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Abstract

Inspired by a concept in comparative genomics, we investigate prop-
erties of randomly chosen members of G1(m, n, t), the set of bipartite
graphs with m left vertices, n right vertices, t edges, and each vertex of
degree at least one. We give asymptotic results for the number of such
graphs and the number of (i, j) trees they contain. We compute the
thresholds for the emergence of a giant component and for the graph
to be connected.

1 Introduction

Biologists use an Oxford grid to indicate the relationship between two gen-
omes. It is a matrix with g(i, j) = 1 if part of chromosome i in the species
A is homologous to part of chromosome j in species B. The corresponding
Oxford graph is the bipartite graph obtained by letting the chromosomes of
species A be vertices on the left and chromosomes of species B be vertices on
the right and with an edge from i on the left to j on the right if g(i, j) = 1.
Figure 1 gives the Oxford graph for the autosomes (non-sex chromosomes)
of elephant and humans.

Let G1(m,n, t), the set of bipartite graphs with m left vertices, n right
vertices, t edges, and each vertex of degree at least one. The graph in
Figure 1 is a member of G1(22, 27, 44) but is it a typical member of that
set? To answer this question we will examine properties of randomly chosen
members of G1(m,n, t) and of related families of bipartite graphs. We begin
by asking how many such graphs there are. To answer this question we will
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investigate the model Gr(m,n, t): fix a vertex set L of size m and R of size
n, and pick t of the mn edges between L and R with replacement (picking
the same edge multiple times is allowed). As usual, we are interested in
the behavior of these random graphs as t, m, and n go to infinity; when
using the symbols ≈, ∼, and → we are tacitly assuming the results hold as
t, m, and n go to infinity. Standard results for the birthday problem (see
e.g. page 83 of Durrett 1995) show that the probability no edge is picked
twice is ≈ exp(−t2/2mn), which converges to a positive limit if t/m → ρ
and t/n → λ, so not much is changed by picking with replacement, except
that the next question becomes much easier to answer.

Q. How big is Gr
1(m,n, t), the subset of Gr(m,n, t) in which each vertex has

degree at least one?

To relate this to the classical occupancy problem, consider an m× n array
of boxes and throw in t balls. Let A be the event that each row has at least
one ball and B be the event that each column has at least one ball. It is
easy to see that (thanks to sampling with replacement) the probability of
B is not affected by conditioning on the number of balls in each row, so A
and B are independent. Using the multinomial distribution

P (A) =
1
mt

∑

∗

t!
i1! · · · im!

where the sum is over all i1, . . . im ≥ 1 with i1 + · · · + im = t. To evaluate
the sum we rewrite it as

t!eam

mtat

∑

∗

m∏

j=1

e−a a
ij

ij !
=
t!eam

mtat
P (Z1 ≥ 1, . . . Zm ≥ 1, Z1 + · · ·Zm = t)

where Zi are independent Poisson with mean a.
It is easy to see that P (Z1 ≥ 1, . . . Zm ≥ 1) = (1 − e−a)m. E(Zi|Zi ≥

1) = a/(1 − e−a), so if we pick a so that a/(1 − e−a) = t/m and let σ2
a =

var (Zi|Zi ≥ 1) then

P (Z1 + · · ·Zm = t|Z1 ≥ 1, . . . Zm ≥ 1) ∼ 1/
√

2πσ2
am

A similar analysis applies to P (B) giving the following result.

Theorem 1 Let a/(1− e−a) = t/m and b/(1− e−b) = t/n and suppose that
t/m→ λ, t/n→ ρ. Then

|Gr
1(m,n, t)| = (nm)tP (A)P (B) ∼ (t!)2

(ea − 1)ma−t(eb − 1)nb−t

2πσaσb
√
mn
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As a consequence of Theorem 1 and the birthday problem result we can
calculate |G1(m,n, t)| up to a constant factor.

Corollary 1 Under the assumptions of Theorem 1,

e−ρλ ≤ lim inf
|G1(m,n, t)|
|Gr

1(m,n, t)|
≤ lim sup

|G1(m,n, t)|
|Gr

1(m,n, t)|
≤ 1

Even more important than allowing us to count the graphs, the proof
of Theorem 1 allows us to relate our graphs to ones studied by Molloy and
Reed (1995) and Newman, Strogatz, and Watts (2001). Let Y be a random
variable with distribution given by

P (Y = k) =
1

1 − e−a

e−aak

k!
, for k ≥ 1

and P (Y = k) = 0 otherwise. We will say Y has a truncated Poisson distri-
bution with parameter a, or P̄(a) for short. This distribution is the limiting
degree distribution of a graph from Gr

1(m,n, t) if parameter a is chosen cor-
rectly. We choose a by equating the means of the two distributions. The
truncated Poission distribution has mean a/(1 − e−a) and the mean degree
of a left (right) vertex is t/m (t/n).

We can now define a new graph model that mimics the degree distrib-
ution of vertices from Gr

1(m,n, t). Label the left vertices l1, l2, . . . , lm and
the right vertices r1, r2, . . . , rn. Let d(li), i = 1, . . . ,m be independent P̄(a)
random variables where a/(1 − e−a) = t/m; let d(ri), i = 1, . . . , n be in-
dependent P̄(b) random variables where b/(1 − e−b) = t/n. Condition on
the sum of the d(li) being t and condition on the sum of the d(ri) being
t. Make a set L′ (R′) with d(li) (d(ri)) copies of vertex li (ri). Pair up
elements in L′ with elements in R′ uniformly at random. Finally, collapse
the vertex copies into a single vertex and let the vertex pairings determine
the edges of the graph (which may have multiple edges between vertices).
Call the resulting random graph TP (m,n, t). It is clear that the Gr

1(m,n, t)
and TP (m,n, t) random graph models have the same degree distribution,
and it is not surprising that models are, in fact, the same.

Lemma 1 The models Gr
1(m,n, t) and TP (m,n, t) are the same.

