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Abstract

In our first model, individuals have opinions in [0, 1]d. Connections are broken at
rate proportional to their length `, and a randomly chosen end point x connects to an
individual chosen at random. If version (i) the new edge is always accepted. In version
(ii) a new connection of length `′ is accepted with probability min{`/`′, 1}. Our second
model is a dynamic version of preferential attachment. Edges are chosen at random
for deletion, then one endpoint (again chosen at random) connects to vertex z with
probability proportional to f(d(z)) where f(k) = θ(k + 1) + (1 − θ)(d̄ + 1), and d̄ is
the average degree. In words, this is a mixture of degree-proportional and at random
rewiring. The common feature of these models is that they have stationary distributions
that satisfy the detailed balance condition and are given by explicit formulas. In
addition, the first model is closely related to long range percolation, and the second to
the configuration model of random graphs. As a result, we can obtain explicit results
about the degree distribution, connectivity and diameter for both models.

1 Introduction

In this article we study two models of social networks that evolve stochastically in time: (a)
an opinion-dependent rewiring model and (b) a degree-dependent rewiring model.

1.1 Opinion-dependent rewiring model

There have been a number of studies recently in which the structure of a network coevolves
with the opinions of its members [1]–[9]. Here we will study the simpler case of stubborn
individuals who do not change their opinions. The starting point for this investigation was a
paper of Henry, Pralat, and Zhang (HPZ) [10] who considered a model in which N individuals
have opinions chosen uniformly in [−1, 1]d and at any time there are M edges connecting
them. In their discrete time formulation, on each step an edge (x, y) is chosen at random
and the edge is broken with probability pd(x, y) where d(x, y) is the dissimilarity of x and y
and p is chosen small enough so that this probability cannot exceed 1. For simplicity, we will
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take d(x, y) to be the usual Euclidean distance but to have more connection with long-range
percolation in Section 2, one might want to take d(x, y) = |x− y|β.

In this and all other models we consider, when an edge is broken, we pick an endpoint x
of the edge at random and connect it to a new vertex 6= x and not already a neighbor of x.
In the HPZ model the choice of new vertex is made at random from all legal possibilities.

HPZ assumed d(x, y) ∈ (0, 1) for all x, y, and discretized their model so that all edges
had lengths in {1/K, 2/K, . . . ,K/K} to conclude that in equilibrium the average number of
edges of length i/K satisfied

Ni =
M/i∑K
j=1 1/j

where M is the number of edges.
In this paper, we use a continuous time formulation in which edges of length ` break at

rate `. For convenience, we switch the opinion space to [0, 1]d, but retain the assumption
that opinions are chosen independently and uniformly at random. As in the HPZ model,
broken edges are given an orientation (x, y) and x connects to a new vertex that does not
make a self loop or parallel edge. In addition to (i) the random rewiring version of HPZ, we
also consider (ii) a Metropolis-Hastings (MH) dynamics in which a randomly chosen edge of
length `′ is accepted with probability min{`/`′, 1}. Figure 1 shows a sample of each dynamic
at equilibrium when d = 2.

Figure 1: Sample graphs at equilibrium for the opinion-dependent rewiring model in dimen-
sion 2 with N = 50, M = 100. The random rewiring dynamics (a) yield a graph that appears
more dense because edges tend to be longer than for the Metropolis-Hastings dynamics (b).

1.2 Degree-dependent rewiring model

In our second model, we begin with a graph that has N vertices and M edges, and at rate 1
edges are chosen to be broken. When an edge is chosen, we pick an endpoint x of the edge at
random and connect it to a vertex z chosen with probability proportional to f(d(z)), where
d(z) denotes the degree of vertex z. Let

f(i) = θ(i+ 1) + (1− θ)(d̄+ 1),
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where d̄ = 2M/N is the average degree and θ ∈ [0, 1]. We add 1 in the first factor so that
vertices of degree 0 can be chosen. Otherwise, they will accumulate over time and there
is no stationary distribution. We put d̄ + 1 in the second factor, so choosing a vertex with
probability proportional to f(d(z)) is equivalent to flipping a coin with probability θ of heads
and then choosing a vertex with probability proportional to d(z) + 1 if the coin is heads and
uniformly at random otherwise. Thus, the parameter θ dictates people’s preferences towards
forming friendships with more popular people.

