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Abstract

Inspired by the use of hybrid cellular automata in modeling cancer, we introduce
a generalization of evolutionary games in which cells produce and absorb chemicals,
and the chemical concentrations dictate the death rates of cells and their fitnesses.
Our long term aim is to understand how the details of the interactions in a system
with n species and m chemicals translate into the qualitative behavior of the system.
Here, we study two simple 2 × 2 games with two chemicals and revisit the two and
three species versions of the one chemical colicin system studied earlier by Durrett and
Levin [28]. We find that in the 2× 2 examples, the behavior of our new spatial model
can be predicted from that of the mean field differential equation using ideas of [12].
However, in the three species colicin model, the system with diffusion does not have
the coexistence which occurs in the lattices model in which sites interact with only
their nearest neighbors.

1 Introduction

Game theory was invented by John von Neumann and Oscar Morgenstern [1] to study strate-
gic and economic decisions of humans. Maynard Smith and Price [2], see also [3], introduced
the concept into ecology in order to explain why conflicts over territory between male an-
imals of the same species are usually of the “limited war” type and do not cause serious
damage. Axelrod and Hamilton [4] studied the evolution of cooperation by investigating the
Prisoner’s dilemma game. Since that time, evolutionary game theory has been used to study
many biological problems including host-parasite interactions, ecosystems, animal behavior,
social evolution, and human language. For surveys see [5]–[8].

All of the references in the last paragraph study evolutionary games in homogeneously
mixing populations, in which case the frequencies (in continuous time) follow the replicator
equation. One can argue that long distance connections in human social network imply that
spatial effects can be ignored, but this is not true for systems in ecology and cancer. In his
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classic 1964 work, which introduced the notion of kin selection, Hamilton [9] mentions that
the viscosity of spatial populations helps promote altruistic behavior. However, much of the
more recent interest in the influence of space on ecological interaction can be traced to the
important 1992 work of Nowak and May [10, 11] who showed that spatial structure enhanced
the persistence of cooperators in Prisoner’s dilemma. Their competition was deterministic
and took place on the square lattice, but others have considered stochastic systems and
competitions taking place on graphs or in finite populations. In the references we list a
representative sample of work of this type, [12]–[16]. Dozens of references can be found in
[17] and [18].

There have been a number of studies of evolutionary games in spatially distributed pop-
ulations. However, up to now spatial models have been constructed by declaring that game
interactions occur only between a site x chosen at random and a set of neighbors y. Here,
we will take a different approach: cells produce and absorb chemicals, and the local chemical
concentrations dictate the death rates of cells and their fitness. This formulation is inspired
by hybrid cellular automata models of cancer. Some examples of this type of modeling can
be found in [19]–[25]. Hundreds more can be found in the book by Cristini and Lowengrub
[26]. These papers, which study highly detailed models numerically, provide another motiva-
tion for this study: we will study simplified systems in order to understand how the details
of the interaction translate into the qualitative behavior of the model.

1.1 Motivating example

To explain what we have in mind, we will consider an example first studied by Tomlinson
[27]. In this system, there are cells of three types.

1. Ones that produce a toxic substance.

2. Others that are resistant to the toxin, but not produce it.

3. Wild type cells that are neither producers nor resistant.

Based on the verbal description, Tomlinson write down the following game matrix.

i j = 1 2 3
1 z − e− f + g z − e z − e+ g
2 z − h z − h z − h
3 z − f z z

(1)

Here Gij is the payoff to a player who plays strategy i against an opponent playing strategy
j. Taking the rows in reverse order, z is the baseline fitness while f is the cost to a sensitive
cell due to the presence of the toxin. The cost of resistance to the toxin is h. In top row
e is the cost of producing the toxin, and g is advantage to a producer when it subjects a
sensitive cell.

It is interesting to note that in the same year [27] was published, Durrett and Levin
[28] used a spatial model to model the competition two strains of E. coli, whose behaviors
correspond to strategies 1 and 3 above: one produces colicin to which the other strain is
sensitive. In their model, there are also empty cells (denoted by 0). Thinking of a petri
dish, their system takes place on the two dimensional lattice. Individuals of type i > 0 give
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birth at rate βi with their offspring sent to a site chosen at random from the four nearest
neighbors of x Each species dies at rate δi due to natural causes, while type 3’s die at an
additional rate γ times the fraction of neighbors of type 1 due to the effect of colicin.