We give the proof in the appendix. To study the question of the existence
of a giant component in our graph, we begin with the general case in which
the degrees of the m left vertices have distribution pk and the degrees of the
n vertices on the right have distribution qk. If we examine the cluster of a
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given vertex v on the left then its first generation members (at distance one
from v) will have distribution pk, but the number of children of a member
of the first generation will not have distribution qk. A vertex on the right
with degree k is chosen in the first generation with probability proportional
to kqk. If we let ν =

∑
k kqk and q̄k = (k + 1)qk+1/ν then the number of

children of a child of v will have distribution q̄k and mean ν̄ =
∑

k kq̄k. Here
we have shifted the distribution by 1 to remove the edge that we arrived on
(so that v is not counted as its own grandchild). Readers who are used to
the Erdös-Renyi random graphs should note that if qk is Poisson(λ), then
q̄k is again Poisson(λ).

Similar calculations apply to the third generation. The members of the
second generation have size biased degree distributions p̄k = (k + 1)pk+1/µ
where µ =

∑
k kpk and this distribution has mean µ̄. As the reader can

probably guess by analogy with branching processes,

Lemma 2 The condition for the existence of a giant component is µ̄ · ν̄ > 1

Molloy and Reed (1995), who wrote the condition in the equivalent form∑
k k(k− 2)pk > 0, proved this in the ordinary (unipartite case), essentially

by showing that the branching process analogy gives an accurate approxi-
mation of cluster sizes. Newman, Strogatz, and Watts (2001), motivated by
studies of the structure of the world wide web, collaboration graphs of scien-
tists, and Fortune 1000 company boards of directors, extended Molloy and
Reed’s results to directed and bipartite graphs. Since Newman, Strogatz,
and Watts published in Physical Review E, they did not have to prove their
results. Instead, like physicists, they wrote generating function equations
that come from thinking of cluster formation as a branching process. As
the reader can see from the description, Lemma 2 is almost a known result.
Since we need some of the details in the proof of Theorem 4, we will give a
detailed proof for the special case that appears in Theorem 2.

Our next step is to see what Lemma 2 says about our example. If pk is
P̄(a) then µ = a/(1 − e−a) so

p̄k =
1 − e−a

a
(k + 1)e−a ak+1

(k + 1)!(1 − e−a)
= e−aa

k

k!
(1)

i.e., the Poisson distribution with mean a. A similar calculation shows q̄k is
the Poisson distribution with mean b, so the condition for the existence of
a giant component is ab > 1.

To compute the survival probability of the branching process, let φ1, φ2,
ψ1, and ψ2 be the generating functions of pk, qk, p̄k, and q̄k respectively.
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Consider our branching process, starting from one vertex on the left and
conditioned on having one individual in the first generation. We call this
the homogeneous branching process, because the different distribution at
the first step has been eliminated. The number of offspring this individual
has in the third generation has generating function ψ2(ψ1(z)). To check the
order of the composition note that if N has distribution q̄k (N is the number
of vertices in the second generation) and X1,X2, . . . are independent with
distribution p̄k (X1 is the number of children of a second generation vertex)
then

E(zX1+···XN ) =
∞∑

k=0

P (N = k)ψ1(z)k = ψ2(ψ1(z)) (2)

Let ζR be the smallest solution of ψ2(ψ1(ζ)) = ζ in [0, 1], i.e., the extinc-
tion probability of the homogeneous branching process. By considering the
number of individuals in the first generation, it follows that the extinction
probability for the branching process starting with one individual on the left
is

ξL =
∞∑

k=1

pk ζ
k
R = φ1(ζR)

We define ζL and ξR similarly.

Theorem 2 Let a/(1− e−a) = t/m and b/(1− e−b) = t/n and suppose that
t/m → λ, t/n → ρ. When ab < 1 the largest cluster is O(log(m + n)). A
giant component appears when ab > 1. The fraction of vertices it contains
on the left and right are asymptotically 1−ξL and 1−ξR. The second largest
component is O(log(m+ n)).

To illustrate the phase transition we will consider some examples. In the
human elephant comparison in Figure 1, a = 1.071 and b = 1.593 so ab =
1.707. With a total of 49 vertices, it is hard to recognize a giant component,
but there is one component with 13 human and 19 elephant vertices. Figure
2 gives a comparison of human and colobine monkey, one of our fairly close
primate relatives, which has a = 0.503, b = 0.605 and ab = 0.305. In
agreement with subcritical designation, there are 12 components with 2
vertices, three with 3 vertices, one with 4, and one with 6. Figure 3 gives a
comparison of the human and cat genomes that has a = 1.151, b = 0.802,
and ab = 0.925. Figure 4 compares humans and dogs, an example with
a = 2.873, b = 1.477, and ab = 4.245. The drastic difference in the graphs
in Figures 3 and 4 is somewhat surprising since the evolutionary distance
from humans to cats and dogs are the same. In the human-dog graph there
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is one giant component and three components of size 2. To lead into our
next topic we ask: Does the number of small components in these random
graphs agree with what we expect?

To get prepared for our next result, which will help us answer this ques-
tion, we will give a second derivation of the threshold that is easy to believe
but difficult to make rigorous. Suppose we are interested in some property
of G1(m,n, t). Define a and b by a/(1 − e−a) = t/m and b/(1 − e−b) = t/n.
Let G(M,N, p) be the random bipartite graph in which there are M = t/a
vertices on the left, N = t/b on the right, and edges are independently cho-
sen with probability p = ab/t = a/N = b/M . M and N are defined this
way so that after removing isolated vertices from each side we get a graph
similar to one from G1(m,n, t). The calculation is not difficult: the number
of non-isolated vertices on the left, M, has expected value

EM = M(1 − (1 − p)N ) ≈M(1 − e−a) =
t

a
(1 − e−a) = m,

the number of non-isolated vertices on the right has EN = n, and the
number of edges, E , has expected value EE = MNp = Nb = t. Since all of
the graphs in G1(m,n, t) have the same probability under G(M,N, p).

