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Abstract

Multi-stage models have long been used in combination with SEER data to make
inferences about the mechanisms underlying cancer initiation. The main method for
studying these models mathematically has been the computation of generating func-
tions by solving hyperbolic partial differential equations. Here, we analyze these models
using a probabilistic approach similar to the one Durrett and Moseley [7] used to study
branching process models of cancer. This more intuitive approach leads to simpler
formulas and new insights into the behavior of these models. Unfortunately, the exam-
ples we consider suggest that fitting multi-stage models has very little power to make
inferences about the number of stages unless parameters are constrained to take on
realistic values.

1 Introduction

Investigation of the age distribution of cancer incidence goes back to the middle of the 20th
century. Fisher and Holloman [10] and Nordling [20] found that within the 25–74 age range,
the logarithm of the cancer death rate increased in direct proportion to the logarithm of the
age, with a slope of about six on a log-log plot. Nordling grouped all types of cancer together
and considered only men, but the pattern persisted when Armitage and Doll [2] separated
cancers by their type and considered men and women separately.

Nordling [20] suggested that the slope of six on a log-log plot would be explained if a
cancer cell was the end result of seven successive mutations. There was no model underlying
that conclusion, just the observation that if one sums k exponential random variables with
rate µi, i.e., with probability density µie

−µit, then when t is much smaller than the mean
of the sum

∑k
i=1 1/µi, then “the probability that the kth change occurs in the short time

interval (t, t + dt) is asymptotically

µ1, µ2 · · ·µkt
k−1

(k − 1)!
dt.′′ (1)
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Later Armitage [1] gave a rigorous proof of this result.
A few years later, Armitage and Doll [3] wrote that the hypothesis described in the

previous paragraph was “however, unsatisfactory in that there was no direct experimental
evidence to suggest that carcinogenesis was likely to involve more than two stages.” Because
of this, they introduced in [3] a two-stage model in which ordinary cells (type 0) mutate
at rate µ1 into initiated (type 1) cells that grow at exponential rate λ and mutate at rate
µ2 into malignant cells (type 2). The two-stage model has been thoroughly analyzed in the
literature, see e.g. [12], [13]

In the studies cited above, the stages were unspecified events. That changed in 1971 with
Knudson’s study of retinoblastoma [14]. Based on observations of 48 cases of retinoblastoma
and published reports, he hypothesized that the disease is a cancer caused by two mutational
events. In the dominantly inherited form, one mutation is inherited via the germinal cells. In
the nonhereditary form both mutations occur in somatic cells. The underlying gene, named
RB1, was found 15 years later. In currentl terminology, RB1 is a tumor suppressor gene.
Trouble begins when both copies are knocked out.

Colorectal tumors provide an excellent system in which to search for and study the
genetic alterations involved in the development of cancer because tumors of various stages of
development, from very small adenomas to very large carcinomas, can be obtained for study.
The initiating event is thought to involve the inactivation of the tumor suppressor gene APC
(adenomatous polyposis coli). As in retinoblastoma, an inherited germ line mutation in this
gene causes greater risk of disease. Individuals with this mutation have numerous polyps
form early in their lives, mainly in the epithelium of the large intestine.

In 1990, Fearon and Vogelstein [8] found a second piece of the puzzle when they noted
that approximately 50% of colorectal carcinomas, and a similar percentage of adenomas
greater than 1 cm have mutations in the RAS gene family, while only 10% of adenomas
smaller than 1 cm have these mutations. In the modern terminology, the members of the
RAS family are oncogenes. A mutation to a single allele is sufficient for progression. The
analysis in [8] also suggested a role for TP53 (which produces the tumor protein p53) in the
progression to cancer. The protein p53 has been described as ”the guardian of the genome”
because of its role in conserving stability by preventing genome mutations. TP53 has since
been implicated in many cancers, see [11] and [25].

Combining the ideas in the last two paragraphs leads to a four (or five) stage description
for colon cancer that is described for example in the books of Vogelstein and Kinzel [24], and
Frank [9]. In 2002, Leubeck and Moolgavar [16] developed a mathematical model in order
to fit the age-incidence of colorectal cancer. We will describe the model in detail in the next
section. They tried models with k = 2, 3, 4, 5 stages and found that the four-stage model
gave the best fit. The techniques developed in [16] have been applied to study a number of
other cancers. See e.g. [17], [18], [19].