The first step in understanding the behavior of the system is to consider the mean-field
version, which takes place on finite square with the neighborhood of each site being the
entire grid. In this case if ui is the frequency of sites in state i then in the limit as the size
of the system goes to ∞ one arrives at differential equation

du1
dt

= β1u1u0 − δ1u1
du3
dt

= β3u3u0 − (δ3 + γu1)u3

In any equilibrium with u1, u3 > 0 we must have

u0 =
δ1
β1

=
δ3 + γu1

β3
(2)

If we assume δi < βi so that the individual species survive, and

δ3
β3

<
δ1
β1

<
δ3 + γ

β3

then we can choose u1 ∈ (0, 1) so that the second inequality holds and use the first to define
u0. Thus the dynamical system for the evolution of (u1, u3) has an interior fixed point in
addition to the two boundary equilibria at (1−δ1/β,0) and (0, 1−δ3/β3). Linearizing around
the fixed points shows that the interior one is a saddle point while those on the boundary
are stable.

Given the properties of the ordinary differential equation (ODE), it is hard to imagine
how a colicin producer could arise by mutation in a sensitive population, since in that case
their initial density will be small. However, as Durrett and Levin [28] showed, this can occur
in a spatial model. This is consistent with the philosophy of their earlier work [12]: when the
ODE dui/dt = φi(u) is bistable, the winner in the spatial model is more accurately predicted
by the behavior of the partial differential equation (PDE) dui/dt = ∆ui + φi(u).

The situation becomes more interesting when we introduce a third competitor that is like
Tomlinson’s type 2.

du1
dt

= β1u1u0 − δ1u1
du2
dt

= β2u2u0 − δ2u2
du3
dt

= β3u3u0 − (δ3 + γu1)u3

Based on the biology, it is natural to assume

δ1
β1

>
δ2
β2

>
δ3
β3
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That is, a cell pays a cost for colicin production or resistance which lowers its ability to
compete. These inequalities imply that 3’s outcompete 2’s and 2’s outcompete 1’s. If γ
is large enough, 1’s outcompete 3’s and the three species will have a rock-paper-scissors
relationship.

If there is an equilibrium in which all ui > 0, we must have

u0 =
δ1
β1

=
δ2
β2

=
δ3 + γu1

β3

which is impossible. In contrast, as shown in [28], the three species coexist in the spatial
model. It is interesting to note that after the three species coexistence was predicted it was
found in laboratory experiments, see [29], [30].

In Tomlinson’ model, if we assume that the system is homogeneously mixing then the
densities follow the replicator equation (see [5], Section 7.1.)

dui
dt

= ui(Fi − F̄ )

where Fi =
∑

j Gi,juj is the average fitness of the ith strategy and F̄ =
∑

j ujFj is the
average fitness. As computed in [27], there is an interior equilibrium if

e < g h < f
e

g
>
h

f
(3)

and its location is
ū = (h/f, 1− e/g, e/g − h/f). (4)

Strategy 3 always dominates 2 (in their two strategy subgame). If we make the natural
assumption g > e (the benefit from toxin production outweighs the cost) then strategy 1
dominates 3. Finally, if we assume

h < e and h < e− g + f (5)

then 2 dominates 1 and we again have a cyclic relationship between competitors. From the
form of the replicator equation it is easy to see that the dynamics are not changed by adding
a constant to each column in the game matrix G, so we can make the diagonal entries 0,
When we do this, G has the form of generalized rock paper scissors game (here ai, bi > 0) 0 h− e g − e

e− g + f − h 0 −h
e− g h 0

 =

 0 −a2 b3
b1 0 −a3
−a1 b2 0


The initial assumptions h > 0 and g > e, with the conditions in (5) imply that our matrix
has the desired sign pattern. In this case, Theorem 7.7.2 in [5], describes the asymptotic
behavior

Theorem 1. Let Γ = b1b2b3 − a1a2a3.