Lemma 3 The distribution of G(M,N, p) conditioned on M = m, N = n,
E = t is that of G1(m,n, t).

It is easy to show that when t/m→ ρ and t/n→ λ, M, N , and E , will
with high probability differ from their expected values by o(n). It is intu-
itively clear, but seems hard to show, that the vector (M,N , E) satisfies the
local central limit theorem, so the conditioning M = m, N = n, E = t has
probability O(1/n3/2) and any property of G(M,N, p) that has asymptotic
probability 1 − o(n−3/2) will be inherited by G1(m,n, t). Once one believes
this, the threshold result follows easily. G(M,N,P ) has a giant component
if

1 < Mp ·Np =
t

a
· t
b
·
(
ab

t

)2

= ab

For a new example, consider the number of (i, j) trees in the random
graph, i.e., the number of trees with i vertices on the left and j vertices
on the right. We let the tree size stay fixed while taking m,n, t to infinity.
Once one knows that the number of labeled bipartite (i, j) trees is ij−1ji−1

(see e.g., Saltykov 1995), the expected number of (i, j) trees in G(M,N, p)
can be derived by a calculation analogous to the standard one for trees in a
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unipartite random graph (see Bollobás (2001) Theorem 5.5).

ij−1ji−1

i!j!
(e−ba)j(e−ab)i

p

Based on the reasoning above we expect that the corresponding result
will hold for G1(m,n, t).

Theorem 3 In Gr
1(m,n, t), the expected number of (i, j) trees

EAi,j →
ij−1ji−1

i!j!
(e−ba)j(e−ab)it

ab

Since the existence of (i, j) trees on disjoint sets of vertices are asymp-
totically independent, we expect that the number of such trees will have
asymptotically a Poisson distribution, but we have not tried to prove that.

To see what Theorem 3 says, we will consider our four previous examples
and a comparison of the human and lemur genomes given in Figure 5, which
is somewhat surprising since this example has ab = 1.771 but no (1,1) or (2,1)
trees. Table 1 compares the expected and observed number of (1,1), (2,1)
and (1,2) trees. In general, there is good agreement between the observed
and expected values. Two notable exceptions are the number of (1,1) trees
in examples 4 and 5 where the expected values are 0.86 and 2.63 while the
observed values are 3 and 0. If we assume that the number of trees has
a Poisson distribution then the probability of three or more (1,1) trees in
Gr

1(22, 38, 67) is 0.097, while the probability of no (1,1) tree in Gr
1(20, 22, 38)

is 0.072.
Our final problem is to determine when the graph will be connected.

For the Erdös-Renyi unipartite random graph G(N, p) in which there are N
vertices and edges are independently present with probability p, the transi-
tion to connectivity occurs when p ≈ (logN)/N . To see this we note that
the number of edges incident to vertex is asymptotically Poisson(Np). If we
let p = c(logN)/N , the probability of an isolated vertex is ≈ 1/N c, so the
expected value is large when c < 1 and goes to 0 if c > 1. Isolated vertices
prevent connectivity, so a second moment calculation shows that if c < 1
the probability of connectivity goes to 0.

The result in the other direction is more difficult, since one must consider
all of the ways in which the graph can fail to be connected. A simple
calculation (see Bollobás 2001, p. 104) shows that if p = θ/N and θ =
o(N1/2) then the expected number of trees with v vertices, Tv, has

Ep(Tv) ∼
1
θ

vv−2

v!
(θe−θ)v
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From this we see that if θ = c logN and 1/2 < c < 1 then asymptotically
there are isolated vertices, but no trees of size v ≥ 2. Bollobas (2001), see
Section 7.1, combines this estimate with the fact that the largest tree in a
supercritical random graphs has O(log n) vertices to prove (see Theorem 7.3
on page 164) that if θ = logN + x + o(1) then the probability G(N, p) is
connected approaches exp(−e−x).

Saltykov (1995) has considered a question closely related to the connec-
tivity problem for the random bipartite graph G(M,N, T ) in which there
are M vertices on the left, N vertices on the right, and T edges. Suppose
M ≥ N . Let α = M/N and β = (1 − 1/α) logN . His main result asserts
that if

(1 + 1/α)T = (M +N){log(M +N) + x+ o(1)}

then the number of isolated vertices has asymptotically a Poisson distribu-
tion with mean

λ =
e−x(1 + e−β)

1 + 1/α

Recalling α = M/N , we see that the transition to connectedness occurs
when T ∼M log(M +N).

The corresponding result for our bipartite random graphs is

Theorem 4 Define c by t = c mn
m+n log(m + n) and suppose m/n → α, a

positive finite limit. The probability Gr
1(m,n, t) is connected tends to 0 or 1

depending on whether c has a limit < 1 or > 1.

Note that our threshold is asymptotically 1
1+αm log(m+ n). The difference

in thresholds should not be surprising given the results for Ep(Tv) cited
above. Our threshold is for the disappearance of (1,1) trees rather than the
absence of isolated vertices, so this occurs at a smaller value of t.

The remainder of the paper is devoted to proofs. We take the results in
the same order as in the introduction.

2 Proof of Corollary 1

Corollary 1 Under the assumptions of Theorem 1,

e−ρλ ≤ lim inf
|G1(m,n, t)|
|Gr

1(m,n, t)|
≤ lim sup

|G1(m,n, t)|
|Gr

1(m,n, t)|
≤ 1

Proof. The inequality |G1(m,n, t)| ≤ |Gr
1(m,n, t)| is trivial and proves the

result for lim sup. To prove the other result let E = A∩B be the event that
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there are no isolated vertices and let F be the event that all edges chosen are
distinct. Let P denote probabilities under Gr

1(m,n, t). From the thought
experiment of sampling with replacement until we have t distinct edges it is
clear that P (E|F ) ≥ P (E) because if a graph has no isolated vertices after
the first t edges are chosen, it will have no isolated vertices when t distinct
edges are chosen. From this we get

|G1(m,n, t)|
|Gr

1(m,n, t)|
=
P (E ∩ F )
P (E)

=
P (E|F )P (F )

P (E)
≥ P (F )

The result for lim inf now follows from the result for the birthday problem
cited in the introduction, which gives the limiting behavior of P (F ).