This is a variant of the original preferential attachment model of Barabási and Albert
[12], which has been widely studied for randomly grown graphs, where it leads to a power-law
degree distribution. See [13]–[16]. In contrast, here we use it to define a dynamic random
graph with a fixed number of vertices and edges.

2 Results: Opinion-dependent rewiring

2.1 Stationary distribution

Let v(G) and e(G) be the number of vertices and edges of a graph G, and let |e| be the
length of the edge e. We assume throughout that 2M/N → λ > 0 as N →∞.

Theorem 1. Conditional on the locations of the N vertices, the equilibrium distribution for
the opinion-dependent rewiring model is given by

π1(G) =

{
C(α,N,M)

∏
e∈G |e|−α if v(G) = N , e(G) = M

0 otherwise,

where α = 1 for random rewiring, and α = 2 for the MH dynamics.

To prove this result, we check in Section 4 that the detailed balance condition is satisfied.
While it is nice to have an explicit formula for π1(G), if one wants to generate graphs with
this distribution one must simulate the chain, which can be time consuming. To avoid this
problem, we give another construction of π1. Consider a percolation model on N vertices
in which edge e is present with probability g(|e|), independent of the other edges. Letting
µ denote the probability measure on graphs in the percolation model, conditional on the
locations of the vertices,

µ(G) =
∏
e∈G

g(|e|)
1− g(|e|)

∏
e

(1− g(|e|)) if v(G) = N.

The second product depends only on the set of vertices, so it can be absorbed into the
normalizing constant. If we let

g(k) =
b

b+ kα
, then

g(|e|)
1− g(|e|)

=
b

|e|α
, (1)

and π1(G) can be viewed as the probability of G under µ conditioned on the number of edges
being M . To account for the fact that the number of edges under µ is random, we can choose
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Figure 2: Expected degree function, λ(x), for d = 2 and α = 1 in the opinion-dependent
rewiring model with mean degree λ = 4.

b′ and b′′ so that if G′ ∼ µb′ and G′′ ∼ µb′′ then Ee(G′) = M(1 −M−1/3) and Ee(G′′) =
M(1 +M−1/3) (note that b′, b′′ depend on the locations of the vertices, and the expectations
are conditional on the locations). Then with high probability e(G′) < M < e(G′′), so we
can couple G,G′ and G′′ such that G ∼ π1 has exactly M edges, and every edge in G′ is an
edge in G and every edge in G is an edge in G′′. By this coupling, it is sufficient to study
the behavior of the degree distribution, giant component size and diameter for µ, as these
features vary continuously as functions of the mean degree, and the mean degrees of G,G′,
and G′′ will all approach the same limit.

We now choose b(N,M) so that the expected value under µ of e(G) is M and 2M/N → λ
as N →∞. Writing Q as short-hand for [0, 1]d we want

N2

∫
Q

∫
Q

b

b+ |x− y|α
dy dx = 2M,

so b(N,M)→ 0. There are two cases with different behavior. Changing to polar coordinates,
we see that ∫

|z|<1

|z|−αdz

{
<∞ α < d

=∞ α ≥ d.

In the first case b(N,M) ∼ cλ/N and the expected degree of a vertex at x,

λ(x) = lim
N→∞

N

∫
Q

b

b+ |x− y|α
dy = cλ

∫
Q

|x− y|−α dy, (2)

is not constant. Figure 2 shows the function λ(x) for α = 1 and d = 2, where we numerically
evaluated c1 ≈ 0.336, and cλ = λc1 by integrating equation 2. If α ≥ d we have Nb(N,M)→
0, so most connections are to vertices at distance o(1) from x and λ(x) ≡ λ (on the interior
of Q, where all vertices lie with probability 1).

Theorem 2. If N is large then the degree distribution of the opinion dependent model is
approximately Poisson with mean λ when α ≥ d, but a mixture of Poissons when α < d.
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Figure 3 shows the degree distribution in d = 2 when α = 1 and α = 2. In the second
case the observed degree distribution is close to Poisson as expected. This is also true in
the first case even though Theorem 2 predicts a mixture of Poissons, which by Figure 2
involves means from 2.5 to 4.6. This is not a contradiction since the mixture turns out to
be close to a Poisson. Computations for a simplified version of our situation in which U ∼
Uniform(2.5, 4.6) and (X|U = u) ∼ Poisson(u), show a total variation distance of 0.024
between X and Y ∼ Poisson(3.54).

