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Abstract

Aldous (2007) defined a gossip process in which space is a discrete N x N
torus, and the state of the process at time ¢ is the set of individuals who know
the information. Information spreads from a site to its nearest neighbors at
rate 1/4 each and at rate N~% to a site chosen at random from the torus. We
will be interested in the case in which a < 3, where the long range transmission
significantly accelerates the time at which everyone knows the information.
We prove three results that precisely describe the spread of information in a
slightly simplified model on the real torus. The time until everyone knows the
information is asymptotically T' = (2 — 2a/3)N®/31log N. If p, is the fraction
of the population who know the information at time s and ¢ is small then, for
large N, the time until p, reaches e is T(e) ~ T+ N®/31log(3s/M), where M is a
random variable determined by the early spread of the information. The value
of ps at time s = T'(1/3) +tN/? is almost a deterministic function h(t) which
satisfies an odd looking integro-differential equation. The last result confirms
a heuristic calculation of Aldous.

1 Introduction

We study a model introduced by Aldous (2007) for the spread of gossip and other
more economically useful information. His paper considers various game theoretic
aspects of random percolation of information through networks. Here we concentrate
on one small part, a first passage percolation model with nearest neighbor and long-
range jumps introduced in his Section 6.2. The work presented here is also related to
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work of Filipe and Maule (2004) and Cannas, Marco, and Montemurro (2006), who
considered the impact of long-range dispersal on the spread of epidemics and invading
species.

Space is the discrete torus A(N) = (Z mod N)?2. The state of the process at time ¢
is & C A(N), the set of individuals who know the information at time ¢. Information
spreads from ¢ to j at rate

1/4 if 7 is a (nearest) neighbor of
Vi; =
7 1 An/N? if not.

If Ay = 0, this is ordinary first passage percolation. If we start with { = {(0,0)},
then the shape theorem for nearest-neighbor first passage percolation, see Cox and
Durrett (1981) or Kesten (1986), implies that until the process exits (—N/2, N/2)?,
the radius of the set & grows linearly and & has an asymptotic shape. From this we
see that if Ay = 0, then there is a constant ¢y so that the time T, until everyone

knows the information, satisfies

In p
~ — Co

N
where 2 denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest neighbor part
of the process, and formulate it on the (real) torus I'(N) = (R mod N)2. The state of
the process at time ¢ is C; C I'(N). The “balloon process” C; starts with one “center”
chosen uniformly from the torus at time 0. When a center is born at z, a disk with
radius 0 is put there, and its radius grows as r(s) = s/v/2m, so that the area of the
disk at time s after its birth is s?/2. If the area covered at time ¢ is C;, then births of
new centers occur at rate AyC}. The location of each new center is chosen uniformly
from the torus. If the new point lands at x € C;, it will never contribute anything to
the growth of the set, but we will count it in X,, the total number of centers.

Here we will be concerned with \y = N™%. To begin we will get rid of trivial
cases. If the diameter of C; grows linearly, then fOCON Cydt = O(N3). So if a > 3,
with probability tending to 1 as N goes to oo, there is no long range jump before the
initial disk covers the entire torus, and the time T until the entire torus is covered

satisfies

In p
N — ¢, where ¢ = /7.

If @ = 3, then with probabilities bounded away from 0, (i) there is no long range
jump and Ty =~ ¢; N, and (ii) there is one that lands close enough to (N/2, N/2) to
make Ty < (1 — §)N¢;. Using = for weak convergence, this suggests that

Theorem 0. When o =3, Ty /N = a random limit concentrated on [0, c¢1| and with
an atom at cy.

This is easily proved by observing that the set-valued process {Cn;/N,t > 0} con-
verges to a limit. Further details are left to the reader.



For the remainder of the paper we suppose Ay = N~ with o < 3. The overlaps
between disks in C; poses a difficulty in analyzing the process, so we begin by studying
a simpler “balloon branching process” A;, in which A; is the sum of the areas of all
of the disks at time ¢, births of new centers occur at rate AyA;, and the location of
each new center is chosen uniformly from the torus. Let X; be the number of centers
at time ¢ in A;.

Suppose we start Cy and Ay from the same randomly chosen point. The areas
C; = A; until the time of the first birth, which can be made to be the same in the
two processes. If we couple the location of the new centers at that time, and continue
in the obvious way letting C; and A; give birth at the same time with the maximum
rate possible, to the same place when they give birth simultaneously, and letting A,
give birth by itself otherwise, then we will have

Ct C At, Ct S At, Xt S Xt for all ¢ Z 0. (11)

X; is a Crump-Mode-Jagers branching process, but saying these words does not
magically solve our problems. Define the length process L; to be v/27 times the sum
of the radii of all the disks at time t.

t
L, :/ (t —s)dXs = X ds, (1.2)
0

At:/( Lax, = /Lds

Here and later we use f; for integration over the closed interval [0, t], i.e., we include
the contribution from the atom in dX; at 0. (X, = 1 while X5 = 0 for s < 0.) For
the second equality on each line integrate by parts or note that L; = X; and A} = L.
Since X increases by 1 at rate Ay A;, (Xy, Ly, A;) is a Markov process.

To simplify formulas, we will often drop the subscript N from Ay. For comparison
with C}, the parameter A\ is important, but in the analysis of A; it is not. If we let

X! = X(tATV3), L= ANBLATY3), Al = ABA(ATVR, (1.3)

then (X}, L}, A}) is the process with A\ = 1.

To study the growth of A;, first we will compute the means of X;, L;, and A;. Let
F(t) = M3/3!. Using the independent and identical behavior of all the disks in A; it
is easy to show that

t
EX, =1+ / EX,_,dF(s).
0
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Solving the above renewal equation and using (1.2), we can show

o0 L o0 )\k‘t?)k
EX, =) F*t)=V(t)= G
k=0 k=0 ’

o0 )\kt3k+1
EL, = —_—
'7
2 3k 1 1))
0 )\kt3k+2

FA =) ———.
— (3k +2)!

(1.4)

To evaluate V(t) we note that V" (t) = AV (t) with V(0) = 1, V'(0) = V"(0) =0, so

V(t) = [exp()\l/gt) + exp(\3wt) + exp()\l/ngt)} : (1.5)

1
3
Herew = (—1 + ’L\/g) /2 is one of the complex cube roots of 1 and w? = (—1 — Z\/g) /2
is the other. Note that each of w and w? has real part —1/2. So the second and third

terms in (1.5) go to 0 exponentially fast.
If s = o{X,, L., A, : r < s}, then

g [ X 00 A\ [X,
ZE| L |7 =110 0] |L]|. (1.6)
A, 01 0/ |A,

t=s

Let @ be the matrix in (1.6). By computing the determinant of @) — nI it is easy to
see that @ has eigenvalues n = A3, wA/3, W2\/3 and

e ™(X, +nL; +n*A;) is a (complex) martingale.

Let Iy, J;, and K; be X; +nL; + n?A, for the three values of 1 respectively, and let
M;, J;, and K, be the corresponding martingales.

Theorem 1. {M, : t > 0} is a positive square integrable martingale with respect to
the filtration {F; : t > 0}. EM, = My = 1.

EM? = % — %exp(—)\l/g’t) + O (exp(—=5A"/3t/2))
E|J)?, E|K|? = éexp(2)\l/3t) +0 (exp()\l/3t/2)) :
If we let M = limy_,o, My, then P(M > 0) =1 and
exp(=AY30) Xy, A3 exp(=AV3t) Ly, A2/ exp(=\Y3t) A, — M/3
a.s. and in L?. The distribution of M does not depend on \.
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The last result follows from (1.3), which with (1.2) explains why the three quan-
tities converge to the same limit. The key to the proof of the convergence results is
to note that 1+ w + w? = 0 implies

3Xt — ]t + Jt + Kt7
SAYBL, = I 4+ W2, + WKy,
3NBA, = I, + wJ, + WK,

The real parts of w and w? are —1/2. Although the results for F|J,|?> and E|K,|?
show that the martingales J, and K, are not L? bounded, it is easy to show that
exp (—A!3t) J; and exp (—A/3t) K; — 0 a.s. and in L?, and Theorem 1 then follows
from M, = exp (—)\1/3t) I, — M.

