logM n

1− 2/3
≤ Cn−δ

which proves the desired result.

Lemmas 3.9 and 3.10 contain all the ideas needed to estimate general coalescence patterns.
The hardest part of doing this in general is to find appropriate notation to enumerate the
possibilities. To do this we will use notation used to describe phylogenetic trees. For example

H(((12)5)9),(34),((67)8)

means that first 1 and 2 coalesce, then 3 and 4 coalesce, next 5 coalesces with (12), 6 and 7
coalesce, 8 coalesces with them and finally 9 coalesces with ((12)5). In defining these events
we ignore collisions between particles that have already coalesced with another one. In the
example under consideration we have

P (H(((12)5)9),(34),((67)8)) ≤ C

(
log n

n

)3

· n−3δ ≤ Cn−9δ/2
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We say a random walk Wi is isolated if Wi does not coalesce with other random walks
by time C1 log n. Suppose s is the number of isolated random walks among W1, . . . W2m and
define

GNI
i1,...,ik

= {None of Wi1 , . . . ,Wik is isolated}
Giso

i1,...,ik
= {All Wi1 , . . . ,Wik are isolated}

Since GNI
i1,...,ik

is contained in a union of H events involving k particles.

Lemma 3.11. Given any k coalescing random walks Wi1 , . . . ,Wik starting from the station-
ary distribution, then there exist constants C > 0 and δ > 0 such that the probability of no
isolated random walk is bounded by

P
(
GNI

i1...ik

)
≤ C/nδk/2 (20)

3.3 Moment estimates

We begin with second moments.

Lemma 3.12. If n is large E[Z1Z2] ≤ (C log n)/n.

Proof. On H12,
Y (W1(r))Y (W2(r)) = Y 2(Z1(r)) ≤ 1

so the contribution to the expected value is ≤ C(log n)/n. Since W ′
1(r) and W ′

2(r) are
independent and have distribution π

E[Y (W ′
1(r))Y (W ′

2(r))] = 0

Using our coupling and this we get

|E[Y (W1(r))Y (W2(r)); H
c
12]| = |E[Y (W ′

1(r))Y (W ′
2(r)); H

c
12]|

= |E[Y (W ′
1(r))Y (W ′

2(r)); H12]| ≤ P (H12) ≤
C log n

n

and the desired result follows.

Turning now to 4th moments, let S be the number of isolated random walks among
W1, W2, W3 and W4. Then

E[Z1Z2Z3Z4] =
4∑

s=1

E [Z1Z2Z3Z4; S = s] (21)

Case 1: s=1. First by symmetry, we have

E [Z1Z2Z3Z4; S = 1] = 4E
[
Z1Z2Z3Z4; G

NI
123 ∩Giso

4

]
where 4 comes from the choices of the only isolated random walk. Now we couple W4 to
an independent random walk W ′

4. Precisely, (W1, W2, W3, W4) = (W1, W2, W3, W
′
4) until
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W4 = W ′
4 hits the trajectory of Wi for some i ≤ 3. When this occurs, the first vector

becomes (W1, W2, W3, Wi). From this coupling, we know

E
[
Z1Z2Z3Z4; G

NI
123 ∩Giso

4

]
= E

[
Z1Z2Z3Z

′
4; G

NI
123 ∩Giso

4

]
Note that Z ′

4 is independent of Z1, Z2, Z3. Hence E
[
Z1Z2Z3Z

′
4; G

NI
123

]
= 0. This implies∣∣E [Z1Z2Z3Z

′
4; G

NI
123 ∩Giso

4

]∣∣ =
∣∣E [Z1Z2Z3Z

′
4; G

NI
123 ∩Giso,c

4

]∣∣
≤3
∣∣E [Z1Z2Z3Z

′
4; G

NI
123 ∩G14

]∣∣ ≤ 3P (GNI
123 ∩G14) ≤

C

nδ
P (H12,3) ≤ C log n/n1+2δ (22)