2 Analytic approach

In the k-stage model there is a fixed number of stem cells, N , each of which mutates at
rate µ0 to become a type 1 cell, so cells of type 1 are born at times of a Poisson process
with rate γ = Nµ0. Cells of types i = 1, . . . k − 2 are pre-initiated cells that mutate at rate
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µi,k to become a cell of type i + 1. Cells of type k − 1 are initiated cells that divide into
two at rate α, die at rate β, where λ = α − β > 0, and mutate at rate µk−1,k to become
malignant (type k). Let Zk

i (t) be the number of type i cells at time t in the k-stage model.
Let Tk = min{t : Zk

k (t) > 0} be the time of appearance of the first malignant cell in the
k-stage model. Here we will be interested primarily in

• the survival function Hk(t) = P (Tk > t), which gives the fraction of individuals that
are cancer free at time t

• hazard rate hk(t) = −H ′
k(t)/Hk(t) = d

dt
ln Hk(t), which gives the rate at which healthy

individuals become sick at time t.

The traditional approach to studying the k-stage model, as explained for example in the
supplementary materials of [16], has been to let

P (i1, i2, . . . ik; t) = P (Z1(t) = i1, Z2(t) = i2, . . . Zk(t) = ik) ,

define the generating function

Ψk(y1, y2, . . . yk; t) =
∑

i1,i2,...ik

P (i1, i2, . . . ik; t)y
i1
1 yi2

2 · · · y
ik
k ,

and compute Ψk by solving a hyperbolic PDE using the method of characteristics.
To explain this approach, we will consider the case k = 2 and write

Ψ(y, z; t) =
∑
j,k

P (Z1(t) = j, Z2(t) = k)yjzk.

Transition rates are given in the following table.

at rate transition g.f. change
γ j → j + 1 Ψ → y1Ψ
αj j → j + 1 Ψ → y1Ψ
βj j → j − 1 Ψ → Ψ/y1

µ1,2j k → k + 1 Ψ → y2Ψ

From the table we get

∂Ψ

∂t
= γ(y1 − 1)Ψ + αj(y1 − 1)Ψ + βj(1/y1 − 1)Ψ + µ1,2j(y2 − 1)Ψ.

Using the identity jΨ = y1∂Ψ/∂y1 this becomes

∂Ψ

∂t
= γ(y1 − 1)Ψ + [α(y1 − 1) + β(1/y1 − 1) + µ1,2(y2 − 1)] y1

∂Ψ

∂y1

,

which rearranges to become

∂Ψ

∂t
= γ(y1 − 1)Ψ +

[
αy2

1 − (α + β + µ1,2(1− y2))y1 + β
] ∂Ψ

∂y1

. (2)
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To find the generating function Ψk(z1, z2, . . . zk : t), one uses the fact that the solution is
constant along characteristic curves, i.e.,

Ψk(z1, z2, . . . zk; t) = Ψ(y1,k(s, t), y2,k(s, t), . . . yk,k(s, t); s)

where the yi,k(s, t) satisfy the characteristic equations

y′k,k(s, t) = 0

y′k−1,k(s, t) = αy2
k−1,k − (α + β + µk−1,k(1− yk,k))yk−1,k + β (3)

y′i,k(s, t) = −µi,k(1− yi+1,k(s, t))yi,k(s, t) 1 ≤ i ≤ k − 2

and the derivative is taken with respect to the s variable. The generating function can then
be found from

Ψk(z1, z2 . . . zk : t) = exp

(
−γ

∫ t

0

1− y1,k(s, t) ds

)
(4)

and the survival function Hk(t) = P (Zk
k (t) = 0) = Ψk(1, . . . , 1, 0; t).

2.1 Solving the equations

To begin to solve the equations in (3), we note that y′k,k(s, t) = 0 so yk,k(s, t) = 0 is constant.
We write S1,k(t) = yk−1,k(t) since it is the first step in solving the system of equations. The
subscript k is needed because the mutation rates that enter into the differential equations
(3) depend on the number of stages. Throughout this paper we when we write Si,k(t) it is
assumed that zk = 0 and zi = 1 for 1 ≤ i < k. Changing notation we want to solve

S ′1,k(t) = αS2
1,k − (α + β + µ)S1,k(t) + β, (5)

where µ = µk−1,k and S1,k(0) = 1. The quadratic equation αx2 − (α + β + µ)x + β = 0 has
two roots q > 1 > r > 0. See (31). Solving (5), see (34), gives

S1,k(t) = r +
q − r

1 + q−1
1−r

exp(α(q − r)t)
(6)

Having solved for S1,k(t) the other Si,k(t) = yk−i,k(t) can be found by induction:

Si,k(t) = exp

(
−νi

∫ t

0

(1− Si−1,k(t− s)) ds

)
(7)

where in the k-stage model νi = µk−i,k. The computation of the Si,k(t) is not easily found
in the literature, so we will give the details in Section 7.