Figure 3: Degree distributions at equilibrium for the opinion-dependent rewiring model with
(a) random rewiring and (b) Metropolis-Hastings rewiring in dimension 2 with N = 5000,
M = 10000, averaged over 100 times.

2.2 Connectivity and diameter

The stationary distribution of the opinion-dependent rewiring model resembles long-range
percolation, so we can derive results about connectivity and distances in the network at
equilibrium from analogous statements about the percolation model. A vertex at x will
connect to an average of λ(x) other vertices with the ones chosen being distributed according
to

cλ
λ(x)

1

|x− y|α
.

When N is large the first stages of growth of the component of x are a multitype branching
process in which the spatial location gives the type.

If we divide space into cubes of side 1/k and declare that each point in one of the small
cubes Qi gives birth like its midpoint xi then we get a multitype branching process with a
finite set of types. Letting Mij be the mean number of children of type j from a parent of
type i, the mean matrix for the nth generation is then given by the nth power of the matrix
Mn

i,j. Mi,j is a positive symmetric matrix so the entries grow exponentially at a rate νn given

by the maximum eigenvalue ν = max{‖Mv‖2 : ‖v‖2 = 1} where ‖v‖2 = (
∑

i v
2
i )

1/2 is the
usual measure of a vector’s length.

One can analyze the original branching process with types in Q = [0, 1]d by discretizing
and passing to the limit. Fortunately for us, Bollobás, Janson, and Riordan (BJR) [26] have
already worked out the details in exactly the form we need. The vertices of their graph are
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x1, x2, . . . xn, which in our case are chosen at random from Q. To make the connection with
their notation let κ(x, y) = cλ/|x−y|α and make a connection from xi to xj with probability

pi,j = min{1, κ(xi, xj)/N}.

In the case α < d,

λ(x) =

∫
[0,1]d

κ(x, y) dy <∞ has sup
x
λ(x) <∞

and the conditions of their Definition 2.7 are satisfied.
To determine conditions for the existence of a giant component, BJR introduce the

operator

(Tκf)(x) =

∫
Q

κ(x, y)f(y) dy

The kernel κ(x, y) is the continuous analogue of the matrix Mi,j. Again we are interested in
its maximal eigenvalue νκ:

νκ = max{‖Tκf‖2 : ‖f‖2 = 1}.

This quantity can also be described by a variational problem:

νκ = max{
∫
Q×Q

f(x)κ(x, y)f(y) dx dy : ‖f‖2 = 1}.

Taking f ≡ 1 we see that νκ ≥
∫
Q
λ(x) dx = λ, the average degree.

Theorem 3. If νκ > 1, then with high probability a giant component will exist, which contains
a positive fraction of the vertices (see [26] Theorem 3.9), and the expected pairwise distance
will be ∼ logN/ log νκ (see [26] Theorem 3.14).

The results above take care of our two special cases α = 1, 2 in d ≥ 3 and α = 1 in d = 2.
Figure 4 shows the sizes of the giant component in a simulation of the case α = 1, d = 2.
Let λc be the critical value for percolation, such that a giant component of linear size exists
with high probability when λ > λc, and with high probability all components are of size o(n)
when λ < λc. Our simulations suggest that λc ≈ 1. Since νκ ≥ λ, it follows that λc ≤ 1.
Numerical computation of the eigenvalue νκ in this case suggests λc ≈ 0.98, though this is
difficult to discern from the simulations of the dynamic graph model. Figure 5 plots the
diameter versus logN in the cases d = 2, α = 1 and d = 3, α = 2. In all cases M = 2N
so the average degree is 4. The dependence on logN is linear and is close to the slope of
1/ log(4) = 0.7213 one would have if νκ was equal to the average degree.