• If Γ = 0 then there is a one parameter family of periodic orbits.
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• If Γ < 0, trajectories spiral out toward the boundary.

• If Γ > 0 then there is a globally attracting fixed point for H.

Tomlinson [27] gives simulation result for a number of examples in his paper. In one set
g = 0.2, e = 0.15, and h = 0.1 while f varies. Here g > e > h. We will have

h < e− g + f if 0.1 < 0.15− 0.2 + f or f > 0.15

When this holds we have f > h and e/g = 3/4 > 2/3 > h/f . His table reports the following
results about the limiting behavior:

f u1 u2 u3
0.25 0.400 0.250 0.350
0.24 0.417 0.250 0.333
0.23 0.435 0.250 0.315
0.22 0.457 0.250 0.293
0.21 1 0 0

It is not hard to check that the values given for u1, u2 and u3 in the first four rows correspond
to the fixed point in (4), e.g., ū2 = 1 − e/g = 0.25. To check the conditions of Theorem 1,
we compute

Γ = b1b2b3 − a1a2a3 = (e+ f − g − h)h(g − e)− (g − e)(e− h)h

= (g − e)h(f − g)

Since g > e and h > 0, the interior fixed point is attracting if f > g, i.e., f > 0.2. The
discrepancy in the last line is not surprising. When f = 0.2 the interior fixed point is
surrounded by a one parameter family of periodic orbits, so when f ≈ 0.2 numerical solution
of the differential equation becomes delicate, so it is not surprising that Tomlinson reached
the wrong conclusion about the case f = 0.21.

2 Our model

In the two models considered above, only the nearest neighbors of a colicin producing cell
are affected, while in reality the chemical will diffuse. With this in mind we reformulate
the model. As before, each site of the lattice is occupied by a cell that is in state ξ(x) ∈
{1, 2, . . .m}. In addition, there are ` chemical species with concentration given by Ri, which
are modeled by reaction diffusion partial differential equations:

dRi

dt
= Di∆Ri + λi − νiRi + µi,ξ(x) − di,ξ(x)Ri. (6)

Here Di is the diffusion constant for chemical i, λi is the rate at which it enters the system,
νi is the rate at which it breaks down, µi,k is the rate at which it is produced by cells of
type k, and di,k is the rate it is consumed by cells of type k. To avoid boundary effects,
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we employ periodic boundary conditions on the PDE and the particle system model we will
soon describe.

In the colicin example above, there is only one chemical which is produced by type 1’s and
affects type 3’s. This is just one of many possibilities. In Gerlee and Anderson’s model [23]
for the emergence of the glycolytic phenotype, there are three chemicals: glucose, oxygen,
and hydrogen ion concentration. In their work, the PDEs are more biologically accurate
and the behavior of the cells is dictated by a complicated network. However, as mentioned
earlier, one of our motivations is to study simplified hybrid cellular automata in order to
find general results to predict their qualitative behavior.

The sites in our model follow evolutionary game dynamics. In the terminology used in [16]
(and many other works) these are generalized death-birth dynamics. The word generalized
refers to the fact that death occurs at a rate that depends on the chemical concentrations:

δk = ηk +
∑
i

tk,iRi, (7)

where ηk is a constant and tk,i ≥ 0 is a measure of the toxicity of chemical i to species k.
When a cell of type k dies it is replaced by a neighbor cell that is chosen with probability
proportional to its fitness, with type j’s having fitness

fj = γj +
∑
i

bj,iRi, (8)

Note that in contrast to Tomlinson’s game dynamics, the fitness of a cell depends on the
chemical concentrations rather than on the types of their neighbors.