While the recursion in (7) was derived by the method of characteristics, it has a simple
probabilistic interpretation. Each individual of type k − i gives birth to individuals of type
k− i + 1 at times of a rate νi Poisson process. A type k− i + 1 born at time s will give rise
to a malignant cell with probability 1−Si−1(t− s). The number of type k− i+1 individuals
that are successful in doing this has a Poisson distribution with mean

ρi,k(t) = νi

∫ t

0

1− Si−1,k(t− s) ds (8)

so the probability none of the type k− i+1 individuals are successful in creating a malignant
cell is Si,k(t) = exp(−ρi,k(t)).
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2.2 Hazard rate formulas

It is clear from (4) that Hk = Sk,k so we have

Hk(t) = exp

(
−γ

∫ t

0

1− Sk−1,k(t− s) ds

)
(9)

Using (9) and changing variables r = t− s before differentiating it follows that

hk(t) = −H ′
k(t)

Hk(t)
= γ(1− Sk−1,k(t)) (10)

so we do not have to evaluate Hk(t) to find hk(t).
Using (10) with (35) gives

h2(t) = γ · (q − 1)(1− r)e−α(r−1)t − (q − 1)(1− r)e−α(q−1)t

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t
(11)

Using (37) we have

h3(t) = γ

(
1−

[
q − r

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

]µ1/α
)

(12)

When it comes to the fourth stage, the possibility to compute the integral in (7) breaks down
and (39) gives

h4(t) = γ

(
1− exp

(
−µ1

∫ t

0

1−
[

q − r

(q − 1)e−α(r−1)u − (r − 1)e−α(q−1)u

]µ2/α

du

))
(13)

3 Probabilistic approach

We begin by giving probabilist interpretations for some of the computations above. To ex-
plain the differential equation for yk−1,k, note that if we ignore mutation then each individual
of type k−1 initiates a linear birth and death process L(t) in which the number of individuals
increases from m → m + 1 at rate αm and decreases from m → m − 1 at rate βm, where
α > β.

Theorem 1. As t →∞, e−λtL(t) → W with P (W = 0) = β/α = P (L(t) = 0 for some t > 0)
and

P (W > x|W > 0) = exp(−xλ/α)

i.e., if we condition on non-extinction then W has an exponential density with rate λ/α. If
we let V0 = (W |W > 0) then

E(e−θV0) =

∫ ∞

0

λ

α
e−xλ/αe−θx dx =

λ/α

λ/α + θ
(14)
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Proof. We will sketch the proof since it contains details that will be useful later. For more
details see Section 3 of [6]. It is well know that if we start with L(0) = 1 then the generating
function F (x, t) = ExL(t) satisfies

∂F

∂t
= −(α + β)F + αF 2 − β (15)

with boundary condition F (x, 0) = x. This equation can be solved with the result that

F (x, t) =
β(x− 1)− eλt(αx− β)

α(x− 1)− eλt(αx− β)

where λ = α − β is the exponential growth rate. By considering what happens on the first
step (which is a birth with probability α/(α + β) and a death with probability β/(α + β))
we can conclude that the probability ρ that the process dies out satisfies

ρ = ρ2 · α

α + β
+ 1 · β

α + β

The extinction probability is the root which is < 1, i.e., ρ = β/α.

Comparing with (15) we see that (5) has an additional term −µy(t). In probabilistic
terms, this corresponds to killing the process at rate µm when there are m individuals in the
branching process. Let L̄t be the birth and death chain conditioned not to die out. Using
this observation and Theorem 1, the probability of no malignant cell by time t in L̄t is

G(t) = E exp

(
−
∫ t

0

µL̄(s) ds

)
≈ E exp

(
−µ

∫ t

0

eλsV0 ds

)
≈ E exp(−µeλtV0/λ) =

λ/α

λ/α + µeλt/λ
(16)

where in the last step we have used (14). When the branching process dies out it does that
quickly so the probability of a mutation is small. From this it follows that

S1,k(t) =
β

α
+

λ

α
· λ/α

λ/α + µeλt/λ
=

β

α
+

λ/α

1 + µαeλt/λ2
(17)

To compare with (6) we need to change notation. Equations (41) and (42) imply that

q ≈ 1 +
µ

λ
r ≈ β

α
q − r ≈ λ

α
(18)

Using these in (6) we have

S1,k(t) ≈
β

α
+

λ/α

1 + (µ/λ)(α/λ)eλt

which agrees with the new formula in 17.