Case 2: s=2. Similarly, symmetry tells us

E [Z1Z2Z3Z4; S = 2] = 6E
[
Z1Z2Z3Z4; G

NI
12 ∩Giso

34

]
= 6E

[
Z1Z2Z3Z4; G12 ∩Giso

34

]
Now couple (W3, W4) to independent random walks (W ′

3, W
′
4). Precisely, (W1, W2, W3, W4)

and (W1, W2, W
′
3, W

′
4) are the same until W3 or W4 hits others. Then

E
[
Z1Z2Z3Z4; G12 ∩Giso

34

]
= E

[
Z1Z2Z

′
3Z

′
4; G12 ∩Giso

34

]
Note that Z ′

3 and Z ′
4 are independent of W1 and W2. Hence E [Z1Z2Z

′
3Z

′
4; G12] = 0. This

implies ∣∣E[Z1Z2Z
′
3Z

′
4; G12 ∩Giso

34 ]
∣∣ =

∣∣E[Z1Z2Z
′
3Z

′
4; G12 ∩Giso,c

34 ]
∣∣

≤ C (P (H12,3) + P (H12,34)) ≤ C log n/n1+δ

The first inequality holds because on G12 if W ′
3 is not isolated, it can either hit W1 or W2,

which has probability bounded by CP (H12,3) where the constant C takes care of the order
of coalescent; or it can hit W ′

4 without hitting W1 or W2, which has probability bounded by
P (H12,34). The same argument applies to W ′

4. Therefore, we have obtained

E [Z1Z2Z3Z4; S = 2] ≤ C log n/n1+δ (23)

Case 3: s=3. Impossible

Case 4: s=4. Couple Wi, 1 ≤ i ≤ 4 to independent random walks W ′
i , 1 ≤ i ≤ 4. Precisely,

they agree until there is a coalescence. Then

E [Z1Z2Z3Z4; S = 4] = E
[
Z1Z2Z3Z4; G

iso
1234

]
= E

[
Z ′

1Z
′
2Z

′
3Z

′
4; G

iso
1234

]
= −E

[
Z ′

1Z
′
2Z

′
3Z

′
4; G

iso,c
1234

]
Now Giso,c

1234 is a disjoint union of events

GNI
Ac ∩Giso

A

where A $ {1, 2, 3, 4} and Ac = {1, 2, 3, 4}\A. Combining this with (21), (22), and (23)
gives Lemma 3.3 for m = 2.
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General m. To compute E[Z1Z2 . . . Z2m], let S denote the number of isolated random walks
among W1, . . . ,W2m at time C1 log n. Then

E[Z1Z2 . . . Z2m] =
2m∑
s=0

E[Z1Z2 . . . Z2m; S = s] (24)

For any 1 ≤ s ≤ 2m, first symmetry gives us

E[Z1Z2 . . . Z2m; S = s] =

(
2m

s

)
E[Z1Z2 . . . Z2m; GNI

1...2m−s ∩Giso
2m−s+1...2m] (25)

Hence we just need to focus on the case where the last s random walks are isolated while
no isolated random walk appears in the first 2m − s random walks. Now couple Wj with
2m − s + 1 ≤ j ≤ 2m to independent random walks W ′

j with 2m − s + 1 ≤ j ≤ 2m.
Precisely, (W1, . . . ,W2m) and (W1, . . . ,W2m−s, W

′
2m−s+1, . . . ,W

′
2m) are identical until any Wi

with 2m− s < i ≤ 2m hits another particle. Then

I :=E
[
Z1 . . . Z2m; GNI

1...2m−s ∩Giso
2m−s+1...2m

]
=E

[
Z1 . . . Z2m−sZ

′
2m−s+1 . . . Z ′

2m; GNI
1...2m−s ∩Giso

2m−s+1...2m

]
(26)

As before, note that Z ′
2m−s+1, . . . , Z

′
2m are all independent of Z1, . . . , Z2m−s. This implies

that E
[
Z1 . . . Z2m−sZ

′
2m−s+1 . . . Z ′

2m; GNI
1...2m−s

]
= 0 and that

E[Z1 . . . Z ′
2m; GNI

1...2m−s ∩Giso
2m−s+1...2m] = −E[Z1 . . . Z ′

2m; GNI
1...2m−s ∩Giso,c

2m−s+1...2m] (27)