A common first step in understanding the workings of a spatial model is to see what
happens when the spatial aspect is eliminated. Taking the diffusion rates Di → ∞ in
equation (6), and letting xj be the fraction of cells of type j, the concentration of chemical
i evolves according to the ODE:

dRi

dt
= λi − νiRi +

∑
j

(µi,j −Ridi,j)xj, (9)

In equilibrium dRi/dt = 0 so we have

Ri =
λi +

∑
j µi,jxj

νi +
∑

j di,jxj
. (10)

If we now ignore correlations between neighbors, then we have the following ODE for the
frequencies xj,

dxj
dt

= −δjxj
∑
k 6=j

xkfk∑
n xnfn

+
∑
k 6=j

δkxk
xjfj∑
n xnfn

,

=
∑
k 6=j

xkxj(δkfj − δjfk)∑
n xnfn

. (11)
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When δj ≡ 1 this looks like the replicator equation but the fitnesses are not linear in the
frequencies

fk = γk +
∑
i

ck,iRi = γk +
∑
i

ck,i
λi +

∑
j µi,jxj

νi +
∑

j di,jxj

Generalizing from the replicator equation, we have equilibrium if the ratio fj/δj is constant.
In general this is a system of cubic equations compared to the linear equations that come
from the replicator equation. However, as the reader will see in the Section 4, the equations
can be solved in some cases and accurately predict the behavior of the spatial model.

3 Implementation

Before turning to examples, we will describe our simulation methods. To solve the PDE
in (6) that describing the chemical dynamics we use a two dimensional square lattice with
spacing, h� 1, between neighboring lattice nodes. For the temporal discretization of (6) we
employ the modified Euler [31] method, which is of second order in time and can be written
as an explicit Runge-Kutta. A standard second order finite difference scheme is also utilized
for the spatial discretization of the Laplacian operator. The resulting numerical scheme does
not require the inversion of a matrix at each time iteration hence it is fast. We have used
h = 0.01 and τ = 0.001 as the stable time step for the PDE updates.

In order to simulate the continuous time Markov chain model describing the particle
system dynamics, the corresponding discrete time approximation is used. Sites die with
probability τs times their death rate and when they die are replaced by a neighbor propor-
tional to its fitness. In doing our updates, we use a computation scheme that is equivalent
to having two copies of the system. The previous state is used to compute the rates, while
updates are made only in the second copy. For this study we have used τs = 0.01, that is
we update the particle system once for every ten PDE updates. This is done to reduce the
amount of work, while keeping the number of collisions (i.e., situations in which a site and
its neighbor are both updated) relatively small, thus approximating better the behavior of
the continuous time process.

4 Simple two species examples

We begin with two examples that illustrate the possibilities of coexistence and competitive
exclusion in the case of two species and two chemicals. In these examples, neither species
produces chemicals so µi,k = 0 and the toxicities tk,i ≡ 0, so the death rates δk = ηk are
frequency independent. In addition, we assume that the death rates ηk and the constants γk
in the fitness function do not depend on k, and the decay rates νi = 0. With these conditions,
the mean-field condition for equilibrium is f1 = f2 and we can drop the γk’s to write

c1,1λ1
d1,1x+ d1,2(1− x)

+
c1,2λ2

d2,1x+ d2,2(1− x)

=
c2,1λ1

d1,1x+ d1,2(1− x)
+

c2,2λ2
d2,1x+ d2,2(1− x)
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In this case multiplying each side by the product of the denominators gives a linear equation:

α1,1x+ α1,2(1− x) = α2,1x+ α2,2(1− x) (12)

where the constants
αi,j = ci,1λ1d2,j + ci,2λ2d1,j

If when we set x = 0 in the denominator, we have

c1,1λ1
d1,2

+
c1,2λ2
d2,2

>
c2,1λ1
d1,2

+
c2,2λ2
d2,2

(13)

then 1 will be more fit than 2 when the frequency of 1’s is small, so the frequency of 1’s will
increase. If in addition

c1,1λ1
d1,1

+
c1,2λ2
d2,1

<
c2,1λ1
d1,1

+
c2,2λ2
d2,1

(14)

then 2’s will be more fit than 1’s when the frequency of 1’s is close to 1, and the fitness of
1’s will decrease. When both (13) and (14) hold, (12) will have a solution in (0, 1) that will
be an attracting fixed point. If we reverse the inequalities in (13) and (14) then there is an
unstable fixed point in (0,1). We will now consider an example of each situation.