Recall that Ay = N7¢ and let

a(t) = (1/3)N?*Bexp(N~3t), 1(t) = N-*Ba(t), xz(t) = N"23a(t), (1.7)
so that A;/a(t), Li/1(t), Xi/x(t) — Ma.s.. Let
S(e) = N*3[(2 — 2a/3) log N + log(3¢)], (1.8)
so a(S(e)) = eN?. Let
o(e) =inf{t: A, > eN?} and 7(e) =inf{t: C; > eN?}. (1.9)
The first of these is easy to study.

Theorem 2. If 0 <e <1, then as N — o0
N=*(0(e) = 5(2)) = — log(M).
The coupling in (1.1) implies T(€) > o(e). In the other direction, for any v > 0
£1/3
limsup P[r(e) > o((1 +7)e)] < P (M < (1+7)'?) + 117.
N—o0

The last result implies that for ¢ < 1
() ~ (2 — 2a/3)N*/3log N. (1.10)

Our next goal is to obtain more precise information about 7(g) and about how |Cy| /N2
increases from a small positive level to reach 1.

The first result in Theorem 2 shows that (o (¢) — S(g))/N®/3 is determined by the
random variable M from Theorem 1, which in turn is determined by what happens
early in the growth of the branching balloon process. Let

R = N°3[(2 — 2a/3)log N — log(M)], (1.11)

5
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R is defined so that a(R) = (1/3)N2/M, and hence Ag/N?-51/3. Define
Y(t) = R+ N3t W =(log(3¢)), and I., = [log(3e), 1] (1.12)

for log(3¢) < t. W is defined so that a(W) = eN?/M and hence Ay /N> Le. The
arguments that led to Theorem 2 will show that if € is small then Cy, /Ay is close to
1 with high probability.

To get a lower bound on the growth of C; after time W we declare that the centers
in Cyy and Ay to be generation 0 in C; and A; respectively, and we number the
succeeding generations in the obvious way, a center born from an area of generation
k is in generation k + 1. For ¢t > log(3¢), let C§u¢(t) and A’{jw(t) denote the areas
covered at time 1 (t) by respective centers of generations j € {0,1,...,k} and let

(t —log(3¢))’

go(t) =€ {1 + (t —log(3¢)) + i

} . folt) = golt) — £7/°. (1.13)

To explain these definitions, we note that Lemma 4.3 will show that for any ¢, there
is an g9 = €o(t) so that for any 0 < € < g

N—oo SEIa,t

lim P (sup ‘N_QA%W(S) — go(s)| > n) =0 forany n >0,

P (sier}i N2 (Cpi) = Avis)) < —57/6) < P(M < e'/?) 4 /12,
Since Cypy iy < Ay, if € is small, with high probability go(t) and fo(t) provide
upper and lower bounds respectively for CI(/]V,w(t)'

To begin to improve these bounds we let

A =1- 1= e (- [ L= ),

0g(3e) 2

and define g; similarly. To explain this equation note that an = ¢ CY), w(t) will not be
in C}y, “(t) if and only if no generation 1 center is born in the space-time cone

0= {s) € TN) x W w0)] : ly - 2l < (0(1) - 5)/V2r |

Lemma 4.4 shows that for 0 < e < &g and § > 0,

lim sup P ( inf N72Cyy ) — fi(s) < —5) < P(M < ') + 412,
N—o00 selc ¢ ’
To iterate this we will let

al®) =1 (1= ) esw (- [ L 9 s i)

og(3e) 2
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for k > 1. The difference fi(s) — fr—1(s) in the integral comes from the fact that a
new point in generation k£ + 1 must come from a point that is in generation &£ but not
in generation £ — 1. Combining these equations we have

) =1-0-pwye (- [ pea).

0g(3e) 2

Since fi(t) > fo(t), letting k — oo, fir(t) T f-(t), where f. is the unique solution of

0 =1- = p)ew (- [ Rt A ) (1.15)

0g(3¢) 2

with f.(log(3¢)) = & — €75, gi(t) and g.(t) are defined similarly.
g-(t) and f.(t) provide upper and lower bounds on the growth of Cy ) for ¢t >
log(3e). To close the gap between these bounds we let € — 0.

Lemma 1.1. For any t < oo, if I.; = [log(3¢),t], then as e — 0,

sup |fe(s) = h(s)[, sup |ge(s) = h(s)] — 0

Sels,t SEIa,t

for some nondecreasing h with (a) lim;—, o h(t) = 0, (b) lim;—o h(t) =1,

© wo=1-eo (- [ as),

o0

and (d) 0 < h(t) <1 for allt.

If one removes the 2 from inside the exponential, this is equation (36) in Aldous
(2007). Since there is no initial condition, the solution is only unique up to time
translation.

Theorem 3. Let h be the function in Lemma 1.1. For anyt < co and 6 > 0,

1
N—oo

im P (sup IN"2Cys) — h(s)| < 5) = 1.
s<t

This result shows that the displacement of 7(g) from (2 — 2a/3)N*/3log N on the

scale N°/3 is dictated by the random variable M that gives the rate of growth of the

branching balloon process, and that once C; reaches e N2, the growth is deterministic.
The solution h(t) never reaches 1, so we need a little more work to show that

Theorem 4. Let T be the first time the torus is covered. As N — oo

T/(N*Plog N) 22 — 2a/3.



Proof. Theorem 3 implies that if 6 > 0 and N is large, then the number of cen-
ters in Cy(o) with high probability dominate a Poisson random variable with mean
A(6)N?=2e/3)  where

If §p is small enough, A\g = A(dg) > 0. Dividing the torus into disjoint squares of size
kIN®/3\/log N, the probability a given square is vacant is exp(—Agklog N). If N is
large, the number of squares is < N27(2/3) So if A\gx > 2, then with high probability
none of our squares is vacant. Thus even if no more births of new centers occur then
the entire square will be covered by a time (0) + O(N®/3\/log N). O

2 Proof of Theorem 1
We begin with some calculus

t m n mln! m-+n
Lemma 2.1. [ s™(t —s)"ds = (m+7'1—&'-1)!t ol

Proof. Integrating by parts

t .m e\ t m+1 _ o\n—1
s™(t —s) dS:/ (3 (t —s) s
0

o m! m+1)! (n—1)!
/t Sm+n tm-l—n-‘rl
o= ——ds = ————
o (m+n)! (m+n+1)!
which proves the desired result. Il

Let F(t) = A3/3! for ¢ > 0, and F(t) = 0 for t < 0. Let V(t) = >_;2, F**(¢),
where *k indicates the k-fold convolution.

Lemma 2.2. Ifw = (—1+iv/3) /2, then

R L |
i1 = 3 [ (V7)o () + exp (V)]

V(t) =

Proof. We first use induction to show that

0 t<0

() = {Akt%/(%)! o 1)

This holds for £ = 0,1 by our assumption. If the equality holds for £ = n, then using
Lemma 2.1 we have for ¢ > 0

t )\n(t _ S)3n )\82 _ )\n+1t3n+3

F*(”+1)(t):/0 F*”(t—s)dF(s):/O WT(&S—W.

8
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It follows by induction that V() = >_,o, A\*¢%/(3k)!. To evaluate the sum we note
that setting A = 1, U(t) = > oo, t3%/(3k)! solves

U™(t) = U(t) with U(0) =1 and U’(0) = U"(0) = 0.

This differential equation has solutions of the from e, where v3 = 1, ie. v = 1,w
and w?. This leads to the general solution

U(t) = Ae' + Be*' 4 Ce™
for some constants A, B, C'. Using the initial conditions for U(t) we have
A+B+C=1, A+Bw+Cuw? =0, A+ Bw?+Cw=0.

Since 1 4+ w + w? = 0, we have A = B = C' = 1/3. Since V(t) = U(A/?t), we have
proved the desired result. O

Lemma 2.3. E(X,, L, A,) = (V(£), V'(t)/\, V() /).

Proof. F(t) = At?/3!. In the balloon branching process, the initial center x gives
birth to new centers at rate F'(t) = A\t?/2, and all the centers behave independently
and with the same distribution as the one at . So

t
EX, =1+ / EX,_,dF(s).
0

Using (4.5) from Chapter 3 of Durrett (2005) and then (1.2):

o )\ktfﬂk
EX, =V(t)=S
k=0
t 00 )\kt3k+1
BLi= | EX,ds=S " 2.2
‘ /0 ° ; 3k + 1)! (22)
t o )\kt3k+2
EA= | BELds=S" 2"
t /0 =2 (3k + 2)!

k=0

Since V(t) = 1+ ooy N33 /(3K + 3)1, it is easy to see that EA, = V'(¢)/A and
EL; = V'(1)/\. 0

Our next step is to compute second moments.