3 Proof of Theorem 2

Theorem 2 Let a/(1− e−a) = t/m and b/(1− e−b) = t/n and suppose that
t/m → λ, t/n → ρ. When ab < 1 the largest cluster is O(log(m + n)). A
giant component appears when ab > 1. The fraction of vertices it contains
on the left and right are 1 − ξL and 1 − ξR. The second largest component
is O(log(m+ n)).

The first step is to make the connection between the cluster size and the
total progeny in a branching process. To do this, we note that instead of
making all of the choices in pairing the duplicated left and right vertices at
once, we can do them sequentially. Suppose that we start with vertex l1.
We then choose d(l1) times without replacement from the duplicated set of
right vertices R′. Let f1(rj) be the number of times vertex rj is chosen and
let J1 = {j : f1(rj) > 0}. For each j ∈ J1, choose d(rj) − f1(rj) times
without replacement from the duplicated set of left vertices L′ minus the
d(l1) copies of l1. Let f2(lj) be the number of times vertex lj is chosen, let
J2 = {j : f2(lj) > 0}, etc. We continue this procedure until the cluster
containing l1 has been constructed. We then choose some vertex not in the
cluster containing l1, generate its cluster, and continue until the random
graph has been constructed.

From the construction it should be clear that if Y m
k = |Jk| is the number

of vertices in generation k (of a graph from TP (m,n, t)) then as m → ∞,
{Y m

k , k ≥ 1} converges to the branching process described in the introduc-
tion. There are two differences between the growing cluster and the limiting
branching process. The first is that the possible choices are dictated by the
empirical sequence of degrees d(l1), . . . d(lm) and d(r1), . . . d(rn) rather than
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the truncated Poisson distributions. The second is that the set of available
degrees changes as choices are made.

The first difference disappears as m → ∞ since by the law of large
numbers, the empirical distribution of degrees converges to the underlying
theoretical distribution. To estimate the effect of the second, let rk be a
probability distribution on the positive integers, let η > 0, and let W (ω) be
a nondecreasing function of ω ∈ (0, 1) so that the Lebesgue measure |{ω :
W (ω) = k}| = rk. We say that W is the mass function of distribution r. If
we remove an amount of mass η from the distribution and renormalize to get
a probability distribution, then the result will be larger in distribution than
U = (W (ω)|ω < 1− η) and smaller in distribution than V = (W (ω)|ω > η).
Note that EV ≤ EW/(1 − η).

Subcritical Case. Suppose ab < 1. Pick η > 0 so that ab/(1 − η) < 1.
Let p̂m

k and q̂m
k be the empirical distributions of the degrees of vertices on

the left and on the right, let µ∗m and ν∗m be the means of these empirical
distributions, and µ̄∗m =

∑
k(k−1)p̂m

k /µ
∗
m and ν̄∗m =

∑
k(k−1)q̂m

k /ν
∗
m be the

means of the size biased distributions. Since pk and qk have finite second
moments it follows from the law of large numbers and (1) (pg. 4) that
µ̄∗m → a and ν̄∗m → b.

From the choice of η it follows that if m is large then until a fraction η of
vertices have been used up on either side, the growing cluster is dominated
by a subcritical branching process. To estimate the growth of the cluster,
we take the approach of Molloy and Reed (1995) and expose the cluster of
right vertices one at a time, i.e., we pick one of the current set of active
right vertices and go through two generations to identify the right vertices
connected to it. The chosen right vertex is removed from the set of active
vertices and the new ones are added; we call this a step. Vertices in early
generations need not be exposed before vertices in later generations, as de-
scribed at the beginning of the section; any active vertex may be exposed
at each step.

To prove the lower bound on the critical value, we will show that if
ab < 1 then for large m the largest cluster is O(log(m + n)). Pick a right
vertex at random and let X be −1 plus the number of right vertices that
can be reached in two steps in the branching process (zX+1 = ψ2(ψ1(z)) ).
Assuming cluster growth is a branching process, this represents the change
in the size of the set of active right vertices in one step of the construction.
Let S` = S0 +X1 + . . .+X`, where Xi are independent with distribution X.
When S0 = 1, S` gives the size of the active set of vertices after ` vertices in
the cluster have been exposed. The random variable τ = inf{` : S` = 0} has
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the same distribution as the total progeny of the homogeneous branching
process starting from one right vertex.

In the limiting branching process κ(θ) ≡ EeθX < ∞ for all θ. Since
κ(0) = 1 and κ′(0) = EX < 0 in the subcritical case, there is a θ > 0 so
that κ(θ) < 1. Therefore

P (τ > k) ≤ P (Sk ≥ 1) ≤ EeθSk = κ(θ)k (3)

so we have a bound on the total number of individuals in the branching
process. To extend the last result to the growing cluster, we begin by ob-
serving that if X̂ is the corresponding quantity for the empirical distribution
then the strong law of large numbers implies E exp(θX̂) → E exp(θX). If
Xη is the distribution that dominates choices made at any time before a
fraction η of the vertices have been used on the left or the right, then (from
the discussions earlier) E exp(θXη) ≤ E exp(θX̂)/(1 − η). So if m is large
and η is small E exp(θXη) < 1. It follows from 3 that there is a γ > 0 so
that P (τ > k) ≤ e−γk. If we take k0 = (2/γ) log n then P (τ > k0) ≤ n−2.
This and the corresponding argument for left vertices proves that the largest
cluster is O(log(m+ n)).