6



To compute the survival function Hk(t) from this we start at 1 and work up to type k−1.
Let ηj(s) be the rate at which type j’s born at time s. Integrating we find

η1(s) = γ = Nµ0

η2(t) = µ1

∫ t

0

η1(s) ds = γµ1s

η3(t) = µ2

∫ t

0

η2(s) ds = γµ1µ2s
2/2!

ηj(t) = µj−1

∫ t

0

ηj−1(s) ds = γµ1 . . . µj−1s
j−1/(j − 1)!

We call a type k − 1 family that does not die out “successful.” Using Theorem 1, the
probability that a type k−1 is successful is λ/α. On the event that a type k−1 is produced
in [0, T ], the time it is born will be distributed as ηk−1(s)λ/α. Recalling that 1 − G(t − s)
is the probability a successful birth and death process conditioned to not die out gives rise
to a malignant cell and using the reasoning that led to (8), the times of successes will be
roughly a Poisson process so

Hk(t) ≈ exp

(
−
∫ t

0

ηk−1(t) ·
λ

α
· (1−G(t− s)) ds

)
. (19)

Using this approach we find (see Section 8 for details) that

H2(t) = exp

(
−γ

α

[
ln

(
µ1

λ
eλt +

λ

α

)
− ln(λ/α)

])
H3(t) = exp

(
−γ

µ1

α

∫ t

0

log(1 + (α/λ)(µ2/λ)θeλ(u)) du

)
H4(t) = exp

(
−γµ1

µ2

α

∫ t

0

(t− u) log(1 + (α/λ)(µ2/λ)θeλu) du

)
Differentiating with respect to t, and using hk(t) = −H ′

k(t)/Hk(t)

h2(t) =
γ

α
· µ1e

λt

(µ1/λ)eλt + (λ/α)
(20)

h3(t) = γ
µ1

α
log(1 + (α/λ)(µ2/λ)θeλu) (21)

h4(t) = γµ1

∫ t

0

µ2

α
log(1 + (α/λ)(µ2/λ)θeλu) du (22)

At first glance the new formulas look much different than the ones from the analytic
approach. However, a closer look shows they are closely related. When k = 2, ηk−1 = γ and
(17) implies

λ

α
(1−G(t)) = 1− S1,2(t)

so the formulas for h2(t) agree. Comparing the two formulas for h3(t) and h4(t) we see that
it is enough to argue

µi

α
log(1 + (α/λ)(µ2/λ)θeλu) ≈ 1−

[
q − r

(q − 1)e−α(r−1)u − (r − 1)e−α(q−1)u

]µi/α

(23)
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4 The two-stage model

.
The formula for the hazard rate in the two stage case, given in (11), is

h2(t) = γ(q − 1)(1− r)
e−α(r−1)t − e−α(q−1)t

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

If we introduce P = α(r − 1) and Q = α(q − 1) we can rewrite it as

=
γ

α
α(q − 1)α(1− r)

e−α(r−1)t − e−α(q−1)t

α(q − 1)e−α(r−1)t − α(r − 1)e−α(q−1)t

=
γ

α

(−PQ)(e−Pt − e−Qt)

Qe−Pt − Pe−Qt
(24)

Note that the two-stage model has five parameters γ, µ1, µ2, α, and β but the new formula
for the hazard rate has only three γ/α, P = α(r− 1), and Q = α(q− 1). In the terminology
of statistics we have an identifiability problem, i.e., not all the parameters in the model can
be estimated.

parameter [18] [17]
γ/α 3.87× 10−4 3.17× 10−5

−P 0.259 0.11
Q 8.22× 10−4 1.78× 10−

Table 1: Fits of the two stage model hazard rate given in (24) to thyroid cancer in white
females by Meza and Chang [18] and to peritoneal mesothelioma by Moolgavkar, Meza, and
Turim [17].