Lemma 2.4. Let {N; : t > 0} be a Poisson process on [0,00) with intensity A(-)
and let 11, be the set of points at time t. If {Y:, Z; : t > 0} are two complex valued
stochastic processes satisfying

Vi—yt)+ SO Vi,  Zi—a0+ Y Zi,.

SiEHt S; ell;



where (Y*, Z%), i = 1,2,... are i.i.d. copies of (Y, Z), and independent of N, then
t
BY=y(t)+ [ BYieAs)ds
0
t
B(YiZ) = (EY)(EZ) + [ E(YiZi)X(s)ds.
0

Proof. N, has Poisson distribution with mean A; = fot A(s)ds. Given N; = n, the con-
ditional distribution of II; is same as the distribution of {¢q,...,t,}, where t1,... %,
are i.i.d. from [0, t] with density 8(-) = A(-)/A:. Hence

Ny t
EOGIN) = y(®) + 3 BYS, = () + N, / BY,_, B(s)ds,
=1

and taking expected values EY; = y(t) + fot EY;_A(s)ds.
Similarly EZ; = z(t) + fg EZ,_s\(s)ds. Using the conditional distribution of II,
given Ny, E(Y;Z;|Ny) is

Ny
MV Z, Y Y2,
i=1 i#£j

— y()=(t) + y(t)N, / EZ,_, B(s)ds + 2(t)N, / EYi_, 8(s) ds

YOO+ YOE S Z +A(OES Vi, + E

=1 =1

+ N, /t E(Y,_sZ;—s) B(s)ds + Ny(Ny — 1) /t EY, s B(s)ds /t EZ,_p(s)ds.
0

0 0

Taking expectation on both sides and using EN;(N; — 1) = AZ, we get
t
E(YiZ) = (EY.)(EZ) + / E(YVisZo_s)\(s)ds,
0

which completes the proof. O]
Lemma 2.5. If M; = exp(—=AY3t)[X, + \/3L, + X234, then {M, : t > 0} is a
square integrable martingale with respect to the filtration {F, : t > 0}. EM; =1 and

8§ 1 4
EM? = - = 3 exXp (—)\1/375) + 60, where |0, < 1—5€Xp(—5)\1/3t/2).

and hence (8)7) — EM? < exp(—A'/3t).

Proof. Let h(t,x,(,a) = exp(—A"/3t)[x + A\/30 4 \?/3q], and let £ be the generator of
the Markov process (t, X;, Ly, A;). (1.6) implies Lh = 0, so the desired result follows
from Dynkin’s formula. EM; = EM, = 1.

10



To compute EM? we use Lemma 2.4. Let YV, = Z, = X, + A'/3L, + X\?/3A, and
g(t) = (EY;)%. Since EM, = 1, g(t) = exp (2A/3t). Then using Lemma 2.4

t
EY? =g(t) + / EY?2, dF(s).
0
Solving the renewal equation using (4.8) in Chapter 3 of Durrett (2005),
¢
EY? = g+ V(t) = exp (2A/%) + / exp(2AY3(t — 5))V'(s) ds,
0

where V = >"32  F**. To evaluate the integral we use Lemma 2.2 to conclude

t
/ exp (—2A"35) V'(s) ds
0

t
:%/0 exp (—2A"3s) - AM3 [exp (A1/3s)+wexp (A 3us) + w2 exp (\/3w2s)] ds
_ % [112 {exp (—)\1/315) —1) + {exp( w—9 )\1/315) 1)
w2 1/3
+w2_2{exp(( 2)A t) 1}
Now using 1 = —w — w? and w? =1,
w w? w? — 2w + w? — 2w? 4 3
1— - =1- =1-—=-=-.
w—2 w?2-2 W3 — 2w2 — 2w2 + 4 77

Since w = (—1 + Z\/g) /2 and w? = (—1 - Z\/g) /2, the remaining error satisfies
2

w? —2

316, = ‘wi exp ((w? — 2)A3)

5 €XP (w— Z)Al/gt)‘ + ‘

1 1 2
_ —5AY3E/2) < 2. 2 —5A\Y3¢/2
<|w_2’+|w2_2‘)exp( 5 /)_ 5exp( 5 /),

since w — 2 and w? — 2 each have real part —5/2. Putting all together

! 11
[ e (2 Vis)ds = £ = S (-0V1) < 2.3
0
Since EM}? = exp (—2A!/3t) EY}?, the desired result follows. O

We use the previous calculation to get bounds for FA?, EL? and EX?, which will
be useful later.

11



Lemma 2.6. Let a(-),l(-) and z(-) be as in (1.7). Then

27 27 27
EA? < ?a2(t), EL? < 712(75), EX}? < 77;2@).
Proof. By (2.3) we have
t 1 4 43 1
/0 exp (—2)\1/38) V’( )dS S ? + B = 1—5 S 5 (24) intbd1l

Now using Lemma 2.4
t
BA = (AP + [ AP aF(s). BLE = (BLP+ [
0 0
t
EX? = (EX,)*+ / EX? dF(s).
0

Solving the renewal equations FA? = ¢, xV (t), E G xV(t) and EX? = ¢,V (1),
where V(-) is as in Lemma 2.2 and ¢,(t) = (EAt) &i(t) = (ELy)? and ¢,(t) =
(EX;)?. A crude upper bound for ¢,(t) is 9a*(¢). Since a(t —5) = a(t) exp (—/\1/33),

3a?(t)

a®* V(t) = a*(t) {1 - /Ot exp (=AY3s) V'(s) ds] < — (2.5)

by (2.4). Hence FA? < 9a* x V(t) < (27/2)a?(t).

Similarly using the bounds 9I?(¢) and 9z%(t) for ¢;(t) and ¢, (t) respectively and
noting that I(t — s)/1(t) = z(t — s)/z(t) = exp (—A!/%s), we get the desired bounds
for EL? and EX2. O

Lemma 2.7. Let Ji, Ky = e (X, + L+ 12 A,) when n = w\/3, w2 X3 respectively.
Then J; and K; are complex martingales with respect to the filtration F;, and

~ ~ 1 1 2
E|J,%, B|K,|* = anp(Q)\l/?’t) + 3 + 6, where |0 < 3 eXP (A\3¢)2),

and hence E|J,|?, B| K> < (4/3) exp (2A1/3¢).

Proof. Let h(t,z,¢,a) = e”"(z +nl+na), and let £ be the generator of the Markov
process (t, Xy, Ly, Ay). (1.6) implies £Lh = 0, where = A'/3w, A\'/30,?, so that .J, and
K, are complex martingales from Dynkin’s formula.

First we compute E|.J;|?, where J; = exp ()\1/ 3wt) Jt For that we use Lemma 2.4

with ¥; = J; and Z; = J,, the complex conjugate. Since J, is a complex martingale
with Jo = 1 and w = (-1+1iv3) /2, EJ, = 1 and hence

|EJ,|? = exp(=A3t).

12



Using Lemma 2.4 E|J,|> = |EJ,|* + [, E|J,s|* dF(s). Solving the renewal equation
as we have done twice before

t
BT = exp(—AV3%) + / exp(—\3(t — )V (s) ds.
0

Repeating the first part of the proof for K; = exp (A"/3w?t) K, we see that E|K,|? is
also equal to the right-hand side above.
The integral is exp(—A'/3t) times

t
%/ exp ()\1/33) A3 [exp ()\1/35) + wexp (Al/gws) +w?exp (A1/3w23)} ds
0
1 1 w
i L 1 {exp (2)\1/315) —1}+ o1 {exp ((w+ 1)AY3) — 1}
W2
t e {exp ((* + DAVt) — 1}
Now using 1 = —w — w? and w? =1,
_1_ w o w? __1_w3+w+w3+w2 __§
2 wt+l w4l 2 Wt wldw+l 2

Since w = (—1+14v/3) /2 and w? = (—1 — iV/3) /2, if we take

2
b= 5 | o (o + DA0) 4 o (4 DAY then

1 1
36 < <\w 1] e 1!) exp (A\'/?/2) < 2exp (A°t/2),

since each of w + 1 and w? + 1 has real part 1/2. Putting all together
E|J,? < éexp ()\1/325) + %exp (—)\1/315) + gexp (—)\1/315/2) : (2.6) |Jbd
which completes the proof, since E|.J,|?/E|J;|* = exp(A\'/3t) = E| K[>/ E|K,|>. O
Lemma 2.8. If M = limy_,., M;, we have P(M > 0) =1 and
exp(=AY30) Xy, A3 exp(=AY3t) Ly, A2/ exp(=\Y3t) A, — % a.s. and in L.