4.1 Two species example with coexistence

In this example, we take the diffusion constant Di = 0.003, which is inspired by the diffusion
constant for oxygen in the model of [23]. Both chemicals enter the system at rate λi = 0.1,
neither is produced µi,j ≡ 0, and the decay rates are νi = 0. The toxicity coefficients
tk,i = 0 and the death rates ηk = 1. The consumption rates di,k and the coefficients ck,i that
determine the fitnesses are given by

d =

(
0.525 0.225
0.125 0.425

)
c =

(
0.8 0.7
0.6 0.9

)
with the constants in the definition of fk in (8) given by γk = 0.1. Since 0.8 + 0.7 = 1.5 =
0.6 + 0.9 it is easy to see that in this example the inequalities in (13) and (14) hold

0.8

0.125
+

0.7

0.425
<

0.6

0.125
+

0.9

0.425
and

0.8

0.525
+

0.7

0.225
<

0.6

0.525
+

0.9

0.225

so we expect coexistence. For an intuitive explanation note that type i is more fit when
chemical i is present but type i also consumes more of chemical i so it will prefer to be
around the opposite type. Simulations in Figure 1 show coexistence and confirm that that
chemical 2 has a greater concentration near sites occupied by species 1 and vice versa.

4.2 Two species, competitive exclusion

The only change from the first example is that in the matrix of consumption rates dik has
been changed to have larger entries off the diagonal

d =

(
0.225 0.525
0.425 0.225

)
c =

(
0.8 0.7
0.6 0.9

)
.
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In this example that the inequalities in (13) and (14) are reversed

0.8

0.525
+

0.7

0.225
<

0.6

0.425
+

0.9

0.225
and

0.8

0.225
+

0.7

0.425
>

0.6

0.225
+

0.9

0.425
.

The interior equilibrium is unstable, so this is case 2 of Durrett and Levin [12]. Based on
this analogy we predict that the two species will separate and the winner will be dictated
by the direction of interface separating the two species.

Figure 2 confirms the segregation. Intuitively this occurs since species i consumes more
of chemical i but is more fit when the other chemical is high, so species i will prefer to be
around its type. Panels (b) and (c) of Figure 3 show the concentration of the two chemical
species at the final time confirming that chemical i has a greater concentration near sites
occupied by species i.

5 Colicin

We now return to the example that motivated our investigation.

5.1 Two species

In this case, we have one chemical (colicin) with λ1 = 0, ν1 > 0, and µ1,1 > 0. The constants
c1,j = d1,j = 0 t1,1 = 0 and t3,1 > 0. In words the first species produces colicin which
increases the death rate of the second one, which for consistency with earlier discussion and
in preparation for the next example, we call species 3. Our choices imply that

fi = γi δ1 = η1 δ3 = η3 + t3,1R1

There is a cost of producing colicin so we assume

γ1
η1
<
γ3
η3

(15)

Using (10), we see that in equilibrium R1 = µ1,1x/ν1. So by (11) the mean-field differen-
tial equation for fraction of type 1 is

dx

dt
=
x(1− x)(δ3f1 − δ1f3)
xf1 + (1− x)f3

(16)

In equilibrium
(η3 + t3,1µ1,1x/ν1)γ1 = η1γ3

Let α = t3,1µ1,1/ν1. In order to have an interior fixed point we need

γ1
η1
>

γ3
η3 + α

(17)

When x ≈ 0, dx/dt < 0 in (16) by (15), while for x ≈ 1, dx/dt > 0 by (17), so the interior
fixed point is unstable. Thus by the reasoning in the previous example, in the spatial model
the victor will be determined by the direction of movement of interfaces.
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To check this prediction by simulation, we investigate a concrete example. As usual, we
take the diffusion constant D1 = 0.003. The other positive parameters are µ1,1 = 0.525,
ν1 = 0.4, γ1 = 0.25, γ3 = 0.6, t3,1 = 0.65, η1 = 0.25, and η3 = 0.2. With the current
parameters

γ3/η3 γ1/η1 γ3/(η3 + α)
0.6
0.2

= 3 0.25
0.25

= 1 0.6
0.2+0.853125

= 0.5697

so there is an interior fixed point. Figure 4 shows a simulation on a 200 × 200 grid. The
colicin producers rapidly eliminate the sensitive strain.