Figure 1 gives a picture of h2(t) for the parameters of [18]. It should be obvious from the
picture that as t →∞, h2(t) converges to a limit. Since P < 0 < Q letting t →∞ in (24)

h2(t) →
γ

α
(−P ) = γ(1− r). (25)

Figure 2 shows the fit of the two stage model to peritoneal mesotheliomas in SEER data
from 1973–2005. Parameters are given in Table 1. This time the asymptote has not been
reached by age 85. The dotted line gives the fit of the Armitage-Doll formula (1) Ctk to the
data with C = 1.75× 10−11 and k = 2.79. Visually the second fit is worse. This is confirmed
by the values of Akaike Information Criterion scores. Interested readers can consult [17] for
further details.
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Figure 1: A graph of h2(t) for the thyroid cancer parameters. x axis is age in years. y axis
is cases per 100,000 per year. The asymptotic value, which is 10.02 by (25) is reached at
age ≈ 40. For comparison, we give a histogram of age at diagnosis in 508 individuals in a
TCGA study [22]. If one transforms the data so that it is cases per 100,000 individuals in
each age group, the model fits the data. See Figure 4 in [18].
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Figure 2: The solid line is a graph of h2(t) for the peritoneal mesothelioma parameters. The
dotted line is a fit of the Armitage-Doll model with k = 2.79. x axis is age in years. y axis
is cases per 100,000 per year. The asymptotic value has not been reached by age 85.
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5 The three-stage model

Using (12) and changing variables P = α(r− 1) and Q = α(q− 1) it follows that the hazard
rate is

h3(t) = γ

(
1−

[
Q− P

Qe−Pt − Pe−Qt

]µ1/α
)

(26)

Meza at al [19] show that h3 is asymptotically linear. To state their results we need two
definitions. The probability that the birth and death processes does not die out is

p∞ = lim
t→∞

1− S1(t) = 1− r ≈ 1− β/α.

by (6) and (18). Let T2,3 be the time to malignancy of a single type 2 clone in the 3-stage
model conditional on it not becoming extinct.

Theorem 2. If t is large and t � 1/µ1p∞ then

h3(t) ≈ γµ1p∞(t− ET2,3) where ET2,3 ≈ − 1

α− β
ln

(
µ2α

(α− β)2

)
(27)

To better understand the formula for h3(t), and to check the accuracy of the linear
approximation, it is useful to have concrete examples.

name parameter 3-stage fit 4-stage fit
slope γµ1p∞ 3.9× 10−5 4.68× 10−5

−P α− β 0.179 0.192
µ2/α NA 0.401

Q αµk−1/(α− β) 1.38× 10−5 2.06× 10−5

ET2,3 = 52.9 ET2,4 = 57.9

Table 2: Meza et al [19] estimated parameters for the 3-stage model and 4-stage model
(described in the next section) for pancreatic cancer in men.

To be able to compute the hazard function we need a value for α. Meza at al [19] suggest
α = 9 cell divisions per year and say that the fit is not sensitive to the value of α chosen. In
pancreatic cancer, when α = 9,

µ2 = −QP/α = 2.74× 10−7, p∞ = (α− β)/α ≈ 0.02 Nµ0µ1 ≈ 2× 10−3 (28)

If we take µ0 = µ1 = 10−6 then N = 2× 109, and µ1/α = 1.1× 10−7. Figure 3 gives a graph
of h3(t) (and h4(t)) for the pancreatic cancer parameters. 1/µ1p∞ = 5 × 109 years so the
condition t � 1/µ1p∞ holds. As the graph shows the straight line approximation is good
for t ≥ 65.
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Figure 3: Graphs of h3(t) and h4(t) for the pancreatic cancer parameters. x axis is age
in years. y axis is cases per 100,000 per year. Straight line is the linear approximation to
the three stage model (27). The bar graph gives the age at diagnosis for 186 patients in
the TCGA study of pancreatic cancer [4]. Again if one transforms the data to be cases per
100,000 in each age group, the theoretical curve fits the data, see Figure 5 in [19].
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6 The four-stage model

6.1 Hazard rate

Using (13) and changing variables P = α(r − 1) and Q = α(q − 1)

h4(t) = γ

(
1− exp

(
−µ1

∫ t

0

1−
[

Q− P

Qe−P (t−s) − Pe−Q(t−s)

]µ2/α

ds

))
(29)

Let T2,4 be the time for a single type 2 clone to produce a malignant cell in the four-stage
model and let

p∞ = lim
t→∞

1− S2,4(t) = 1

since a type 2 will give rise to infinitely many type 3’s, and one of these will start a branching
process that does not die out.