Proof. M = lim;_,., M, exists a.s. and in L?, since M, is an L? bounded martingale.
Recall that

I = X, + \N3L, + 2234,
J = X + AL+ WA A,
K, = X, + WXL+ wAB A,

13



Since 1 +w + w? =0 and w3 =1,

3Xt = It —|— Jt + Kt7
SNYBL, = I, 4+ W, + wKy, (2.7)
3NYBA, = I, + wJ, + WK,

Since exp(—A/3t)I, — M, it suffices to show that exp(—AY/3t).J; and exp(—\'/3t)K,
go to 0 a.s. and in L2, We will only prove this for .J;, since the argument for K, is
almost identical. J, is a complex martingale, so |jt| is a real submartingale. Using
the L? maximal inequality, (4.3) in Chapter 4 of Durrett (2005), and Lemma 2.7,

- - 16
2 2 1/3
E (S??iiuS‘ ) <AE|J|* < 3 exp(2A7/°t). (2.8)

The real part of w is —1/2. So writing J, = exp(A/3(1 —w)s) - exp(—=A/3s).J,, we see
that

E (max |J;|2> > exp(3A/30)E (max |exp(—A1/3s)Js}2) . (2.9)

u<s<t u<s<t

Combining these bounds with Chebyshev inequality, and taking t,, = 2A~/3logn for
n=12...

P (tngnslgfiﬂ }exp (_)‘1/35) Jsf > 8) <e’F (tn%rslggiﬂ ‘exp(—)\l/3s)JS|2)

16

16 1)
< 35—2 exp (A3 (2ty41 — 3t,)) = 16 »(nt1)]

3 nb

for any € > 0. Summing over n, and using the Borel-Cantelli lemma

|exp(=AY35)Jy| — 0 a.s.

(2.10)

To get convergence in L? we use (2.6).
4
E |exp (—)\1/375) Jt}Q < 3 exp (—/\1/325) — 0 ast — oo.

To prove that P(M > 0) = 1 we begin by noting that convergence in L? implies
that P(M > 0) > 0. Every time a new balloon is born it has positive probability of
starting a process with a positive limit, so this will happen eventually and P(M >
0) =1. m

3 Proof of Theorem 2

Recall that o(e) = inf{t : A; > eN?} and 7(¢) = inf{t : C;y > eN?}. Also recall the
definitions of a(-),I(-),z(-) and S(-) from (1.7) and (1.8). Note that a(S(g)) = eN?
and A;/a(t), L;/I(t), X;/z(t) — M a.s. by Theorem 1. We begin by estimating the
difference between them.

14
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Lemma 3.1. For any v,u > 0

P (Sup [Ae/a(t) — M| = 72> < Oy texp (=APu)

t>u

for some constant C. The same bound holds for P (sups, |L¢/l(t) — M| > ~?) and
P (supys,, [ Xe/2(t) — M| = 42).

Proof. Using (2.7) A;/a(t) = M; + wexp (—A\/3t) J; + w? exp (—AY3t) K;. For 0 <
u < t the triangle inequality implies

|Ac/a(t) — M| < [ My, — M|+ |exp (—AY3t) J| + |exp (=AV3¢) K] . (3.1) [bd1

Taking the supremum over ¢,

P (sup Ay fa(t) = M| > 72)

t>u
<P M, — M| >~2%/3)+P AN 23) 3.2
<P (sup = M| 2 92/3) + P (sup oxp (-X50) 4] = 7%/ (32) [supd]

t>u

+ P (sup |exp (—)\1/3t) Kt‘ > 72/3) .

To bound the first term in the right hand side of (3.2) we note that

t>u u<t<U

E (sup | M, — M|2) = lim E (max | M, — M|2) :

Using triangle inequality |M; — M| < |M; — M, |+ |M, — M|. Taking supremum over
t € [u, U] and using the inequality (a + b)? < 2(a® + b?),

E(max \Mt—M\2> <2 <E<max ]Mt—Mu\z) —l—E]Mu—M|2).

u<t<U u<t<U

Using the L? maximal inequality, (4.3) in Chapter 4 of Durrett (2005), and orthogo-
nality of martingale increments,

E (maX | M, — Mu|2> <A4E(My — M,)* = 4(EM{ — EM?).

u<t<U

Since the martingale M; converges to M in L?, EM? = lim;_,o, EM? = 8/7. Then
using orthogonality of martingale increments and Lemma 2.5,

E(M, — M)* = EM? — EM} < exp (—\"?u).

Combining the last four bounds with Lemma 2.5, and using Chebyshev inequality

P (sup |M; — M| > 72/3) <9y 10exp (—AYu) . (3.3)

t>u

15



To bound the second term in the right hand side of (3.2) we take ¢, = u +
2\~ Y3logn for n =1,2,... and use an argument similar to the one leading to (2.10)
together with Chebyshev inequality to get

P<sup lexp (—A'/3) Jy| > 72/3) < gp( max |exp (—=AY5¢) J,| > 72/3)

t>u tn <t<tni1
00 2
<ov 3B max fexn (<)
n=1 nee=

16 4
<9- 37 4 ;exp()\l/?’(%n“ — 3t,))

o0 4
B 4 13 (n+1)
=48y " exp(—A"7"u) E 5 (3.4) |supbd2

n=1

Repeating the previous argument for the third term in the right hand side of (3.2)
we get the same upper bound as in (3.4). Combining (3.2), (3.3) and (3.4) we get the
desired bound for A;/a(t).

The same bound also works for both L;/I(t) and X;/z(t), since using (2.7)

Li/1(t) = My + w? exp(=AY31) J, + wexp(— A3t K,
X, /x(t) = M, 4 exp(=\3t)J, + exp(—A\3) K,
and so the upper bound in (3.1) also works for L;/l(t) and X;/xz(t). O

We now use Lemma 3.1 to study the limiting behavior of o(¢).

Lemma 3.2. Let W. = S(¢/M), where S(-) is as in (1.8) and M is the limit random
variable in Theorem 1. Then for any n > 0

Nlim P(|Aw. — eN?| > nN?) = ]\}im P(|Ly, — eN2-°/3| > pN2-o/3)
= lim P(|Xw, —eN>7>| > gN?720/%) = 0.

N—oo

Proof. Since P(M > 0) = 1, given 6 > 0, we can choose v = 7(#) > 0 so that v < n/e

and
P(M <) <. (3.5)

Using Lemma 3.1 we can choose a constant b = b(, #) such that

P( sup |A¢/a(t) — M| >72> < 0.

t>bNo/3

Combining with (3.5)

P < sup |Ai/a(t) — M| > 7M> < 26.

t>bNa/3

16



renewalineq

Since a(W.) = eN?/M, by the choices of v and b,

P(|Aw, —eN?| > 9N?) < P(|Aw. —eN?| > eyN?)
= P(|Aw./a(W.) — M| > vyM) < 20 + P (W, < bN*/?).

By the definition of S(+),
P(W. <bN**) =P (M > 3b5N2 2a/3) 0

as N — oo, and so limsupy_,.. P (|Aw. —eN?| > nN?) < 20. Since § > 0 is arbi-
trary, we have shown that

lim P (JAw, — eN?| > n)N?) = 0.
Repeating the argument for Ly, and Xy, and noting that I[(W.) = eN?~%/3 /M and
x(W.) = eN?722/3 /M, we get the other two assertions. O
As a corollary of Lemma 3.2 we get the first conclusion of Theorem 2.
Corollary 1. As N — oo, N=%/3(g(e) — S(¢)) L. log(M).