To see what happens when α ≥ d, we fix x ∈ (0, 1)d. The number of vertices within
distance N−1/d of x converges to a Poisson random variable, and is therefore O(1). Thus,
by truncating the integral and changing to polar coordinates, the expected number of edges
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Figure 4: Fraction of vertices in the largest component at equilibrium for the opinion-
dependent rewiring model with random rewiring (α = 1) and Metropolis-Hastings rewiring
(α = 2) in dimension 2 with N = 1000, averaged over 100 times.

to the vertex at x in the percolation model is

E
∑
y∈GN

b

b+ |x− y|α
∼ bN

∫
N−1/d≤|z|≤1

|z|−α dz

= bN

∫
N−1/d≤r≤1

rd−α−1Cddr

∼

{
bCdN logN α = d

bCdN
α/d α > d,

where the expectation is taken over the locations of the vertices in GN , C2 = 2π and C1 = 2.
So to have mean degree λ we will take bλ = λ/(CdN logN) when α = d and bλ = λ/(CdN

α/d)
when α > d.

Conjecture 1. When α = d, λc = 1. If λ > 1 the expected pairwise distance ∼ logN/ log λ.

This conjecture is supported by our simulations. Figure 4 plots the size of the giant
component when α = d = 2 and suggests that λc = 1. Figure 5 plots the diameter versus
logN in the case d = 2, α = 2, and M = 2N . The dependence on logN is linear and is close
to the predicted slope of 1/ log(4) = 0.7213.

When α > d, the probability of a connection from a vertex at x to a vertex at x+kN−1/d

is
b

b+ (|k|N−1/d)α
=

cλ
cλ + |k|α

.

If we restrict our attention to α ∈ {1, 2}, then the only example of this situation is d = 1,
α = 2. This is closely related to a model Aizenman and Newman [21] have studied on the
integers. To be precise, they study a model in which the probability of an edge from x to
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Figure 5: Diameter at equilibrium for the opinion-dependent rewiring model (a) in dimension
2 with random rewiring (α = 1) and Metropolis-Hastings rewiring (α = 2), and (b) in
dimension with 3 with Metropolis-Hastings rewiring. In all cases M = 2N , and data points
are averaged over 100 times.

y is p < 1 if |x − y| < M and is b/|x − y|2 if |x − y| ≥ M . They show that if b ≤ 1 there
is no infinite component for any value of p < 1, while if there is an infinite component with
density ρ then bρ2 ≥ 1.

Benjamini and Berger [22] were first to study long-range percolation on the circle Z mod
N . On this object the natural distance is d(x, y) = min{|x − y|, N − |x − y|}. To avoid
probabilities > 1 they supposed that the probability of an edge from x to y was 1 −
exp(−βd(x, y)−α). Combining their results with later work we have the following results
for the diameter of the model on the d-dimensional cube {1, 2, . . . N}d.

• [24, 25] If d < α < 2d then the diameter is (logN)∆+o(1) where ∆ = 1/ log2(2d/α).

• [23] If α = 2d then the distance is ≤ Nη where η depends on the constant β.

Note that since our α is an integer, the only overlap with the systems considered in this case
occurs for α = 2, d = 1, where the behavior of the diameter is only conjectured.

Figure 6 plots the distance versus N in the model with d = 1, α = 2. The fitted curve is
Nη with η = 0.402.

3 Results: Degree-dependent rewiring

3.1 Stationary distribution

Let F (k) =
∏k−1

i=0 f(i) for k ≥ 1 and let F (0) = 1. In Section 5 we prove the following result
by checking that π2 satisfies the detailed balance condition.
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Figure 6: Distance versus N in the opinion-dependent rewiring model with d = 1, α = 2.
The fit curve is Distance = N0.402.

Theorem 4. Let di denote the degree of vertex i in the graph G. The stationary distribution
for the degree-dependent rewiring model is given by

π2(G) =

{
c(θ,N,M)

∏N
i=1 F (di) if

∑N
i=1 di = 2M

0 otherwise.

The stationary distribution π2(G) only depends on the sequence of degrees, and is uniform
over all graphs with the same degree sequence. This is also true for the configuration model,
which has i.i.d. degrees D1, D2, . . . , DN . To build the graph from the degrees, one conditions
on the sum D1 +D2 + · · ·+DN being even, attaches Di half-edges to vertex i, and pairs the
half-edges at random.

A graph generated by the configuration model can have self-loops or parallel edges, but
if the degree distribution has finite second moment, there is positive probability that it does
not [17]. A second difficulty in comparing with π2(G) is that we may not have

∑
iDi = 2M .