The asymptotic behavior of the hazard rate is constant in the two-stage case and linear in
the three-stage case. One might naively guess that in the four-stage case it is asymptotically
quadratic, but the simple proof given below shows it is asymptotically linear. It should be
clear from the proof that this holds for any k ≥ 3.

Theorem 3. When t is large and t � 1/µ1

h4(t) ≈ γµ1(t− ET2,4)

Proof of Theorem 3. When µ1t is small

h4(t) = γ(1− S3,4(t)) = γ(1− e−µ1

R t
0 (1−S2,4(t−s) ds)

≈ γµ1

∫ t

0

1− S2,4(t− s) ds = µ1

(
t−
∫ t

0

S2,4(t) dt

)
Using a well-known formula for expected value

ET2,4 =

∫ ∞

0

P (T2,4 ≥ t) dt =

∫ ∞

0

S2,4(t) dt

Combining the last two equations gives the desired result.

Note: due to the complexity of the formula for S2,4(t) given in (36), we do not have a formula
for ET2,4. However, it is easy to compute numerically.

Leubeck and Moolgavkar [16] estimated parameters for the 2, 3, 4, and 5 stage models
for colorectal cancer in women. As Figure 4 shows the fits from the four models are all very
good. To explain how this could happen, we take a look at the parameters used in fitting.
N = 108, α = 9. Note that in the four stage model, µ2 = 6.3, and in the five-stage model
µ3 = µ4 = 0.9. These large values speed these processes up, effectively eliminating one and
two stages respectively. In the other direction in the two stage model the very slow mutation
rates µ0 = 4.5 × 10−9 and µ1 = 1.44 × 10−7 effectively add a stage. Thus if we judge the
fitted model by the size of the mutation rates, it seems that the three-stage model gives the
best fit.
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Figure 4: A comparison of the fitted values of the hazard functions for the two, three, four,
and five stage models of [16]. The three and five stage fits are almost identical so you can
only see three curves on the graph.

2-stage 3-stage 4-stage 5-stage
µ0 4.5× 10−9 1× 10−5 1.3× 10−6 1.3× 10−6

µ1 1.44× 10−7 1× 10−5 1× 10−6 1× 10−6

µ2 — 8.77× 10−7 6.3 0.9
µ3 — — 1.333× 10−6 0.9
µ4 — — — 1.89× 10−6

P −0.11 −0.13 −0.13 −0.11
Q 2.64× 10−5 6.08× 10−5 9.23× 10−3 1.545× 10−4

Table 3: Parameter values in four fits of colon cancer data from [16].

It is interesting to note that Tomasetti et al [23] have arrived at the conclusion colon
cancer is a three-stage process by a completely different reasoning. They compared patients
with and without a mismatch repair deficiency. They found that the latter group has 7.7 to
8.8 times as many mutations, versus a 114.2 fold increase in colon cancer rates, and argued
that the increase would be more substantial if the process had four-stages. See pages 119–120
in [23] for more details and an analysis of lung adenocarcinomas.
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7 Computing Si,k(t): analytic approach

Let q > 1 > r be the roots of the quadratic equation

αy2 − (α + β + µ)y + β = 0 (30)

that is,
α + β + µ±

√
(α + β + µ)2 − 4αβ

2α
. (31)

If we write y(t) = S1,k(t) then the differential equation (5) can be written as

y′(t) = α(y − q)(y − r) y(0) = 1 (32)

From this we see that y(t) is decreasing and will converge to r as t →∞. Rearranging (32),
we have

α ds =
dy

(y − q)(y − r)
= − 1

q − r

(
dy

q − y
− dy

y − r

)
.

Here we have written the right-hand side to avoid taking the logarithm of a negative number
in the next step. Multiplying both sides by q − r and then integrating from 0 to t, we have
for some constant D

α(q − r)t + D = log(q − y)− log(y − r) = log

(
q − y

y − r

)
.