Proof. For any n > 0 choose v > 0 so that log(1 + v) < n and log(1 — ) > —n.
Let W, be as in Lemma 3.2. Clearly W11 = S(g) + N*/3[log(1 + 7) — log M] and
Wii—y)e = S(e) + N*/3log(1 — v) — log M]. Using Lemma 3.2

P[N"3(a(e) — S(e)) > —log M + 1]

< P (0(2) > Waine) = P (4w, < =N?) =0,
P[N3(o(e) — S()) < —log M — 1]

< P (0(e) < W) = P (Aw, . > eN?) =0

as N — oo, and the proof is complete. O

The second conclusion in Theorem 2 follows from C; < A;. To get the third we
have to show that when A;/N? is small, Cy/N? is not very much smaller. To prepare
for that we need the following result.

Lemma 3.3. Let F(t) = M\3/3!. If u(-) and B(-) are functions such that u(t) <
—I—fo (t — s)dF(s) for allt >0, then

u(t) < B V(1) /ﬁt—st)
where V(+) is as in Lemma 2.2.

17



comparel

Proof. Define B(t) = [(t) + ftu(t — 8)dF(s) — u(t). So B(t) >0 forallt > 0. If
B(t) = B(t) — B(t), then

t
u(t) = B(t) + / u(t — s)dF(s).
0
Solving the renewal equation we get u(t) = 3%V (t), where V(-) is as in Lemma 2.2.
Since B(t) < B(t) for all t > 0, we get the result. O
We now apply Lemma 3.3 to estimate the difference between FA; and EC;.
Lemma 3.4. For anyt > 0 and a(-) as in (1.7),

11a?(t)

EC, 2 BA — —

Proof. In either of our processes, if a center is born at time s, then radius of the
corresponding disk at time ¢ > s will be (¢t — s)/v/2m. Thus = will be covered at time
t if and only if there is a center in the space-time cone

K, = {(y, s)ET(N) x[0,t]: |y — x| < (t—s)/\/%}. (3.6)

If 0 = s, s1, So, ... are the birth times of new centers in C;, then

P(x & Ci|so, 51, 52,...) = H [1_ (t;]\iz) } < exp [_ Z (tzz\;) ] |

1:8, <t 1:8, <t

since 1l —x < e . Let q(t) = P(x ¢ Cy), which does not depend on z, since we have a
random chosen starting point. Recall that X, is the number of centers born by time
t in C;. Using the last inequality

g(t) < Eexp {— /Ot (t= S)gd)?s} :

2N?

and EC; = N?(1 —q(t)). Integrating e ¥ > 1 —y gives 1 —e™® >z —x?/2 for z > 0.
So

EC, > N’E {1 — exp (— /Ot (’52_—]\[‘2)2@28)1 (3.7)

[t ([ )]

> N2F

18



For the first term on the right we use E)E't =1+ f(f EC.ds. For the second term on
the right, we use the coupling between C; and A; described in the introduction, see
(1.1), so that we have f(f(t — 5)%dX, < fg(t — 5)?dX,. Combining these two facts

2 toyo\2 togo\2 2
E(Jtzt—+/ (t 23) NEC,ds — —— U (t 23) dxs]
0 0

2 2N?
t2 bt —s)? EA?

The last equality follows from (1.2), as does the next equation for EA;.

EA_f+/tva(s)ds—ﬁ /t(t_8)2)\EAds (3.9) [eq13
TN R =271 ) 2 sds. :

Here V(-) is as in Lemma 2.2 and EA; = V'(t)/\ by Lemma 2.3. Combining (3.8)
and (3.9), if u(t) = EA; — EC;, and F(s) = A\s?/3!, then

EA? bt —s)? EA? t
utﬁ—t+/—)\usds:—t+/ut—rdFr,
1< g+ | g ds = 5+ [t —r)aF(

where the last step is obtained by changing variables s — t —r. If 3(t) = EA?/2N?,
then by Lemma 2.6 3(t) < 27a*(t)/4N?, and using Lemma 3.3 and (2.5)

27 . 27 3 ,

u(t) < B V() < 5z() « V() < 5z5a (),

which gives the result, since 81/8 < 11. Il
We now use Lemma 3.4 to get the last conclusion of Theorem 2.

tausigma| Lemma 3.5. For any vy >0

1/3
limsup P(r(¢) > o((1+7)e)) < P (M < (1+7)e"/?) + 1157.
N—oo

Proof. Let U = o((1+7)¢e) and T = S(¢?/3), where S(-) is as in (1.8). Now
S(¥3) = S((1 +7)e) = N*/3 {—%log(e) —log(14+7)] .
It follows from Corollary 1 that limsupy_,. P(U > T)
<P (—log(M) > —é log(e) — log(1 +7)) =P (M < (1+7)e?).
Using Markov inequality, Lemma 3.4, and a(T) = ¢?/3N?,
E(Ar —Cr) _ 6(a(T))? gl/3

<11 - —. 1 b3
~eN? ~ ~4eNt T ~y (3.10) [b3]

P (|Ar — Cr| > 7eN?) <

19



Using these two bounds and the fact that |A, — Cy| is nondecreasing in t, we get

limsup P[r(e) > o((1 + 7)e)] = limsup P [|Ay — Cy| > veN?]

N—oo N—oco

<limsup P(U > T) + limsup P [|Ay — Cy| > 7eN*,U < T|

N—o0 N—o0
<limsup P(U > T) + P (|Ar — Cr| > 7eN?),
N—o0
which completes the proof. O

4 Proof of Theorem 3

Let CJ, be the set of points covered in C; at time ¢ by the balloons born before time
s. If we number the generations of centers in C; starting with those existing at time
s as Ci-centers of generation 0, then C° 51 15 the set of points covered at time ¢ by the
generation 0 centers of C;. Let C;, be the set of points, which are either in C2,, or are
covered at time t by a balloon born from this area. This is the set of points covered
by Ci-centers of generations < 1 at time ¢ , ignoring births from Cj, \ C7,, which are
second generation centers. Continuing by induction, we let C¥, be the set of points

and CF, = ‘C ‘ be the total area covered by C;-centers of generatlons 0<j <k
at time t. Slmllarly A, denotes the total area of the balloons in A; of generations
j€40,1,...,k} at time ¢, where generation 0 centers are those existing at time s.
Recall the following definitions from (1.7), (1.8), (1.11) and (1.12).
a(t) = (1/3)N?/3 exp (N_O‘/3t) :
S(e) = N°3[(2 — 2a/3)log N + log(3¢)],
R = N°3[(2 - 2a/3)log N — log(M)],

where M is the limit random variable in Theorem 1, and for log(3e) < t,
() = R+ N3t W =(log(3¢)), and I., = [log(3¢),1].

Note that () < 0 only if M > N?72e/3¢,
Obviously C7, < A?,. For the other direction we have the following lemma.

Lemma 4.1. For any 0 < s < t,
a*(s)

B09, > BAY, ~ Sy (1 ).

where for some positive constants ¢y, co and cy,
p(x) = ¢ + cox? /2! + cyat /4. (4.1)
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Proof. By the definition of AY

s,t)

s a2 2
A(s),t = / % dX, = %Xs + (lf — S)Ls + A,. (4.2) Ast
0

For the second equality we have written (t —7)? = (t —s)? +2(t —s)(s —7) + (s — 1r)?
and used (1.2). As in Lemma 3.4, a point x is not covered by time ¢ by the balloons
born before time s, if and only if no center is born in the truncated space-time cone

 — {(y,r) eT(N)x[0,8]:|ly—z| < (t—r)/\/%}.

So using arguments similar to the ones for (3.7) and the inequality 1 —e™* > z —2?/2
for z > 0, which comes from integrating e™¥ > 1 — y,

0 2 (t-1)? s
EC&t > N*FE |:1 — exXp <—/O WdXT)}

t-r)? o1 /S(t—r)2 2\’
E ~——dX,— -F dX, )
/0 2N2 27\ J, 2N?
For the first term on the right, we use EXt =1+ A fot EC.ds. For the second term

on the right, we use the coupling between C; and A; described in the introduction,
see (1.1), to conclude that

/ (t—r)2dX, < / (t—r)?dX, =24,
0 0

Combining these two facts, using the first equality in (4.2), EX; = 1+ A f(f EA,ds,
and Lemma 3.4,

> N?

t2 S(t—r)? E(A7,)?
0 - A _ Vst
ECS, > 5 —|—/0 5 ANEC, dr e

12 S(t—r)? S (t—1r)? Xa®(r) E(AY,)?

> YU NEA dr — 11 _ et

Z 3 +/0 5 AEA, dr /0 5 e dr e

_ 40 *(t—1)? Aa?(r) B(AY,)?