To avoid these problems we will consider a conditioned version of the configuration model.
In the configuration model, if g(k) is the probability that a vertex has degree k and∑
k kg(k) = 2M/N then

P (D1 = d1, D2 = d2, . . . , DN = dN) ∼ c1(M)
N∏
i=1

g(di),

where c1(M) ∼ c/
√
M . If G is a simple graph with the given degree sequence

P (G|D1 = d1, . . . , DN = dN) = c2(M)
N∏
i=1

di!,

where 1/c2(M) = (2M)!/M !2M is the number of ways of pairing the 2M half-edges. To see
this note that the adjacency matrix of G will tell us the vertices that are neighbors of i, and
then we have di! ways of assigning the neighbors to the half-edges at i.
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To make the connection between the degree-dependent rewiring model and the config-
uration model, we note that if we put γdi inside the product and change the normalizing
constant in π2(G) then we want

c′(θ,N,M)
N∏
i=1

F (di)γ
di

di!
= c1(M)c2(M)

N∏
i=1

g(di).

Thus, the degree-dependent rewiring model will look like the configuration model with

g(k) = cγF (k)γk/k!, (3)

where the constants γ and cγ are chosen to make the probabilities sum to one and the average
degree d̄ = 2M/N . There is a unique solution because the distribution g(k) is stochastically
increasing in γ. At this point, the reader might worry that the conditioning will keep us from
using the body of results that have been developed for the configuration model. Molloy and
Reed [18] developed their results for the configuration model under the mild assumptions
that, in the graph of size n, the degree sequence, vi(n) ≥ 0, had

∑
i vi(n) = 1,

∑
i ivi(n)

even, i(i− 2)vi(n)→ i(i− 2)pi uniformly, and
∑

i i(i− 2)vi(n)→
∑

i i(i− 2)pi with the sum
converging uniformly. Our model satisfies these conditions.

To understand the nature of g we begin with the extreme cases. When θ = 0 our process
reduces to random rewiring, so the degree distribution will be Poisson. To get this from
the formulas above, note that F (k) = (d̄ + 1)k so cγ = e−γ(d̄+1) and we take γ = d̄/(d̄ + 1)
to have the right mean degree. When θ = 1, F (k) = k!, which cancels with the k! in the
denominator. This means we should take cγ = (1− γ) so that we have the shifted geometric
distribution that takes values k ∈ {0, 1, 2 . . .}. To have the right mean we set

1

1− γ
− 1 =

2M

N
or γ =

2M

2M +N
.

The distributions for 0 < θ < 1 interpolate between the Poisson and geometric. Writing

f(i) = θ

(
i+

(1− θ)d̄+ 1

θ

)
≡ θ(i+ κ),

where the second equation defines κ, we have

F (k) = θkΓ(k + κ)/Γ(κ),

where Γ(r) =
∫∞

0
xr−1e−r dr is the usual gamma function that has Γ(r) = (r − 1)Γ(r − 1).

From this it follows that
g(k) = cββ

kΓ(k + κ)/k!, (4)

where cβ = (1− β)κ/Γ(κ) makes the probabilities sum to one and

β =
2M

2M +N
θ

is chosen to give us the correct mean degree. Figure 7 shows the degree distribution for
θ = 1/2 is in agreement with the theoretical prediction. See Section 6 for the computation
of cβ and β.
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3.2 Connectivity and diameter

To determine properties of the degree-dependent rewiring models, we consider properties
of the configuration model, for which the condition for the existence of a giant component
are simple and explicit. Let pk be the degree distribution. Let µ =

∑
k kpk be the mean

degree, let qk−1 = kpk/µ be the size-biased degree distribution, and let ν =
∑

j jqj be its

mean. Let φ(x) =
∑

x pkx
k, and ψ(x) =

∑
j qjx

j be the generating functions for the degree
distributions, and let ρ be the smallest solution of ψ(ρ) = ρ in [0, 1].

Theorem 5. If ν > 1 then there is a giant component which contains a fraction 1 − φ(ρ)
vertices. The giant component has diameter ∼ logν(N).

For a complete proof see Theorems 3.1.3 and 3.4.1 in [11]. To explain this result we
recall the reasoning behind it. To see if there is a giant component we begin by examining
the component containing 1. Vertex 1 will have j neighbors with probability pj, but one
of its neighbors will have degree k with probability kpk/µ, since vertex 1 has k chances to
connect to a vertex of degree k. In the early stages of examining the component containing
1, the number of vertices at distance m, Zm, will be a branching process in which the
average number of children in all generations after the first is ν. If ν > 1 there is positive
probability that the branching process does not die out, which corresponds to having a giant
component. To compute the diameter we note that EZm = µνm−1 and EZm ≈ N when
m = logν N = logN/ log ν.