Note that GNI
1...2m−s ∩Giso,c

2m−s+1...2m is a union of disjoint sets of the form

GNI
Ac ∩Giso

A

where A $ {2m− s + 1, . . . , 2m} and Ac = {1, 2, . . . , 2m}\A. Combining this with (26) and
(27) gives

I ≤
∑

A${2m−s+1,...,2m}

∣∣E[Z1 . . . Z ′
2m; GNI

Ac ∩Giso
A ]
∣∣

Since |A| ≤ s− 1, we have reduced the number of isolated random walks by at least 1. Now
apply similar argument to each GNI

Ac ∩ Giso
A . Note that Z ′

i, i ∈ A are independent of the Zi

i ∈ Ac. Hence E[Z1 . . . Z ′
2m; GNI

Ac ] = 0. This implies that

E[Z1 . . . Z ′
2m; GNI

Ac ∩Giso
A ] = −E[Z1 . . . Z ′

2m; GNI
Ac ∩Giso,c

A ]

We can further subdivide each GNI
Ac ∩Giso,c

A into disjoint sets of the form GNI
Bc ∩Giso,c

B where
B $ A $ {1, . . . , 2m} and thus |B| ≤ s− 2. This leads to

I ≤ C
∑

B${2m−s+1,...,2m}, |B|≤s−2

∣∣E[Z1 . . . Z ′
2m; GNI

Bc ∩Giso
B ]
∣∣

where the constant C takes care of the possible repetition of GNI
Bc ∩Giso

B from those subdivi-
sions. We can keep doing this and decrease the number of isolated random walks by at least
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1 at each step until we have no isolated random walk, i.e. when all those A (or B )given
above have |A| = 0 (or |B| = 0). We will eventually have

I ≤ C
∣∣E[Z1 . . . Z ′

2m; GNI
1,2,...,2m]

∣∣
Since

∣∣Z1 . . . Z2m−sZ
′
2m−s+1 . . . Z ′

2m

∣∣ ≤ 1, then by Lemma 3.11 we have

I ≤ CP
(
GNI

12...2m

)
≤ C/nδm (28)

and the proof of Lemma 3.3 is complete.

3.4 Bounding the drift

The drift

β(ξλt) =
∑
x∈Gn

π(x)
∑
y∼x

∑
z∼x,z 6=y

[1{ξλt(x)=2, ξλt(y)=1 or ξλt(z)=1}

− 1{ξλt(x)=1, ξλt(y)=2 or ξλt=2}]

We want to show

Lemma 3.13. There is a γ > 0 so that for any m there is a constant Cm so that

P (|β(ξλt)− b(Xt)| ≥ ε|Ft−(C1 log n)/λ) ≤
Cm

ε2mn2mγ
. (29)

Proof. We prove the result for the edge case and leave the straightforward extension to the
site case to the reader. If we let 1(x|y|z) is the indicator function of the event that the dual
random walks starting from x, y, and z at time t do not hit by time t − C1(log n)/λ and
p(x|y|z) = E1(x|y|z) then

E[β(ξt)|Ft−C1(log n)/λ] =
1

n

∑
x∈Gn

∑
y∼x

∑
z∼x,z 6=y

1(x|y|z)ũ(1− ũ)(1− 2ũ) (30)

b(Xt) =
1

n

∑
x∈Gn

∑
y∼x

∑
z∼x,z 6=y

p(x|y|z)ũ(1− ũ)(1− 2ũ) (31)

The random variables 1(x|y|z) are dependent if the triples (x, y, x) and (x′, y′, z′) overlap
or if the associated random walks coalesce. To simplify things we will let 1̂(x|y|z) be the
event none of the walks r-coalesce, i.e., the pair collides before either of them exits B(x, r),
where r = ε log n and ε will be chosen later to be small enough. Let

Yx,y,z = 1̂(x|y|z)− p(x|y|z) and Ŷx,y,z = 1̂(x|y|z)− p̂(x|y|z)

where p̂(x|y|z) = E(1̂(x|y|z)). As before we will compute 2mth moments of the sum over
x ∈ Gn and neighbors y, z 6= y of x. The calculation is simpler here than in Sections 3.2–3.3,
since we are only concerned whether the particles coalesce and not how they are spread over
the graph at time C1 log n.
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Lemma 3.14. There is a β > 0 so that for any m we have

E

(∑
x,y,z

Ŷx,y,z

)2m

≤ Cmn1+β.