= EA&t — 11/0 2 N2 d?" — W (43) eql

To estimate the second term in the right side of (4.3), we write
(t—7)?/2=(t—5)*/2+ (t—5)(s—7)+ (s —7)%/2,
change variables r = s — ¢, and note a(s — q) = a(s) exp (—)\1/3q), to get

S _ )2 )2 s
/ (t QT) )\GQ(T) dr = a2<5) |:(t 25> )\2/3/ )\1/3 exp (_2)\1/3q) dq
0 0

2

+(t— s))\l/?’/ ABgexp (—2A"3q) dg + / )\% exp (—2\3q) dgq
0

a?(s)
2

S [(t—28>2)\2/3+ (t— S))\l/S + 1:| ) (44) ond
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For the last inequality we have used

S o k!
/ rF exp(—pr) dr < / rk exp(—pr) dr = pEss
0 0

To estimate the third term in the right side of (4.3) we use (4.2) to get
E(AY,)? <3[EXZ(t—s)'/4+ EL(t — s)* + EAZ.

Applying Lemma 2.6 and using the fact that a(s) = A~/31(s) = A\7?/3x(s),

AV
E(/lgt)2 <3- 2?7 [x%s)% + I2(s)(t — 5)* + az(s)}
Y AV
< 243a’(s) {%/\4/3 + %AW + 1} . (4.5)
Combining (4.3), (4.4) and (4.5) we get the result. O

To show uniform convergence of Cf, w() to Cy(y, we also need to bound the dif-
ference Ay and A¥, for suitable choices of s and ¢.

Lemma 4.2. If T = S(e%/3), where S(-) is as in (1.8), then for any t > 0

o0

t

k 2/3 n12
EAT—i—tNa/?’ - EAT,T—&-tND‘/S S g / N Z F
j=k+1""

Proof. Using (4.2) EAY, = EA, + EL,(t — s) + EX,(t — s)?/2. If X}, and L%,
denote the number of centers and sum of radii of all the balloons in A; of generations
j€{1,2,...,k} at time ¢, where generation 0 centers are those which are born before
time s, then for ¢ > s,

d d d
EEX;,t = NﬁaEA(s],ta %ELi,t = EXsl,tv EEA;t = ELi,t-

Integrating and using (4.2) we have

r t — 2 t— 3
EX!, = N~ |(t—s)EA, + ( 218) EL, + % EXS} ,
I yea | (E=9)? (t—s)° (t—>s)
EL!,=N S BA 4 - EL + - EX, |
r t — 3 t — 4 t — 5
BAl, = N~° ( 315) BA, 4+ 4'3) EL,+ 5'3) EXS] .

22
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Turning to other generations, for k¥ > 2 and t > s,

d _

o (Eth - EXQ;l) =N (EA’;;l — EA’;tz) ,
S (BL, - BLEY) = (BXE, - BXEY),

d _

o (BAY, = BASY) = (BLY, - BLEY),

and using induction on k& we have

o t — S>3] (t _ S)3J+1 (t o S)3j+2
EAk, =3 N {(—,EANL U pro S0 gy,
ot ; (35)! (35 + 1! (35 + 2)!

Since A';t T A, FA; = limg_, EAQt. Replacing s by T and t by T+ tN®/3,

EAr inoss — EA;THNQ/S (4.6) |eq5
s 37 3j+1 3 3742 2o/

= —FA — N*°EL — N EXr|.
> [ G e+ Gy d

Using the fact that EAp + N3ELp + N**3EXy — 3a(T) = 0 and a(T) = e2/3N?,

the right hand side of (4.6) is < 2/3N? > =gy /4!, which completes the proof. [J

Recall that for log(3e) <'t,

() =& |1+ = toggae) + CEE] g — g - )

Lemma 4.3. For any t < oo, there is an g9 = €o(t) > 0 so that for 0 < e < &,

im P (sup ‘N_QA?,VW(S) — go(s)’ > n) =0 foranyn >0,

1
N—oo SEIe,t

P inf N72(CY — AY < -8} < P(M < &/3) 4 /12,
Wab(s) Wab(s)

56157t
Proof. To prove the first result we use (4.2) to conclude

t—1 2
A = w]\[m/g){w + (t —1og(32)) N** Ly + Aw.
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Applying Lemma 3.2

lim P (sup }N_2A?/V,w(s) - go(s)’ > 7})

N—oo SEIe,t
2n
< lim P(|N" @283 X, — ¢ >
= N (' w el 3(t — log(3¢))2
lim P IN-Ca/3)f >+
o (| w el 3(t — log(3¢))

+ lim P(IN"2Ay ] > g) —0.

N—o0

Take g9 = £¢(t) be such that sé/lzp(t—log(i%e)) < 1, where p(+) is the polynomial in

(4.1). Let T = S(*3), where S(-) is defined in (1.8), and T’ = T + (t —log(3¢)) N*/3.

Using the fact that A9, —C?_, is nondecreasing in s, Markov’s inequality, and then
Lemma 4.1 we see that

0 0 7/6 AT2
P (sup |AW,1/;(5) - Cw,w(s)‘ >SN W < T)

SGIE,t
0 0
E|AT,T’ - C(T,T/|
57/6N2

< P(|A} — G| > e7ON?) <

L A(D)p(t — log(32))
e7/6 N4

Noting that P(W > T) = P(M < £'/3), a(T) = £*3N?, and £'/*?p(t — log(3¢)) < 1
for £ < g9 we have

P (sup ‘Aw’w(s) — CW,w(s)‘ > 67/6N2> < P (M < 61/3) +€1/12.

s€le
which completes the proof. O
Our next step is to improve the lower bound in Lemma 4.3. Let
pl =N Ayym — ",

On the event
F = {|N72Cly )| = 0 forall s € I}, (4.8)
which has probability tending to 1 as ¢ — 0 by Lemma 4.3, CI[BV,w(s) can be coupled
with a process By ) so that N72|B) | = p) and Cyy ) 2 By, for s € I, If for
k>1 sz(t) is obtained from B?b(t) in the same way as CI’,“VW) is obtained from C8V7 o(t)?
then on F Cltfv,w(s) D BZ(S) for s € I.;. For k > 1 let

ps = N72Bj ).
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We begin with the case k = 1. For fy(t) as in (4.7), let

aw=1=0-pyes (- [ pa). (49)

Lemma 4.4. For any t < oo there is an gy = €o(t) > 0 so that for 0 < e < gy and
any 6 > 0,

lim sup P [ inf (N_Qcév,zp(s) — fi(s)) < —(5} < P(M < /3) + V12,

N—o0 s€let

Proof. As in Lemma 3.4, if © ¢ B?z;(ty then = & lep(t) if and only if no generation 1
center is born in the space-time cone

2= {09 €TV x W9 ()] : Iy —al < (¥(t) — )/V2r .

Conditioning on GP = O'{BS}(S) s € I.;}, the locations of generation 1 centers in
B} is a Poisson point process on I'(N) x [, 1 (¢)] with intensity

N2 X BN = p) g N ™%,
Using this and then changing variables s = ¢(r), where 1 (r) = R + N*/3r,

b(t) 2
P (z & Byy|G)) = (1 - p7) exp (—/W MP%(S)NQ ds)

t t—7r 2
= (1—p})exp (—/ (T)Pgdr) :
log(3e)

Let E,, = {z ¢ Bi}. Since K, and K;, are disjoint if [z — y| > 2(t —
log(3¢))N/3 /y/2m, the events E,; and E,; are conditionally independent given G if
this holds. Define the random variables Y,, x € I'(N), so that Y, = 1 if E,; occurs,
and Y, = 0 otherwise. From (4.10)

B (1169 = (1= e (- [ t ). (110)

og(3¢)

Using independence of Y, and Y, for |z — 2| > 2(¢t — log(3¢))N*/3/y/27, and the fact
that {2 : [z — 2| < 2(t — log(3e))N*/3/v/27} has area 2(t — log(3¢g))2N2*/3,

var </ Y, dx g?)
z€I'(N)

— [ [E(VYIG) - B (%16 E(Y.IGY)] ded:
z,2€L(N)

< N?-2(t — log(3¢))2N2/3, (4.11)
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Using Chebyshev’s inequality, we see that

(

Combining (4.10), (4.11), and (4.12) gives
8(t — log(3e))?