Exponentiating we have

q − y = (y − r) exp(α(q − r)t + D). (33)

Solving for y gives

y(t) =
q + r exp(α(q − r)t + D)

1 + exp(α(q − r)t + D)

Using (33) and recalling y(t) = 1 we have eD = (q − 1)/(1− r) which implies

y(t) =
q + r 1−q

1−r
exp(α(q − r)t)

1 + 1−q
1−r

exp(α(q − r)t)

= r +
q − r

1 + q−1
1−r

exp(α(q − r)t)
. (34)

which is (6). Our next step is to write

1− S1,k(t) = 1− r − q − r

1 + q−1
1−r

exp(α(q − r)t)

=
1− q + (q − 1) exp(α(q − r)t)

1 + q−1
1−r

exp(α(q − r)t)

=
(1− q)(1− r)eα(1−q)t + (1− r)(q − 1)eα(1−r)t

(1− r)eα(1−q)t + (q − 1)eα(1−r)t

=
(q − 1)(1− r)e−α(r−1)t − (q − 1)(1− r)e−α(q−1)t

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t
(35)
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To compute S2,k(t) we use the recursion (7)

S2,k(t) = exp

(
−ν2

∫ t

0

(1− S1,k(s)) ds

)
.

To compute integral let f(t) = (q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t and note that

f ′(t) = α(q − 1)(1− r)e−α(r−1)t − α(q − 1)(1− r)e−α(q−1)t

so we have

S2,k = exp

(
−ν2

∫ t

0

f ′(t)

αf(t)

)
= exp

(
−ν2

α
log(f(t)/f(0))

)
=

[
q − r

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

]ν2/α

. (36)

When k = 3, ν2 = µ1 so we have

h3(t) = γ(1− S2,3(t)) = γ

(
1−

[
q − r

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

]µ1/α
)

. (37)

Integrating again we conclude that

S3,k(t) = exp

(
−ν3

∫ t

0

1− S2,k(t− s) ds

)
= exp

(
−ν3

∫ t

0

1−
[

q − r

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

]ν2/α

ds

)
. (38)

When k = 4, ν3 = µ1 and ν2 = µ2 so

h4(t) = γ

(
1− exp

(
−ν3

∫ t

0

1−
[

q − r

(q − 1)e−α(r−1)t − (r − 1)e−α(q−1)t

]ν2/α

ds

))
. (39)

7.1 Approximations for q and r

When µ = 0 the roots q, r are (31)

q =
α + β ±

√
(α− β)2

2α
= 1 and r =

β

α
(40)

Typically the mutation rate µ is much smaller than α and β. When it is

(α + β + µ)2 − 4αβ ≈ (α + β)2 + 2(α + β)µ− 4αβ = (α− β)2 + 2(α + β)µ

so we have √
(α + β + µ)2 − 4αβ ≈ (α− β) +

(α + β)

(α− β)
µ,

and it follows that

q = 1 +
µ

2α
+

α + β

2α(α− β)
= 1 +

µ

α− β
, (41)

r =
β

α
+

µ

2α
− α + β

2α(α− β)
=

β

α

(
1− µ

α− β

)
≈ β

α
. (42)
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8 Hazard functions Hk(t) probabilistic approach

Using (19) with the formula for G(t) given in (16)

H2(t) = exp

(
−γ

α

∫ t

0

µ1e
λ(t−s)

λ/α + µ1eλ(t−s)/λ
ds

)
= exp

(
−γ

α

[
ln

(
µ1

λ
eλt +

λ

α

)
− ln(λ/α)

])
(43)

If we differentiate (43) we get

h2(t) = −H ′
2(t)

H2(t)
=

γ

α
· µ1e

λt

(µ1/λ)eλt + (λ/α)
.

Theorem 4.

H3(t) = exp

(
−γ

µ1

α

∫ t

0

log(1 + (α/λ)(µ2/λ)θeλu) du

)
and differentiating gives

h3(t) = −H ′
3(t)

H3(t)
= −γ

µ1

α
log(1 + (α/λ)(µ2/λ)θeλu).

Proof. Using (19) with the formula for G(t) given in (16)

H3(t) = exp

(
−γ

µ1

α

∫ t

0

s · µ2e
λ(t−s)

λ/α + µ2eλ(t−s)/λ
ds

)
(44)

= exp

(
−γ

µ1

α

∫ t

0

s · (α/λ)µ2e
λ(t−s)

1 + (α/λ)(µ2/λ)eλ(t−s)
ds

)
.