Supercritical Case. Given distributions d̃ and d̄, ‖d̃−d̄‖ = (1/2)
∑

k |d̃k−
d̄k| is the total variation distance. If m is large and the fraction of vertices
chosen on either side is at most η, then the cluster growth process dominates
a branching process with offspring distributions p̃k and q̃k with ‖p̃− p̄‖ ≤ 2η
and ‖q̃− q̄‖ ≤ 2η where p̄ and q̄ are the size biased degree distributions. Let
Wp be the mass function of p̄. Among all distributions p̃ with ‖p̃− p̄‖ ≤ 2η,
the smallest one, p̄η, is the distribution with mass function W η

p ; W η
p (ω) =

Wp(ω − 2η), w ∈ (2η, 1] and W η
p (ω) = 0, w ∈ (0, 2η]. Define Wq, W

η
q , and

q̄η in the analogous way.
If we let aη and bη be the means of p̄η and q̄η then the dominated

convergence theorem implies that as η → 0, we have aη → a and bη → b, so
aηbη > 1 for small η. Now if 0 ≤ z ≤ 1 we have

∣∣∣∣∣
∑

k

p̄η
kz

k −
∑

k

p̄kz
k

∣∣∣∣∣ ≤
∑

k

|p̄η
k − p̄k| ≤ 4η → 0

From this we see that if ψη
1 and ψη

2 are generating functions of p̄η and q̄η

then, uniformly on [0, 1], we have ψη
1 → ψ1, ψ

η
2 → ψ2, and ψη

2(ψη
1 ) → ψ2(ψ1).

This uniform convergence implies that the smallest fixed point of ψη
2(ψη

1 )
converges to that of ψ2(ψ1), i.e., the extinction probability ξη

R → ξR as
η → 0. In a similar way we can conclude ζη

L → ζL, ξη
L → ξL, and ζη

R → ζR.
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To study the size of clusters, as in the previous proof, we expose them
one right vertex at a time. When we expose the grandchildren of an active
vertex, one of them might already be in the active set. We call such an
event a collision. If a collision occurs, instead of adding the grandchild
to the active set (as is usually done), we remove it from the active set. To
show that this does not slow down the branching process too much, we must
bound the number of collisions. When we look at the left vertex children of
a right vertex, we cannot encounter one we have seen before, because the
first time a left vertex is visited, all of its other right vertex neighbors are
added to the active set and all collisions are removed. Note that p̄η and q̄η

are concentrated on {0, . . . , L} where L = max{W η
p (1),W η

q (1)}. Thus until
δn vertices have been exposed on the right, the number of edges with an
end in the active set is at most δnL. The probability of picking one of these
edges in the exposure of an active vertex is at most δnL2/(t− δnL2) ≡ γ.

Let Z be the number of grandchildren in the branching process in which
the first generation is according to q̄η and the second according to p̄η. Let
Y be the distribution of grandchildren in the branching process modified to
correct for collisions; Y = Z − 2 · Binomial(γ, Z). Therefore if δ is small,
EY = aηbη(1 − 2γ) > 1.

Let X = Y − 1 and define S` as before. Since EX > 0 the random walk
has positive probability of not hitting 0, so there is positive probability that
the cluster growth persists until there are at least δm left vertices or δn
right vertices. To prove that we will get at least one such cluster with high
probability, it is enough to show that with high probability all unsuccessful
attempts will use up at most O(log(m + n)) vertices. For this guarantees
that we will get a large number of independent trails before using a fraction
δ/2 of vertices on either side.

The random variable X is bounded so κ(θ) = EeθX <∞ for all θ. κ(θ) is
convex, continuous and has κ′(0) = EX > 0, κ(θ) ∼ P (X = −1)e−θ → +∞
as θ → −∞, so there is a unique λ > 0 so that κ(−λ) = 1. In this
case E exp(−λSk) is a nonnegative martingale. Due to the possible removal
of active vertices, the random walk may jump down by more than 1, but
its jumps are bounded so the optional stopping theorem implies that the
probability of reaching 0 from S0 = x is ≤ e−λx.

The last estimate implies that the probability that the set of active
vertices grows to size (2/λ) log n without generating a large cluster is ≤ n−2.
Routine large deviations estimates for sums of independent random variables
show that if C is large, the probability that the sum of C log n independent
copies of X is ≤ (2/λ) log n is at most n−2. Thus the probability of exposing
more than C log n vertices and not generating a large cluster is ≤ 2n−2.
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Combining this with the estimate for left clusters, we have our bound on
unsuccessful attempts and can conclude that with high probability there is
a large cluster.

To finish up now, let ε = δ/L2. Since the maximum degree of any vertex
is L, we can expose εn right vertices without using up δn vertices on either
side. A routine large deviations estimate shows that

P (Sεn ≤ (εn)EX/2) ≤ Ce−cn

Consider now two vertices i and j. If their clusters reach size C log n then the
probability one of them will fail to continue until εn right vertices have been
exposed is ≤ 4n−2. If the number of right vertices of their clusters reach size
εn and they have not already intersected, then with probability ≥ 1−2Ce−cn

each has an active set of size ≥ (εn)EX/2. The probability they will fail to
intersect on the next step is exponentially small. With probability tending to
1, all vertices in clusters larger than C log n belong to the giant component,
and therefore the second largest component is O(log(m+ n)).

Our final task is to prove the claim about the fraction of vertices on
the left and right that belong to the giant component. Previous arguments
have shown that if δ is small, the extinction probability for the comparison
branching processes are ≈ ξL. We have shown that membership in the
giant component is essentially the same as belonging to a component of size
≥ C log n. Now, the probability of a collision before reaching size C log n is
at most

(C log n)2 · L
2

n
(4)

so if 1i∈G is the indicator function that left vertex i is part of a component
of size ≥ C log n then E(1i∈G) ≈ 1−ξL. When two clusters do not intersect,
their growth is independent so (4) implies that

var (
m∑

i=1

1i∈G) ≤ m2(C log n)2 · L
2

n

Chebyshev’s inequality implies

1
m

(
m∑

i=1

1i∈G − P (i ∈ G)

)
→ 0

in probability and the desired result follows.
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4 Proof of Theorem 3

Theorem 3 In Gr
1(m,n, t), the expected number of (i, j) trees

EAi,j →
ij−1ji−1

i!j!
(e−ba)j(e−ab)it

ab

Proof. Let T be a fixed vertex labeled (i, j) tree (left vertex labels are some
subset of {1, 2, . . . ,m} of size i), let k = |E(T )| = i+ j−1, and let D be the
event that it exists as a component of our random graph. Let C(m,n, t) be
the number of edge-labeled multigraphs belonging to Gr

1(m,n, t).