P(’(l—pi)—(l—p?)exp(—/t @_—S)ngds) g?)g 2 \'2—2a/3
log(3¢) 2 n N “

The same bound holds for the unconditional probability. By Lemma 4.3 if n > 0 and

4var <f o Yo dﬁ‘ go>
zel(N) - % t
Q?> < Enz ]\)]4 L (4.12)

[ B () de] > L
2€T(N) 2

n
>_
2

Fon = { sup ’PS — fo(s)] < 77} , then A}im P(Focm) =0.

8615,7:

Let ' = n[1+ (t —log(3¢))?/3!] " /2. Using (4.9) and the fact that for z,y > 0

Yy
/e‘zdz <l|z -y, (4.13)

we see that on the event [} ,/, we have for any s € I,

a-dew (- [ B a0 a0

og(3e)
L I A e

log(3¢) 3!

e

IA

n
5"
So for any s € I,

lim P (ot = fi(s)| > ) < Jim P (F,)

+ lim p(‘@_p;)_u—pg)exp (_/1 (S;r)prdr)

N—oo 0g(3¢)

n
> =] =0.
)

Since n > 0 is arbitrary, the two quantities being compared are increasing and con-
tinuous, and on the event I defined in (4.8) N72CY ) > p; for s € I,

lim sup P [ inf (N_QCI}‘W(S) — fi(s)) < —5}

N—o0 s€le

N—o00 5615775

< P(F°) + limsup P (sup |p; — fi(s)] > 5) < P(F°),

and the desired conclusion follows from Lemma 4.3. O
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To improve this we will let

ﬂﬂ@=1—0<mmmdf[ (“;ﬁn®—n4@mﬁ, (4.14) [fiverz

0g(3¢)

and recall that from (1.15) that as k T oo, fx(t) T f-(¢).

Lemma 4.5. For any t < oo there is an €9 = €o(t) > 0 so that for 0 < e < gy and
any 6 > 0,

limsup P [ inf (N *Cys) — f-(5)) < —(5} < P(M < e¥/3) 4 e¥/12,

N—oo s€le

Proof. Conditioning on gf =0 {Bi(s) 0<j<k,s€ Iat}, we have

t) = (1= yew (- [ U5 (=) ).

Let Fiy = {supes, 105 — fu(s)| <n}, and ' = n[1 +2(t — log(3¢))3/3!] " /2. Using
(4.14) and |e® —e7Y| < |z — y| for z,y > 0, we see that on the event Gy, =
Fyp N F_1,y, for any s € I,

'(1 — pi) exp (— /k;(ss) 4 _28)2 (0% =Pk dS) —(1- fm(t))‘
<10t - a-nniear [ 5P

log(3e) 2
=1+ 21/ (t — log(3¢))*/3 < n/2.

Bounding the variance as before we can conclude by induction on k that for any
n>0

P <:zc ¢ Bt

fim P(sup 1 — (o) >77> “o (115)

N—o0 s€le ¢

Next we bound the difference between fi(t) and f.(¢). Let G(t) = t*/3! for t > 0,
and G(t) = 0 for t < 0. If %k indicates the k-fold convolution, then for £ > 1, using
arguments similar to the ones in the proof of Lemma 2.2, G**(t) = 3 /(3k)! for t > 0,
and G**(t) = 0 for t < 0. Now if f+xG**(t) fo ft—=r) dG*k( ), fr(-) = fr(-+1og(3¢))
and f.(-) = f.(- + log(3¢)), then changmg variables s — t — 7 in (1.14) and (1.15),
and using the inequality in (4.13),

| fi(t — log(3¢)) — fo(t — log(3¢))]
exp(—fk,l x G(t —log(3e))) — exp(—f6 * G(t — log(3¢)))
< | fomr — o+ G(t —log(3e)).

IN

A

27



Iterating the above inequality and using | f-(s) — fo(s)| = f(s) — fo(s) < 1.

o) = f(0)] = | fi(t = log(3¢)) — [o(t — log(3¢))|

< |fo— fel * G™(t —log(3¢)) (4.16)

(t — log(3¢))3*
(3k)!

< G (t — log(3¢)) =

where the last equality comes from (2.1).
Choose K = K(e,t) so that (t — log(3¢))**/(3K)! < §/2. Since Cyy) > C{/gv,w(t)
for any k > 0, and on the event F' defined in (4.8), we have Ci]jV,z/;(t) > |B$(t)|, we have

P (sler}ft (N72Cy) — f2(s)) < —5) < P(F)+P (SUP 08— f(s)| > 5/2> :

SEIEJ

Using (4.15) and Lemma 4.3 we get the result. O

It is now time to get upper bounds on Cy). Recall go(t) defined in (4.7), let
g-1(t) =0 and for k > 1 let

a(®) = 1= (1= gealye (- t

og(3e) 2

As in the case of fi(t), the equations above imply

o) =1 = =aopesn (= [ E5Eg i),

so we have gx(t) T g-(t) as k T 0.

Lemma 4.6. For any t < oo there exists €9 = £o(t) > 0 such that for 0 < e < gy and
any 6 > 0,

sup (N 72Cys) — g:(s)) > 6| < P(M < l/3) 4 3,

Sels,t

lim sup P

N—oo

Proof. Cyy iy < A%/Mt). If ¢ = N _QA%W@) is the fraction of area covered by
generation 0 balloons at time (t), generation 1 centers are born at rate N 2_a¢2}_1 )"

Let ¢} denotes the fraction of area covered by centers of generations < 1 at time 1)(¢),
then using an argument similar to the one for Lemma 4.4 gives

lim P <sup Bt — gi(s) > 77) =0

N_)OO 861571

28



for any n > 0. Continuing by induction, if ¢¥ is the fraction of area covered by centers
of generations 0 < j < k, then by an argument similar to the one for Lemma 4.5,

lim P (ssel}g |65 — gi(s)| > 'fz> =0 (4.17)

for any 7 > 0. Now using an argument similar to the one for (4.16)

sup [gn(s) — 9u(5)] < A (418) [og8

SEIE,t

Next we bound the difference between C‘]/C[/,’L[}(t) and Cy(. Let T = S(%/?), where S(-)
is as in (1.8). Using the coupling between C; and Ay,

Cyy — Cé“v,wm < Ay — Alév,w)-

Using the fact that EA,,, — EAY |, is nondecreasing in s, the definitions of W and
T, Markov’s inequality, and Lemma 4.2, we have for 77 = T + (t — log(3¢))N*/3,

IN? IN?
4
< P(M < &) + o BE(Ap — Ar)
4223 0 (¢ — log(3e))
<P(M <+ =3 : (}f(?’g)) |

j=k+1
Choose K = K(g, ) large enough so that > . (¢t —log(3¢))’ /5! < 6/4. If we let
Fg = { sup (Cygs) = Ciys)) < (5/4)N2} , then P(FS) < P(M < '/3) 4 %3,
SEIa,t

By the choice of K and (4.18), sup,¢;_, |9k (s) — g=(s)| < §/2. Combining the last two
inequalities and using the fact that N=>C} o) < K =N _QA{/‘(W(S),

P (sup N72Cys) — ge(s) > 5) < P(Fp)+P (Sup |05 — gic(s)| > (5/4) .

SEIg’t SEIE’t

So using (4.17) we have the desired result. O

Our next goal is the
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Proof of Lemma 1.1. We prove the result in two steps. To begin we consider a func-
tion h.(-) satisfying h.(t) = e'/3 for t < log(3e).

he(t) =1—exp (— /log(3€) (- 8)26_8 ds — /lt (t— S)Qha(s) ds) (4.19) |hep

o0 2 3 0g(3e) 2

for t > log(3¢), and prove that h.(-) converges to some h(-) with the desired properties.

Lemma 4.7. For fized t, h.(t) in (4.19) is monotone decreasing in .