Integrating by parts with f(s) = s and g′(s) = the fraction under the integral

H3(t) = exp

(
−γ

µ1

α

∫ t

0

log[1 + (α/λ)(µ2/λ)θeλ(t−s)] ds

)
(45)

since f(s)g(s) = 0 when s = 0 and s = t. now change variables u = t− s.

Proof of (23). If x is small then x ≈ 1− e−x. Using this with

x =
µi

α
log(1 + (α/λ)(µ2/λ)θeλ(u))

we have

1− e−x = 1−
[

1

1 + (α/λ)(µ2/λ)θeλu

]µi/α

= 1−
[

λ/α

λ/α + (µ2/λ)θeλu

]µi/α

Using (18) q − r ≈ λ, and q − 1 ≈ µ2/λ, so the above is

≈
[

q − r

(q − r) + (q − 1)eα(q−r)t

]µi/α

≈
[

q − r

(1− r)e−α(q−1)t + (q − 1)e−α(r−1)t

]µi/α

proving the desired result.
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Theorem 5.

H4(t) = exp

{
−γµ1

µ2

α

∫ t

0

(t− u) log(1 + (α/λ)(µ2/λ)θeλu) du

}
Differentiating with respect to t

h4(t) = −H ′
4(t)

H4(t)
= γµ1

µ2

α

∫ t

0

log(1 + (α/λ)(µ2/λ)θeλu) ds (46)

Proof. Using (19) with the formula for G(t) given in (16)

H4(t) = exp

(
−γµ1

µ2

α

∫ t

0

s2

2
· µ3e

λ(t−s)

λ/α + µ3eλ(t−s)/λ
ds

)
= exp

(
−γµ1

µ2

α

∫ t

0

s2

2
· (α/λ)µ3e

λ(t−s)

1 + (α/λ)(µ3/λ)eλ(t−s)
ds

)
Integrating by parts with f(s) = s2/2 and g′(s) is the fraction inside the integral

H4(t) = exp

{
−γµ1

µ2

α

∫ t

0

s log(1 + (α/λ)(µ2/λ)θeλ(t−s)) ds

}
(47)

since f(s)g(s) = 0 when s = 0 and s = t. Changing variables u = t− s gives the formula for
H4(t).

9 Conclusions

Here we have taken a probabilistic approach to analyze multi-stage models of cancer inci-
dence. This leads to an intuitive proof of a simple and general formula for the distribution
of the waiting time Tk for the first type k to appear

Hk(t) ≡ P (Tk ≥ t) =

∫ t

0

ηk−1(s)
λ

α
· (1−G(t− s)) ds (48)

where ηk−1(s) = Nµ0µ1 · · ·µk−1s
k−2/(k − 2)! is the rate type k − 1 mutations are produced

at time s, λ/α is the probability a type k − 1 is successful, i.e., does not die out and

1−G(t− s) =
λ/α

λ/α + µeλ(t−s)/λ

is the probability a successful type k− 1 born at time s produces a malignant cell by time t.
Differentiating (48) we can get a formula for the hazard rate hk(t) = −H ′

k(t)/Hk(t). To
do this it is convenient change variables u = t− s and write Γk−1 = Nµ0µ1 · · ·µk−1

Hk(t) =

∫ t

0

Γk−1
(t− u)k−2

(k − 2)!

λ

α
(1−G(u)) du
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In the case k = 2 we have (t− u)k−2/(k − 2)! ≡ 1 so there is no t in the integrand and the
derivative is

h2(t) = Nµ0
λ

α
(1−G(t))

When k ≥ 3 we have a positive power of t − u so differentiating the upper limit does not
contribute and the derivative is

hk(t) =

∫ t

0

Γk−1
(t− u)k−3

(k − 3)!

λ

α
(1−G(u) du

We have verified that our new formulas are almost exactly the same as the traditional ones
for the k-stage model.

In Sections 4, 5, and 6 we considered four concrete applications that have been analyzed
in the literature. In the case of pancreatic cancer, three and four stage models gave similar
fits. See Figure 3. In the case of colon cancer, one gets almost identical fits from k-stage
models with k = 2, 3, 4, 5. The parameter values for those fits (see Table 3) indicate how this
is possible. The two stage fits have very small mutation rates while in the four and five stage
fits, one or two mutation rates take large values. The pancreatic and colon cancer examples
suggests that fitting k-stage models has little power to estimate the number of stages, but
that power might be restored by constraining the parameter values to take on “realistic”
values.
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