P (D) =
(
t

k

)
k!
C(m− i, n− j, t− k)

C(m,n, t)

The
(

t
k

)
k! term comes from all the ways of labeling the edges of the tree

and dividing the labels between tree and non-tree edges. From lemma 1, we
know

C(m,n, t) =
∗∑

a

t!
a1!a2! . . . am!

∗∑

b

t!
b1!b2! . . . bn!

By symmetry it suffices to study the m part of the equation. From the proof
of Theorem 1, we have

∗∑

a

t!
a1!a2! . . . am!

≈ (ea − 1)mt!
at
√

2πσ2
am

Thus C(m− i, n−j, t−k)/C(m,n, t) is the product of two symmetric terms;
the one containing m is

(ea
′ − 1)m−i(t− k)!√

2πσ2
a′(m− i)a′t−k

÷ (ea − 1)mt!√
2πσ2

ama
t

(5)

where a′ is determined by a′/(1 − e−a′
) = (t− k)/(m − i).

The expression above is equal to
(
ea

′ − 1
ea − 1

)m−i ( a
a′

)t−k
· σa

σa′
·
√

m

m− i
· ak

(ea − 1)i
· (t− k)!

t!

Since i and k are fixed a′ tends to a and σa′ → σa

σa

σa′
·
√

m

m− i
·
(
ea

′ − 1
ea − 1

)−i

·
( a
a′

)−k
→ 1 (6)

14



To complete the proof, we will show that
(
ea

′ − 1
ea − 1

)m ( a
a′

)t
→ 1 (7)

This enough since it implies

P (D) =
(
t

k

)
k!
ak(t− k)!
(ea − 1)it!

bk(t− k)!
(eb − 1)jt!

(8)

∼ aj−1bi−1

tk
ai

(ea − 1)i
bj

(eb − 1)j
∼ (e−ba)j(e−ab)it

minjab

Multiplying this by ij−1ji−1
(m

i

)(n
j

)
, the number of vertex labeled (i, j) trees

on (m,n) vertices, and taking limits gives Theorem 3.
To prove (7) we use the definitions of a and a′ to get

(
ea

′ − 1
ea − 1

)m ( a
a′

)t
=
(
t

m
· m− i

t− k
· a

′

a

)m

e(a
′−a)m

( a
a′

)t
(9)

To simplify these terms, we compute a′ − a. Let f(a) = a/(1 − e−a). The
definition of the derivative implies

a′ − a ∼ f(a′) − f(a)
f ′(a)

=
1

f ′(a)

(
t− k

m− i
− t

m

)

The next step is to note

t− k

m− i
=

t

m
− k

m
+

ti

m2
+O

(
1
m2

)
(10)

and conclude that
a′ − a ∼ 1

f ′(a)
· λi− k

m
. (11)

Now the first term on the RHS of (9) is
(
m− i

m

)m

·
(

1 +
k

t− k

)m

·
(

1 +
a′ − a

a

)m

=
(

1 − i

m
+

k

t− k
+
a′ − a

a
+ o(1/m)

)m

(12)

∼
(

1 +
1
m

(
−i+ k

λ
+
λi− k

af ′(a)

))m

→ exp
(

(λi− k)
(
− 1
λ

+
1

af ′(a)

))
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if t/m→ λ. By (11) the second term on RHS of (9) converges to exp ((λi− k)/f ′(a)).
For the third term we write

( a
a′

)t
= exp

(
−t log

(
1 +

a′ − a

a

))

Using (11) and expanding log(1+x) = x+O(x2) shows that the third term
converges to

exp
(

(λi− k)(−λ)
af ′(a)

+O(
1
m

)
)

→ exp
(

(λi− k)(−λ)
af ′(a)

)

Adding the three exponents gives

(λi− k)
(
− 1
λ

+
1

f ′(a)
+

(1 − λ)
af ′(a)

)

We want to prove this is 0, so we can ignore the factor in front. Combining
the fractions over a common denominator, discarding that denominator, and
recalling λ = f(a) we have

−af ′(a) + (a+ 1 − f(a))f(a)

To check that this is zero, we note that differentiating f(a) = a/(1 − e−a)
gives

f ′(a) =
1

(1 − e−a)
− ae−a

(1 − e−a)2
=
f(a)
a

+
1
a
· (a− f(a))f(a) (13)

and the proof is complete.

5 Proof of Theorem 4

Theorem 4 Define c by t = c mn
m+n log(m + n) and suppose m/n → α, a

positive finite limit. The probability Gr
1(m,n, t) is connected tends to 0 or 1

depending on whether c has a limit < 1 or > 1.
We can assume without loss of generality that m ≥ n and hence α ≥ 1.

The first half of the proof is to establish:

Lemma 4 Under the assumptions of Theorem 4, if c has a limit < 1 then
the probability Gr

1(m,n, t) is connected tends to 0.

16



Proof. Our first step is to show that the asymptotics in the previous section,
which were derived under the assumption that t, m, and n were all of the
same order, continue to hold under the assumptions of Theorem 4. To do
this, it suffices to show that (6) and (7) hold. We begin by noting that
t/m → ∞ implies a → ∞ and 1 − e−a → 1, so a ∼ t/m. To verify (6) we
observe that since a → ∞, σ2

a/a → 1, and σa/σa′ → 1. In addition we will

soon see that a′ − a→ 0, and therefore
(

ea′−1
ea−1

)−i
→ ei(a−a′) → 1.