5.2 Three species

We turn now to the three species system. Generalizing the previous example λ1 = 0, ν1 > 0,
and µ1,1 > 0, c1,j = d1,j = 0, t1,1 = t2,1 = 0 and t3,1 > 0. Our choices imply that

fi = γi δ1 = η1, δ2 = η2, δ3 = η3 + t3,1R1

There is a cost of producing colicin, and the sensitive strain would be doomed if it was not
stronger than the resistant strain in the absence of colicin, so we assume

r1 < r2 < r3 (18)

where ri = γi/ηi
Again in equilibrium R1 = µ1,1x1/ν1. Ignoring the denominator in the mean-field equa-

tion, which is just a time change, and writing α = t3,1µ1,1/ν1 the three equations for equi-
librium are

0 =
dx1
dt

= x1x2(η2γ1 − η1γ2) + x1x3[(η3 + αx1)γ1 − η1γ3]

0 =
dx2
dt

= x2x1(η1γ2 − η2γ1) + x2x3[(η3 + αx1)γ2 − η2γ3]

0 =
dx3
dt

= x3x1[η1γ3 − (η3 + αx1)γ2] + x3x2[η2γ3 − (η3 + αx1)γ2]

Moving the first term in the first equation and the second term in the second equation to
the left, we see that for this to hold we want:

x1x2(η1γ2 − η2γ1) = x1x3[(η3 + αx1)γ1 − η1γ3] = x2x3[η2γ3 − (η3 + αx1)γ2]

The first term is positive since r2 > r1. If we let r̄3 = γ3/(η3 + αx1) then for the second and
third to be positive we need r1 > r̄3 and r̄3 > r2, which is impossible, so there is no interior
fixed point.

This was the case in the model of Durrett and Levin, but their model had coexistence.
If we assume that

r̄3 < r1 < r2 < r3

then the competitors have the same rock-paper scissors relationship. 2 beats 1, 3 beats 2, and
1 beats 3. For this reason we expected to find coexistence in the new model with diffusion
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but after many tries we have failed to find even one example for which this holds. Figure 5
shows the results of a typical simulation. As usual, we take the diffusion constant D1 = 0.003.
Most of the other positive parameters are the same as in the previous example µ1,1 = 0.525,
ν1 = 0.4, γ1 = 0.25, γ3 = 0.6, η1 = 0.25, and η3 = 0.2. Here we have increased the death rate
colicin coefficient, t3,1, from 0.65 to 0.8 in order to compensate for the fewer initial number of
colicin producers. The new species has γ2 = 0.37 and η2 = 0.29, i.e., r2 = 0.37/0.29 = 1.276
so (18) holds. The parameters here were chosen by simulating a system with strips of each
of the three types on a torus in order to confirm that when the types were put down in
the order 1, 2, 3, all of the interfaces move to the left (Fig. 6). However in the simulation
starting from a random initial configuration the 1’s cannot advance against the 3’s because
the 2’s are mixed in with them and reduce the colicin concentration.

5.3 Diffusion kills coexistence

For the three species colicin system, there is no coexistence in our chemical game model, but
there is in Durrett and Levin’s interacting particle system. To understand the reason for
this difference, we will allow the colicin in latter system to be produced at rate µ1,1 = 0.525,
decays at rate ν1 = 0.4, and have a diffusion constant of D1 = 0.003. It is. We start with
an initial chemical concentration of R1(x, 0) ≡ 0.1. For a site of type i births occur with
rate γi, and death with rate δi, i = 1, 2, 3 where δ1 = η1, δ2 = η2 and δ3 = η3 + t3,1R1, i.e.,
we use the concentration of colicin rather than the fraction of colicin producing neighbors.
Note that in contrast to [28] we have set t2,1 = 0. In the next section we will show that this
is not a significant change.

Simulations are done with the scheme described in Section 3, except that now fitnesses
are not calculated but birth and deaths occur according to the indicated rates. In the next
two simulations the grid is 200× 200. Figure 7 shows that when t3,1 = 2.4, the frequency of
type 3’s decreases rapidly until it reaches a low level. When their density of type 3’s is small,
the type 2’s drive the type 1’s to extinction and then the type 3’s take over the system.
Figure 8 shows that when t3,1 = 2.8, the type 3’s are driven to extinction by type 1, who
then lose out to the type 2’s.