Figure 8 shows the sizes of the largest component in simulations for θ = 0, 1/2, 1 as the
mean degree is varied. Given the small size of the graph there is considerable run to run
variability but there is good agreement with the theoretical calculations.
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Figure 8: Fraction of vertices in the largest component at equilibrium for the degree-
dependent rewiring model, N = 3000. Lines indicate the theoretical limiting curves for
θ = 1, 0.5, 0 from left to right. There are 15 independent data points shown for each set of
parameter values.

4 Opinion-dependent rewiring model

For convenience, in this section we assume that each oriented edge (x, y) is chosen at a rate
equal to its length. This speeds up the dynamics by a factor of 2 but has no effect on the
stationary distribution. Consider graphs G and H that differ by one edge, such that {x, y}
is in G but not H, and {x, z} is in H but not G. For a transition from G to H, the following
must occur.

1. The oriented edge (x, y) is selected. This occurs at rate d(x, y).

2. Vertex z is selected. This occurs with probability 1/(N − d(x) − 1) since z 6= x and
cannot be a neighbor of x.

3. The rewiring is accepted. This occurs with probability 1 for the random rewiring
dynamics or min{1, d(x, y)/d(x, z)} for the Metropolis-Hastings dynamics.

Therefore the transition rate for the MH dynamics is

P (G,H) =
d(x, y)

N − d(x)− 1
·min

(
1,
d(x, y)

d(x, z)

)
, (5)

with the second factor omitted in the random rewiring case.

Proof of Theorem 1. Consider first the random rewiring dynamics. To have detailed balance,
we want to have (∏

e∈EG

1

|e|

)
d(x, y)

N − d(x)− 1
=

( ∏
e∈EH

1

|e|

)
d(x, z)

N − d(x)− 1
,
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which holds since each side is equal to( ∏
e∈EG∩EH

1

|e|

)
1

N − d(x)− 1
.

For the MH dynamics, suppose without loss of generality that d(x, y) < d(x, z). To have
detailed balance, we want to have(∏

e∈EG

1

|e|2

)
d(x, y)2/d(x, z)

N − d(x)− 1
=

( ∏
e∈EH

1

|e|2

)
d(x, z)

N − d(x)− 1

which holds since multiplying by d(x, z) makes each side is equal to( ∏
e∈EG∩EH

1

|e|

)
1

(N − d(x)− 1)
.

Proof of Theorem 2. Assume first that the opinions are chosen in [0, 1]d according to a Pois-
son process with intensity N , and consider the degree of the vertex at x. It is sufficient
to consider µ and infer the result for π1 by the aforementioned coupling between the edges
conditioned on the locations of the vertices. In the percolation model, µ, x is initially at-
tached to all other vertices, then these links are independently kept or removed according to
g(|e|) as in (1). This is an inhomogeneous thinning of the original Poisson process, so the
distribution of the number of edges to x is Poisson with mean λ(x) given by (2) if α < d
and λ(x) = 2M/N otherwise. In our model, the N vertices are chosen uniformly in [0, 1]d,
which can be viewed as a Poisson process conditioned to have exactly N points. To account
for this, we consider two coupled Poisson processes with intensities N(1±N−1/3), such that
with high probability (as N →∞) the number of vertices in the two processes straddles N .
For each Poisson process the degree of x converges to Poisson(λ(x)) as N →∞.

5 Degree-dependent rewiring model

Recall that f(i) = θ (i+ 1) + (1− θ) (d+ 1), where i is the degree of a vertex, and d is the
mean degree of the graph. The first step is to note:

∑
x

f(d(x)) = θ

(∑
x

d(x) +N

)
+ (1− θ)(N d+N)

= θ (2M +N) + (1− θ)(2M +N) = 2M +N,

(6)

since the sum of the degrees = 2M = Nd̄.
Again consider graphs G and H that differ by one edge, with {x, y} in G but not H, and

{x, z} in H but not G. For a transition from G to H, the following must occur.

1. The oriented edge (x, y) is selected. This occurs at rate 1.
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2. Vertex z is selected. This occurs with probability f(d(z))/(2M +N) by (6).