To prove (7), we begin, as before, by computing a′ − a. As we have
already noted

a ∼ t

m
=

cn

m+ n
log(m+ n) → c

1 + α
log(m+ n) (14)

The fact that a ∼ t/m and the definition of a implies that for large m

t

m
≥ a ≥ t

m

(
1 − e−t/2m

)
≥ t

m

(
1 − (m+ n)−ε

)
(15)

for some ε > 0. Since a→ ∞, we have f ′(a) → 1. Using this with (11) and
(10) it follows that

a′ − a ∼ t− k

m− i
− t

m
= − k

m
+

ti

m2
+O

(
1
m2

)
(16)

This leads to the asymptotic formula

a′ − a ∼ ci

1 + α

log(m+ n)
m

− k

m
∼ ai− k

m
(17)

Now we analyze the first term in the decomposition: using t/m ∼ a and
(17), (12) becomes

(
1 +

1
m

(
−i+ k

a
+
ai− k

af ′(a)

))m

→ exp
(
−i+ i

f ′(a)

)
→ 1 (18)

The second and third terms in (9) are

e(a
′−a)m

( a
a′

)t
= exp

(
(a′ − a)m− t log

(
1 +

a′ − a

a

))

Expanding log(1 + x) = x+O(x2) the exponent becomes
(
m− t

a

)
(a′ − a) − t O

(
a′ − a

a

)2
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(15) implies that the absolute value of the first term is

≤ (m+ n)−ε · t
a
|a′ − a| → 0

by (16) and a ∼ t/m. To prove that the second term tends to 0, we note
that t/a ∼ m and use (17) and (14). Thus we have

e(a
′−a)m

( a
a′

)t
→ 1 (19)

Combining this with (18) gives (7).
Let T1,T2 be fixed disjoint trees of size (i, j). Let Ai,j be the number of

(i, j) trees that are components of our random graph, with DT indicating
whether T is a component. Writing Ai,j =

∑
T DT , squaring and taking

expected value we have

E(A2
i,j) =

(
m

i

)(
n

j

)
(ij−1ji−1)E(DT1) (20)

+
(
m

i

)(
m− i

i

)(
n

j

)(
n− j

j

)
(ij−1ji−1)2E(DT1DT2).

The last term counts the number of disjoint (i, j) trees; overlapping trees
contribute nothing to the sum. To calculate E(DT1DT2), we note that cal-
culations at the beginning of this section have shown

C(m− i, n− j, t− k)
C(m,n, t)

∼ ak

(ea − 1)itk
bk

(eb − 1)jtk

so we have

P (DT1 = 1 = DT2) =
(
t

2k

)
(2k)!

C(m− 2i, n− 2j, t− 2k)
C(m,n, t)

∼ t2k a2k

(ea − 1)2it2k

b2k

(eb − 1)2jt2k

where the
( t
2k

)
(2k)! term comes from all the ways of labeling the edges of

the trees and dividing the labels between the two tree’s edges and the other
edges. Recalling (8), we have that E(DT1DT2) ∼ E(DT1)

2 and therefore (20)
implies E(A2

i,j) ∼ E(Ai,j) + E(Ai,j)2. We wish to show that E(A1,1) → ∞
so that we can conclude E(A2

1,1) ∼ E(A1,1)2 and apply the second moment
method.
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To see this, observe that a ≤ t/m. Then the simplified expression for
E(Ai,j) when i = j = 1 is bounded as follows

E(A1,1) ∼ e−ae−bt ≥ e−t/ne−t/mt = (m+ n)−ct

= (m+ n)−1−c · cmn log(m+ n) (21)

Since c < 1 and m/n→ α, a constant, this expression goes to infinity. Now
applying the second moment method yields P (A1,1 = 0) → 0 which tells us
that the probability of the existence of a (1, 1) tree goes to 1, and gives the
desired result.

Before tackling the other direction we need a preliminary result

Lemma 5 Let Z have truncated Poisson distribution with mean λ/(1−e−λ).

P (Z ≤ λ/2) ≤ exp(−0.15λ) (22)

If L > 1/ ln 2 then

P (Z ≥ Lλ) ≤ 1
1 − e−λ

exp(λ− Lλ ln 2) (23)

Proof. Let Z ′ be the Poisson distribution with mean λ. The moment
generating function is EeθZ′

= exp(λ(eθ − 1)), so if θ < 0

eθλ/2P (Z ′ ≤ λ/2) ≤ exp(λ(eθ − 1)).

Taking θ = − ln 2

P (Z ′ ≤ λ/2) ≤ exp
(
−λ

2
(1 − ln 2)

)

Since ln 2 ≤ 0.7 and P (Z ≤ λ/2) ≤ P (Z ′ ≤ λ/2) the first result follows. For
the second we note that if θ > 0

eθLλP (Z ′ ≥ Lλ) ≤ exp(λ(eθ − 1))

Take θ = ln 2 and note that since L > 0 we have

P (Z ≥ Lλ) =
1

1 − e−λ
P (Z ′ ≥ Lλ) ≤ 1

1 − e−λ
exp(λ− Lλ ln 2),

the desired result.
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Lemma 6 Under the assumptions of Theorem 4, if c has a limit > 1 then
the probability Gr

1(m,n, t) is connected tends to 1.

Proof. Under the assumptions of Theorem 4, a ∼ (cn/m+n) log(m+n) and
b ∼ (cm/m+n) log(m+n). Let r = lim cn/(m+n) and s = lim cm/(m+n).
Without loss of generality s ≥ r, i.e., n ≥m. Our first step is to get an upper
bound on the maximum degree of a vertex, D. By (23) with λ = s log(m+n)

P (D ≥ Ls log(m+ n)) ≤ c exp(s log(m+ n)(1 − L ln 2)) = c(m+ n)s−sL ln 2

where c = 1
1−(m+n)−s . Taking L = (2 + s)/(s ln 2) the right-hand side is

≤ 2(m+ n)−2 for sufficiently large m+ n. Assume for the rest of the proof
that D ≤ L log(m+ n).