Proof. The sum has K =
∑

x d(x)(d(x)−1) terms. The 2mth moment of the sum has terms
of the form.

Ŷx1,y1,z1 · · · Ŷx2m,y2m,z2m

If some xi has distance 3r from all of the other xj then Yxi,yi,zi
is independent of the product

of the rest of the random variables and the expected value is 0.
Suppose now that for each xi there is at least one xj that is within distance 3r. Create a

graph D (for dependency) where there is an edge between i and j if d(xi, xj) < 3r. Let κ be
the number of components in the graph. The number of points within distance 3r = 3ε log n
of a given x is ≤ M3ε log n ≡ nβ. If the dependency graph has κ components the number of
terms≤ ADnκnβ(2m−κ). When D has no singletons κ ≤ m. Since E|Yx1,y1,z1 · · ·Yx2m,y2m,z2m| ≤
1 the desired result follows.

To bound the sum of the Yx,y,z we will write

Yx,y,z = Ŷx,y,z + (p̂(x|y|z)− p(x|y|z)) + (1(x|y|z)− 1̂(x|y|z))

To control the middle term note that Lemma 2.3 implies that with high probability the
two walks that are separated by r = ε log n will not hit before they are separated by 5r is
≤ 21−ε log n ≡ 2n−α. Using this result repeatedly we see the probability they do not hit by
C1 log n is ≤ Cn−α. Thus ∑

x,y,z

|p(x|y|z)− p̂(x|y|z)| ≤ cn1−α

To control the 2mth moment of the sum of the third term, suppose we are given 1 ≤
K ≤ 2m distinct (xi, yi, zi) where yi and zi are different neighbors of xi. Note that Z =∏K

i=1

(
1(xi|yi|zi)− 1̂(xi|yi|zi)

)
> 0 if and only if 1(xi|yi|zi)−1̂(xi|yi|zi) > 0 for all 1 ≤ i ≤ K.

That is, for any i, there exist a pair among (W xi , W yi , W zi) such that they do not r−coalesce
but coalesce after exiting B(x, r). As before, we only focus on coalescent in a specific pattern
and consider the event H as the following:

• Suppose T0 = 0. Some particles from (W x1 , W y1 , W z1) coalesce at time T1 but do not
r−coalesce. We ignore collisions involving other particles and let them do independent
random walks before that time.

• (W x1 , W y1 , W z1) are ignored immediately after time T1 except for the ones who appear
in (W x2 , W y2 , W z2). At time T2 > T1, some particles from (W x2 , W y2 , W z2) coalesce
after exiting B(x2, r). We ignore all other particles on [T1, T2].

• In general, at time Tk > Tk−1, some particles from (W xk , W yk , W zk) coalesce after
exiting B(xk, r). We ignore all other particles on [Tk−1, Tk].
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This again enlarges the probability of our interest up to a constant factor from permu-
tation. Moreover by Lemma 2.5, each step has probability ≤ C/n−α to occur . Hence

P (Z > 0) ≤ CP (H)

≤ C

2m∏
k=1

P (Tk < ∞|Tk−1∞) ≤ C/n−Kα

Note that in the expansion of
(∑

x,y,z 1(x|y|z)− 1̂(x|y|z)
)2m

, the number of terms consisting

of such K distinct (xi, yi, zi) is ≤ nKM(M − 1).
This implies that

E

(∑
x,y,z

1(x|y|z)− 1̂(x|y|z)

)2m

≤
2m∑

K=1

nKM(M − 1)× C/n−Kα ≤ Cmn2m(1−α).

Combining our results and using Chebyshev’s inequality, the proof of Lemma 3.13 is com-
plete.