Figure 9 shows a simulation with the rest of the parameters as before and t3,1 = 2.8. Type
1’s initially drive type 3’s close to extinction, but due to the larger grid size the type 3’s do
not die out. With the 3’s a low level, type 2’s drive the numbers of type 1’s to extinction and
then lose to the type 3’s. To investigate the effect of diffusion in the previous competition we
reduced D1 from 0.003 to 0.001, keeping the rest of the parameters fixed. Figure 10 shows
that for this setup the system initially behaves in the same way as before, but instead of the
type 1’s survive in a patch that has 2’s on the inside and 3’s on the outside. The result is
that the 1’s drive the 3’s to extinction and then the 2’s outcompete the 1’s.

5.4 Removing diffusion restores coexistence

To seek further confirmation that diffusion of colicin is eliminating coexistence, we now
remove diffusion from both processes. In the interacting particle system studied by Durrett
and Levin [28], we redefine the death rate of type 3 to be δ3 := η3 + t3,1φ1, where φ1 is the
fraction of the four nearest neighbors in state 1. Figure 11 shows a simulation on a 200×200
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grid with γ1 = 0.3, γ2 = 0.32, γ3 = 0.4, η1 = η2 = η3 = 0.1 and t3,1 = 0.3 so we have the
rock-paper scissors relationship. As the figure shows coexistence has been restored.

Figure 12 shows a simulation of the colicin chemical game system with γ1 = 1, γ2 = 3,
γ3 = 7, η1 = 0.8, η2 = 1.6, η3 = 1, and t3,1 = 16.5.

γ3
η3 + t3,1

=
7

17.5
<
γ1
η1

= 1.25 <
γ2
η2

= 1.6 <
γ3
η3

= 7,

so we have the rock-paper scissors relationship. As the simulation shows the three species
segregate and coexist. Here as in [28] the densities oscillate but with higher frequency and
at a much smaller amplitude.

6 Discussion

Comparing results in Section 5, we see that in the Durrett-Levin three species colicin in-
teracting particle system and in our chemical game system, there is coexistence when sites
interact only with their nearest neighbors, but not when the colicin diffuses. If we think of
spatial separation being the same as genetic relatedness, then this is consistent with the kin
selection view point of Hamilton [9]. Diffusion means that colicin production benefits more
distant relatives so the system will be less effective as maintaining coexistence.

It is an interesting question whether any positive amount of diffusion destroys coexistence
or is there a threshold level? We believe that there is no threshold. If we decrease the diffusion
rate, then we can speed up time to return it to its previous values. When diffusion is held
constant, the ratio of the production and decay rates controls how far the chemical will
diffuse before it is destroyed. The concentrations will decay exponentially with distance, so
if the chemical is present in significant levels at nearest neighbors, then it will also occur
at similar levels at the next nearest neighbors, etc. When we decrease the diffusion, we
also increase the birth and death rates and it is far from obvious how these two rescalings
interact. However, we have simulated a large number of parameter combinations and have
not found coexistence.

Based on the results of simulations, we have some ideas about why diffusion destroys
coexistence. It seems that diffusion and relatively high t3,1 values prevent the formation of
sharp boundaries between type 1’s and 3’s regions. We believe that this is due to diffusion
allowing colicin to penetrate into areas that do not have producers (type 1’s). Thus, diffusion
helps the type 1’s when they are in relatively large numbers, since colicin diffuses from many
locations and results in the fast extinction of type 3’s (see figure 8). In contrast, when the
population of type 1’s falls to a low number (due to the action of type 2’s and lower values
of t3,1), diffusion reduces the ability of type 1’s to poison type 3’s and allows the latter to
rebound. See figures 7 and 9. Reducing the diffusion coefficient can reduce this effect and
concentrate more nutrient to the immediate neighborhood of type 1s. In this case even
though we do not have coexistence, we observe that a small number of type 1’s manage to
reemerge and form a clear front with the 3’s (see figure 10).