Let the degree of y in G be j and the degree of z in H be k. Thus, the degree of y in H is
j − 1, and the degree of z in G is k − 1. Therefore the transition rate is

P (G,H) =
f(k − 1)

2M +N
. (7)

Let F (k) =
∏k−1

i=0 f(i) for k ≥ 1 and F (0) = 1.

Proof of Theorem 4. To have detailed balance we want

f(k − 1)

2M +N

∏
w∈G

F (dG(w)) =
f(j − 1)

2M +N

∏
w∈H

F (dH(w)), (8)

where dG and dH denote the degrees in the respective graphs. This holds since each side is
equal to

F (j)F (k)

2M +N

∏
w 6=y,z

F (d(w)).

To see this note that F (i) = f(i− 1)F (i− 1).

6 Equilibrium degree distribution

Proposition 1. Let 0 < θ < 1, d̄ = 2M/N , κ = [(1− θ)d̄+ 1]/θ and

pk = cββ
kΓ(k + κ)/k! where β =

2M

2M +N
θ

then cβ = (1 − β)κ/Γ(κ) makes the probabilities sum to 1, and β = 2M/(2M + N) makes
the mean d̄.

Proof. Recalling Γ(α) =
∫∞

0
e−xxα−1 dx

∞∑
k=0

βk

k!

∫ ∞
0

e−xxk+κ−1 dx =

∫ ∞
0

e−x(1−β)xκ−1 dx = (1− β)−κΓ(κ)

where in the last step we have changed variables y = x(1− β). From this we see that

cβ = (1− β)κ/Γ(κ)

Using the same trick again, we have

∞∑
k=0

k
βk

k!

∫ ∞
0

e−xxk+κ−1 dx =

∫ ∞
0

e−x(1−β)xκ−1

∞∑
k=0

e−βxk
(βx)k

k!
dx

= β

∫ ∞
0

e−x(1−β)xκ dx = β(1− β)−(κ+1)Γ(κ+ 1)
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where in the second equality we have recalled the mean of the Poisson distribution. Com-
bining the last two computations we see that the mean is

β

1− β
κ =

β

1− β
(1− θ)d̄+ 1

θ

Setting this = d̄ we have
β

1− β
=

θd̄

(1− θ)d̄+ 1

Cross-multiplying
β[(1− θ)d̄+ 1] = (1− β)θd̄

so we want β[d̄+ 1] = θd̄ which means

β = θ
d̄

d̄+ 1
= θ

2M

2M +N

which completes the proof.

Using Proposition 1 we can explicitly compute the generating functions for the degree
distribution, φ(x) =

∑
k pkx

k, and the size-biased degree distribution, ψ(x) =
∑

k qkx
k,

where qk = (k + 1)pk+1/µ and µ =
∑

k kpk = d̄.

Proposition 2. If 0 < θ ≤ 1 , κ = [(1− θ)d̄+ 1]/θ, and β = 2M
2M+N

θ then

φ(x) =

[
1− β

1− βx

]κ
, ψ(x) =

[
1− β

1− βx

]κ+1

.

Therefore,

ν =
∞∑
k=1

kqk =
(κ+ 1)β

1− β
, and

d̄crit =
−θ +

√
θ2 − θ + 1

1− θ
,

where d̄crit is the critical value for the mean degree such that a giant component exists for
d̄ > d̄crit but not for d̄ < d̄crit.

Proof. Using the expression for pk from Proposition 1,

ψ′(x) =
1

µ

∞∑
k=0

(k + 1)k pk+1x
k−1

=
1

µ

∞∑
k=1

(k + 1)k cββ
k+1Γ(k + κ+ 1)

(k + 1)!
xk−1

=
1

µ

∞∑
k=1

k(k − 1) cββ
k+1Γ(k + κ)

k!
xk−1

+
κ+ 1

µ

∞∑
k=1

k cββ
k+1Γ(k + κ)

k!
xk−1

= βxψ′(x) + (κ+ 1)βψ(x).
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Solving this differential equation with boundary condition ψ(1) = 1 yields the desired
expression for ψ(x).

The derivation for φ(x) is analogous. Then by evaluating ψ′(1) we obtain the expression
for ν = ψ′(1), and setting ν = 1 and solving gives the expression for d̄crit.
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