3.5 Final details

To extend Lemma 3.13 to bound the probability of

Ωc
1 =

{∫ t

0

|β(Xs)− b(Xs)| ds ≥ η

}
we subdivide the interval [0, t] into subintervals of length 1/λn1/2. Within each interval the
probability that more than 2n1/2 sites will flip is ≤ exp(−c

√
n). From this it follows that if

2tε ≤ η then

P (Ωc
1) ≤ tλn1/2

[
Cm,ε

nm/2
+ exp(−c

√
n)

]
(32)

The last bound only works for fixed t. To get long time survival we will iterate. Let

T0 = inf{t : |xt − 1/2| < ε}

and note that xt is the solution of the ODE so this is not random. this is not random.
Theorem 4 implies that at this time |Xt− 1/2| ≤ 2ε with very high probability, i.e., with an
error of less that Cn−(m−1)/2. Let

T1 = inf{t > T0 : |Xt − 1/2| ≥ 4ε}

and note that on [T0, T1] we have |Xt − 1/2| ≤ 4ε. There is a constant t0 so that if x(0) =
1/2 + 4ε or x(0) = 1/2 − 4ε then |x(t0) − 1/2| ≤ ε. Let S1 = T1 + t0. Theorem 4 implies
that with high probability |X(S1)− 1/2| ≤ 2ε and |Xt − 1/2| ≤ 5ε on [T1, S1]. For k ≥ 2 let

Tk = inf{t > Sk−1 : |Xt − 1/2| ≥ 4ε} and Sk = Tk + t0.

We can with high probability iterate the construction n(m−2)/2 times before it fails. Since
each cycle takes at least t0 units of time, the proof of Theorem 3 is complete.
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diffusion equations. Astérisque. Volume 349. arXiv:1103.1676

[6] Cox J.T., and Greven A (1990) On the long term behavior of some finite particle systems.
Probab. Theory Rel. Fields 85, 195–237 .

[7] Darling, R.W.R., and Norris, J.R. (2008) Differential equation approximation for
Markov chains. Probability Surveys. 5, 37–79

[8] Durrett, R. (2006) Random Graph Dynamics. Cambridge U. Press

[9] Durrett, R. (2010) Probability: Theory and Examples. Fourth Edition, Cambridge U.
Press

[10] Durrett, R. (2014) Spatial evolutionary games with small selection coefficients. Elec-
tronic J. Probability. 19, paper 121

[11] Durrett, R.; Neuhauser, C. (1994) Particle systems and reaction-diffusion equations.
Ann. Probab. 22, 289333.

[12] Gkantsis, C., Mihail, M., and Saberi, A. (2003) Conductance and congestion in power
law graphs. Proceedings of the 2003 ACM SIGMETRICS international conference on
measurement and modeling of computer systems, 148–159

[13] Lambiotte R., Saramaki, J., and Blondel, V.D. (2009) Dynamics of Latent Voters.
Physical Review E. 79, paper 046107

27



[14] Lieberman, E., Hauert, C., and Nowak, M.A. (2005) Evolutionary dynamics on graphs.
Nature. 433, 312–316

[15] Liggett, T.M. (1985) Interacting Particle Systems. Springer-Verlag, New York

[16] Liggett, T.M. (1999) Stochastic Interacting Systems: Contact, Voter and Exclusion
Processes. Springer, New York.

[17] Maruyama, T. (1970) The effective number of alleles in a subdivided population. Theor.
Pop. Biol. 1, 273–306

[18] Mountford, T. S. (1993) A metastable result for the finite multidimensional contact
process. Canad. Math. Bull. 36, no. 2, 216226.

[19] Mountford, T., Mourrat, J-C., Daniel Valesin, D., and Yao, Q. Exponential extinction
time of the contact process on finite graphs. arXiv:1203.2972

[20] Oliveira, R.I. (2012) On the coalescence time for reversible random walks. Transactions
of the AMS. 364, 2109–2128

[21] Oliveira, R.I. (2013) Mean-field conditions for coalescing random walks. Ann. Probab.
41, 3420–3461

[22] Sawyer, S. (1979) A limit theorem for patch sizes in a selectively-neutral migration
model. J. Appl. Prob. 16, 482–495
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