While we cannot say for certain that any positive amount of diffusion is enough to elimi-
nate coexistence, we have shown that replacing simple interactions of a site with its nearest
neighbors, by the more realistic situation of sites being influenced by diffusing chemicals

12



can lead to dramatic changes in the behavior of a spatial model. There are many ecological
systems involving competition or cooperation between small organisms such as bacteria to
which this research will be relevant. However, our main interest is to use these systems to
understand the ecology of cancer, i.e., to analyze models of interactions between tumors and
their microenvironment, in order to be able to predict the properties of the model from their
structure without having to study each example by simulation.
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(a) Populations (b) Profile, t = 200

(c) Chemical 1, t = 200 (d) Chemical 2, t = 200

Figure 1: Simulation of the system described in Section 4.1. The mean-field differential
equation has a fixed point in (0,1) that is stable. As the graphs of densities in panel (a)
show the system converges to equilibrium. At first glance it may seem that there are large
fluctuations in the densities but the numbers on the axis go from 7.9 to 8.25 × 104. Panel
(b) shows the system at the final time t = 200. Panels (c) and (d) show the concentration
of the two chemicals at the final time.
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(a) t = 50 (b) t = 100

(c) t = 150 (d) t = 200

Figure 2: Simulation of the system described in Section 4.2. The mean-field differential
equation has a fixed point in (0,1) that is unstable.
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(a) Population

(b) Chemical 1, t = 200 (c) Chemical 2, t = 200

Figure 3: Graph of densities versus time and the final chemical concentrates for the system
from Figure 2. From the snapshots in that figure the direction of movement of the interface
is not clear, but panel (a) here shows that the number of type 2’s is increasing. Panels (b)
and (c) give the concentrations of the two chemicals at the final time.
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(a) Profile, t = 42.5 (b) Profile, t = 85

(c) Population

Figure 4: Simulation of the two species colicin chemical game described in Section 5.1.
Note that the colicin producer rapidly eliminates the sensitive strain.
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(a) t = 10 (b) t = 30

(c) t = 50 (d) Population

Figure 5: Simulation of the three species colicin chemical game described in Section 5.2.
Note that the 3’s separate from the 1’s and 2’s and then win the competition.
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(a) t = 0

(b) t = 150 (c) t = 400

Figure 6: Simulation of the three species colicin chemical game with parameters as in
Figure 5.2, starting from three strips on a torus. Note that all three interfaces move to the
left with positive speeds.
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(a) t = 1875 (b) t = 3750

(c) t ≈ 4474 (d) Population

Figure 7: Simulation of Durrett and Levin’s three species interacting particle system with
diffusion of colicin as described in Section 5.3 with t3,1 = 2.4. Note that the 1’s separate
from the 2’s and 3’s and the 3’s are present at a low density. The 2’s then drive the 1’s to
extinction, and in the end lose to the 3’s.
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(a) t = 50 (b) t = 150

(c) t = 350 (d) Population

Figure 8: Simulation of the system considered in Figure 7, with t3,1 increased from 2.4 to
2.8. Note that now the 3’s die out and then the 2’s outcompete the 1’s.
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(a) t = 1875 (b) t = 3750

(c) t ≈ 5641 (d) Population

Figure 9: Simulation of the system considered in Figure 8 on a 400× 400 grid. This time,
due to the larger grid, the type 3’s escape extinction. While the 3’s are at a low level, the 2’s
drive the 1’s to extinction and then lose in competition with the 3’s.
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(a) t = 5625 (b) t = 9375

(c) t = 11250 (d) t = 15000

(e) Population (f) Colicin

Figure 10: Simulation of the system considered in Figure 9, but with the diffusion constant
reduced from 0.003 to 0.001. As in the previous simulation, the 3’s are initially driven to a
low level, but this time the 2’s do not drive the 1’s to extinction. The 1’s that survive end
in a small patch with 2’s on the inside and 3’s on the outside, so the 1’s will drive the 3’s to
extinction and then lose to the 2’s. Panel (f) shows the concentration of colicin at the final
time.
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(a) t = 2000 (b) Population

Figure 11: Simulation of the Durrett-Levin three species colicin interacting particle system
with no diffusion. The three species coexist as in the continuous process simulation in [28].

(a) t = 2000 (b) Population

Figure 12: Simulation of the three species colicin chemical game with no diffusion. This
time the three species coexist.
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