Proof. 1f we change variables s = t — u and integrate by parts, or remember the first
two moments of the exponential with mean 1, then

t [e§)
/ (t—s)e’ds = / ue' " du = €,
—0o0o 0

t t _ 2 oo 2 9]
/ Qes ds = / Yot dy = et/ ue " du = . (4.20) |id1
—o0o 2 0 2 0

Using (t — 8)?/2 = (t —1)?/2+ (t — r)(r — s) + (r — 5)*/2 now gives the following
identity.

o 2 2

/7" ) [(t—r>2+<t_r>+1]_ (4.21)

Using (4.19), the inequality 1 — e~ < z, (4.20), and changing variables s =t — u,

1 bt —s)? 1
ho(t) — ¢! < ho(s) —=e* ) d
(t) 36—/1%(35) 5 ( () 36) s

t—log(3¢) 1 2
= / (he(t —u) — —et_“) Y du.
0 3 2

Applying Lemma 3.3 with A = 1 and §(-) = 0 to h.(- +log(3¢)) — exp(- + log(3¢))/3,

1
he(t) — get <0 for any t > log(3¢).

This shows that if 0 < e < § < 1, then hs(t) > h.(t) for t <log(3d). To compare the
exponentials for ¢t > log(3d), we note that

/1 P Gt <h5<s> - %) ds + /1 P ) )

og(3e) 2 0g(30) 2

2

t—log(39) U
< O—l—/ (he(t —u) —hg(t—u))?ds.
0

Applying Lemma 3.3 with A = 1 and 3(-) = 0 to h.(- +10g(39)) — hs(- + log(39)), we
see that h.(t) — hs(t) < 0 for t > log(39). O

30



Lemma 4.8. h(t) = lim._oh(t) exists. If h # 0 then h has properties (a)-(d) in
Lemma 1.1

Proof. Lemma 4.7 implies that the limit exists. Since 0 < h.(t) < e'/3, 0 < h(t) <
e'/3 and so lim;_._, h(t) = 0. To show that

h(t) = 1 — exp (— / g ;S)Qh(s) ds) , (4.22)

—00

we need to show that as e — 0

/1 “‘23) hg(s)ds—>/oo “‘28) h(s) ds. (4.23)

og(3¢)

Given 7 > 0, choose d = §(n) > 0 so that
6 [1+ (t —log(38)) + (t —log(30))?/2] < n/4.

By bounded convergence theorem, as ¢ — 0,

/t (= S)th(s) ds — S S)2h(s) ds.

0g(34) 2 log(30) 2

So we can choose €y = £¢(n) so that the difference between the two integrals is at
most 7/2 for any € < 9. Therefore if ¢ < gy, then

[ e [ S

og(3¢e) —00
log(34) t— 2 1
<749 E=9)"L s g
R 2 3

Using the identity in (4.21) we conclude that second term is
<26 [1+4 (t —1og(38)) + (t — log(36))2/2] < g

This shows (4.23) holds, and with (4.19) and (4.21) proves (4.22).
To prove lim;_,o, h(t) = 1 note that if A(-) #Z 0, then there is an r with h(r) > 0,
and so for ¢t > r

ot — s)? Lt —s)? t—r)3
/ ( 2)h(S)dSZh(T)/%dS:h(T)%—)OO

o0 T

as t — oo. So in view of (4.22), h(t) — 1 ast — oo, if h(-) Z 0.
The last detail is to show if h(-) # 0, then h(t) € (0,1) for all t. Suppose, if
possible, h(ty) = 0. (4.22) implies [ _h(s)[(t — 5)?/2]ds = 0, and hence h(s) = 0
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for s < tg. Changing variables s — t — r, and using (4.22) again with the inequality
1 —e™ <z, imply that for any ¢t > ¢,

h(t)g/ (t_;) h(s)ds:/o_oh(t—r)%dr.

— 00

Applying Lemma 3.3 with A = 1 and 3(-) = 0 to the function h(- + tg), we see that
h(t) < 0 for any t > to. But h(t) > 0 for any ¢, and hence h = 0, a contradiction. [

To complete the proof of Lemma 1.1 it suffices to show that |f.(-) — h.(:)| and
|g=(+) — he(+)| converge to 0 as ¢ — 0. To do this, note that if

log(3e) t— 2 s
ho(t) =1- exp <—/ ( 28> %d&’) 5

() =1 (= e (- | ) ).

0g(3e)

—e V| < |z —y|for 2,y >0,

then

and so using the inequality |e™®

et = 0] < o) = w0+ [ L5 ) - )] s

log(3e) 2

Now using the inequality 0 < e * — 1 + 2 < z*/2, and the identity in (4.21),

hal®) = (0] < 5 [ + elt ~ og(32)) + w}
< g {1 + (t — log(3¢))* + W} '

Now applying Lemma 3.3 with A = 1 and 3(t) = 1 + ¢* + t*/4 to the function

|he(- +log(3e)) — ge(- +log(3¢))],

we have |h.(t) — g-(t)] < (3¢2/2)5 * V(t — log(3¢)), where V(-) is as in Lemma 2.2.
Using A =1 in the expression of V(-) and Lemma 2.1,

BxV(t) / Bt —s)V'(s
t3k t3k+2 t3k+4
= 2 6 < 9¢.
: 0{(31@).+ Ghr2) Bkt =

So |h(t) — g:(t)] < (32/2) - 9exp(t — log(3¢)), and so

sup |he(s) — g-(s)| < 9ze' /2.

SEIa,t
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Repeating the argument for f.(-), and noting that |ho(t)— fo(t)| = |ho(t) —go(t)]|+£7/5,

3 1 9
sup |he(s) — fo(s)] < <9§£2 + 87/6> exp(t —log(3e)) = (581/6 + 56) e’
SGL;-,t

This completes the second step and we have proved Lemma 1.1. Il

Now we have all the ingredients to prove Theorem 3.

Proof of Theorem 3. Let h(-) be as in Lemma 1.1. Choose ¢ € (0,0/6) small enough
so that

sup [ge(s) — h(s)| < /2, sup |fo(s) = h(s)| < 6/2.

SEIE,t SEIEJ

Let D = {M < 3eN*72%/3}. On the event D, W = ¢(log(3¢)) > 0. So

P <sup |IN"2Cys) — h(s)| > 5) < P(D°) + P (N~*Cw + h(log(3¢)) > 6)

+ P (Sup (N72Cys) — h(s)) > 5) + P < inf (N72Cys) — h(s)) < —6) :

s€let s€lc ¢
(4.24)

To estimate the second term in (4.24) note that h(log(3e)) < (1/3)exp(log(3¢)) <
9/2, and
P(N7*Cw >§/2) < P (Aw > (/2)N?) — 0

as N — oo by Lemma 3.2. To estimate the third term in (4.24) we use Lemma 4.6
to get

lim sup P (sup (N72Cys) — h(s)) > 5)

N—oo s€l: ¢

< limsup P (sup (N72Cys) — g=(5)) > 6/2) < P(M < e'/3) 4+ 23,

N—oo s€l. ¢

For the fourth term in (4.24) use Lemma 4.5 to get

lim sup P < inf (N72Cys) — h(s)) < —5)

N—o00 SEIa,t

N—o00 SEIE,t

< limsup P ( inf (N72Cys) — f2(s)) < —6/2> < P(M < &Y3) 41/,

Letting ¢ — 0, we see that for any ¢ > 0,
lim P <sup |IN"2Cys) — h(s)| > 5) =0 (4.25) [eq2
> s€let
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It remains to show that A(-) #Z 0. Let £, be such that

cl/3
PIM < (1+7)e]+11— < 1.
v

Fix any n > 0 and let tq = log(3(1 + 7) + 3n). Using Lemma 3.2 and 3.5

limsup P (N 2Cy,) < ) = limsup P(7(e) > ¢(to))

N—oo N—oo

< limsup P[r(¢) > o(e(1 +7))] + limsup Plo(e(1 + 7)) > 1(to)]

N—oo N—oo

< limsup P[7(2) > o(e(1 +))] + limsup P (‘N‘QAwg(MHW (1) — n\ > )
N—oo N—oo
173
<PM < (147 +11— < 1.
Y

But if A(ty) = 0, we get a contradiction to (4.25). This proves h(-) # 0. O
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