The number of vertices in the first four generations is at most N =∑4
i=1(L log(m+n))i. We will show that with high probability, N is at least

O((log(m + n))2) and this cluster will connect up to all others. Using the
trivial inequality t ≥ max{m,n} ≥ (m + n)/2, the probability that two
edges pick the same vertex in the first four generations (call this a collision,
as before) is

≤ N2D

t
≤ N2 · 2L log(m+ n)

m+ n

This is too big to ignore but the probability of two or more collisions is

≤ N4 ·
(

2L log(m+ n)
m+ n

)2

≤ C
(log(m+ n))18

(m+ n)2

so with high probability there is at most one collision in the first four gen-
erations of the cluster containing any vertex.

Our assumptions imply r + s > 1, so we can pick r′ < r and s′ < s with
r′ ≤ s′ and r′ + s′ ∈ (1, 2). Pick K so that Kr′(0.15) > 2. If a ≥ ln 2 (which
will be true for large m), then in the associated branching process (Zi = the
number of vertices in generation i)

P (Z1 ≤ K + 1) =
1

1 − e−a

K+1∑

k=1

e−a a
k

k!
≤ 2(K + 1)e−aaK

a ∼ r log(m+ n) so if m is large

P (Z1 ≤ K + 1) ≤ (n+m)−r′

By similar reasoning if m is large

P ( Z2 ≤ K + 1|Z1 = j ) ≤ (n+m)−s′ for all j ≥ 1
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From this it follows that

P (max{Z1, Z2} ≤ K + 1) ≤ (m+ n)−(r′+s′) (24)

So with high probability Z1 or Z2 is large and this implies Z4 is large with
high probability. For 2 ≤ i ≤ 3 divide individuals in generation i into groups
of size K. Since the sum of independent Poisson distributions is Poisson and
the truncated Poisson distribution dominates the Poisson distribution, we
may apply (22) to each group of size K.

P (children of group < Kr′ log(m+ n)/2)

≤ exp(−0.15Kr′ log(m+ n)) ≤ 1
(m+ n)2

Trivially, the number of groups in generation i is ≤ (L log(m+ n))i so

P ( Zi+1 <
Zi

K
· Kr

′ log(n+m)
2

| Zi ≥ K ) ≤ (L log(m+ n))3

(m+ n)2

Using this with (24) we can conclude that there is a constant δ > 0 for large
m

P ( Z4 < δ(log(m+ n))2 ) ≤ 4(m+ n)−(r′+s′)

This shows that with high probability all clusters have size at least δ(log(m+
n))2. It follows from the proof of Theorem 2 that with high probability all
clusters will grow to size δn and connect. For readers who may be concerned
with how the constants in that proof depend on a and b we note that all we
need is a lower bound on the growth so for this phase of the argument, we
can fix a′ < a and b′ < b with a′b′ > 1. Theorem 2 does not apply when a
and b are O(log(m + n)), but all we need is a lower bound, so it suffices to
apply Theorem 2 with a′ and b′.

6 Appendix

Proof. We will prove that the models Gr
1(m,n, t) and TP (m,n, t) are the

same by looking at the distributions they induce on the set of edge labeled
multigraphs. To do this, we will have to augment the model descriptions to
label the edges. If we pick edges with replacement and label the edges in
the order drawn then the set of outcomes Ω, written as vectors of edges, has
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(mn)t elements and Gr(m,n, t) is uniform over the subset Ω0 in which each
vertex has degree at least one.

To label edges in TP (m,n, t), first generate L′ and R′, the duplicated
sets of vertices. Attach to the elements of L′ numbers chosen at random
from {1, 2, ...t} and call these edge-labels. Do the same independently for
R′. Connect the element edge-labeled i in L′ and the element edge-labeled
i in R′, and label this edge i.

Consider an outcome w0 ∈ Ω0 with degrees i1, . . . im and the left and
j1, . . . jn on the right. By calculations in the introduction, the probability
that a graph in TP will have the same degrees as w0 is

t!
i1!i2! · · · im!

t!
j1!j2! . . . jm!

/
S(m, t)S(n, t)

where S(m, t) and S(n, t) are normalizing constants that make the sum 1.
Now w0’s edge labels determine the edge labels incident to each vertex.
For each left vertex i, let EL

i be the set of edge labels incident to i in w0;
similarly, let ER

j be the set of edge labels incident to right vertex j. In order
for TP to generate w0, for each left vertex i, the labels of the set of vertices
in L′ that collapse to i must be EL

i (but the order of the labels among the
collapsing vertices doesn’t matter). A similar statement holds for the right
vertices. The probability that vertices are labeled as described is

i1!i2! · · · im!
t!

j1!j2! . . . jm!
t!

so the edge labeled graphs generated by TP (m,n, t) are also uniform on Ω0.
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Figure 1. Comparison of elephant and human genomes. Data from Yang et
al. (2003). m = 22, n = 27, t = 44, a = 1.126, b = 1.654, ab = 1.863.
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Figure 2. Comparison of human and colobine monkey (Colobus guererza)
genomes. Data from Bigoni et al. (1997). m = 22, n = 21, t = 28, a = 0.581,
b = 0.685, ab = 0.397.
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al (1997) and Murphy et al (1999). m = 22, n = 19, t = 32, a = 1.151,
b = 0.802, ab = 0.925
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Figure 4. Comparison of the human and dog genomes. Data from Breen et
al. (1999). m = 22, n = 38, t = 67, a = 2.873, b = 1.477, ab = 4.245.
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Figure 5. Comparison of lemur (Eulemur macao macao) and human gen-
omes. Data from Müller et al. (1997). m = 20, n = 22, t = 38, a = 1.458,
b = 1.214, ab = 1.771.
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Example 1 2 3 4 5
human elephant monkey cat dog lemur
ab 1.71 0.30 0.93 4.25 1.77

EA1,1 3.06 9.23 4.53 0.86 2.63
obs 4 12 4 3 0
EA2,1 0.33 1.69 1.17 0.04 0.37
obs 0 2 2 0 0
EA1,2 0.83 1.26 0.57 0.28 0.57
obs 0 1 0 0 1

Table 1. Expected number of trees of various sizes compared with the num-
ber observed in our five examples.
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