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Abstract

If we consider the contact process with infection rate λ on a random graph on n
vertices with power law degree distributions, mean field calculations suggest that the
critical value λc of the infection rate is positive if the power α > 3. Physicists seem
to regard this as an established fact, since the result has recently been generalized to
bipartite graphs by Gómez-Gardeñes et al (2008). Here, we show that the critical value
λc is zero for any value of α > 3, and the contact process, starting from all vertices
infected, maintains a positive density of infected sites for time at least exp(n1−δ) for
any δ > 0. Using the last result, together with the contact process duality, we can
establish the existence of a quasi-stationary distribution in which a randomly chosen
vertex is occupied with probability ρ(λ). It is expected that ρ(λ) ∼ Cλβ as λ → 0.
Here we show that α− 1 ≤ β ≤ 2α− 3, and so β > 2 for α > 3. Thus even though the
graph is locally tree-like, β does not take the mean field critical value β = 1.

1 Introduction

In this paper we will study the contact process on random graphs with a power-law degree
distribution, i.e., for some constant α, the degree of a typical vertex is k with probability
pk ∼ Ck−α as k → ∞. Following Newman, Strogatz and Watts (2001, 2002), we construct
the random graph Gn on the vertex set {1, 2, . . . , n} having degree distribution p = {pk :
k ≥ 0} as follows. Let d1, . . . , dn be independent and have the distribution P (di = k) = pk.
We condition on the event En = {d1 + · · ·+ dn is even} to have a valid degree sequence. As
P (En) → 1/2 as n →∞, the conditioning will have a little effect on the distribution of di’s.
Having chosen the degree sequence (d1, d2, . . . , dn), we allocate di many half-edges to the
vertex i, and then pair those half-edges at random. We also condition on the event that the
graph is simple, i.e., it neither contains any self-loop at some vertex, nor contains multiple
edges between two vertices. It can be shown (see e.g. Theorem 3.1.2 of Durrett (2007)) that
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if the degree distribution p has finite second moment, i.e., when α > 3, the probability of
the event that Gn is simple has a positive limit as n → ∞, and hence the conditioning on
this event will not have much effect on the distribution of di’s.

We will be concerned with epidemics that take place on these random graphs. First
consider the SIR (susceptible-infected-removed) model, in which sites begin as susceptible,
and after being infected they get removed, i.e., become immune to further infection. In the
simplest discrete-time formulation, an infected site x at time n will always be removed at
time n + 1 and for each susceptible neighbor y at time n x will cause y to become infected
at time n + 1 with probability p, with all of the infection events being independent.

In this case the spreading of the epidemic is equivalent to percolation. To compute the
threshold, one notes that for a randomly chosen vertex x, the number of vertices at distance
m from x, Zm, is approximately a two-phase branching process in which the number of first
generation children has distribution p, but in the second and subsequent generations the
offspring distribution is the size biased distribution q = {qk : k ≥ 0} satisfying

qk−1 =
kpk

µ
where µ =

∑
k kpk. (1.1)

This occurs because vertices with degree k are k times as likely to be chosen for connections,
and the edge that brings us to the new vertex uses up one of its degrees. For more details on
this and the facts that we will quote in the next paragraph, see Chapter 3 of Durrett (2007).

With the above observation in hand, it is easy to compute the critical threshold for the
SIR model. Let ν be the mean of the size biased distribution,

ν =
∑

k

kqk. (1.2)

Suppose we start the infection at a randomly chosen vertex x. Now if Ym is the number of
sites at distance m from x that become infected, then EYm = pµ(pν)m−1. So the epidemic
is supercritical if and only if p > 1/ν. In particular, if pk ∼ Ck−α as k → ∞ and α ≤ 3,
then ν = ∞ and pc = 0. Conversely if α > 3 then ν < ∞ and pc = 1/ν > 0. Hence for the
SIR epidemic model on the random graph Gn with power-law degree distribution, there is a
positive threshold for the infection to survive if and only if the power α > 3.

Here, we will study the continuous-time SIS (susceptible-infected-susceptible) model and
show that its behavior differs from that of the SIR model. In the SIS model, at any time t
each site x is either infected or healthy (but susceptible). We often refer to the infected sites
as occupied, and the healthy sites as vacant. We define the functions {ζt : t ≥ 0} on the
vertex set so that ζt(x) equals 0 or 1 depending on whether the site x is healthy or infected
at time t. An infected site becomes healthy at rate 1 independent of other sites and is again
susceptible to the disease, while a susceptible site becomes infected at a rate λ times the
number of its infected neighbors. Harris (1974) introduced this model on the d-dimensional
integer lattice and named it the contact process. See Liggett (1999) for an account of most
of the known results. We will make extensive use of the self-duality property property of this
process. If we let ξt ≡ {x : ζt(x) = 1} to be the set of infected sites at time t, we obtain a
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set-valued process. If we write ξA
t to denote the process with ξA

0 = A, then the self-duality
property says that

P (ξA
t ∩B 6= ∅) = P (ξB

t ∩ A 6= ∅) (1.3)

for any two subsets A and B of vertices.
Pastor-Satorras and Vespigniani (2001a, 2001b, 2002) have made an extensive study of

this model using mean-field methods. Their nonrigorous computations suggest the following
conjectures:

• If α ≤ 3, then λc = 0.

• If 3 < α ≤ 4, then λc > 0 but the critical exponent β, which controls the rate at which
the equilibrium density of infected sites goes to 0, satisfies β > 1.

• If α > 4, then λc > 0 and the equilibrium density ∼ C(λ − λc) as λ ↓ λc, i.e. the
critical exponent β = 1.

Notice that the conjectured behavior of λc for the SIS model parallels the results for pc in
the SIR model quoted above.

Gómez-Gardeñes et al. (2008) have recently extended this calculation to the bipartite
case, which they think of as a social network of sexual contacts between men and women.
They define the polynomial decay rates for degrees in the two sexes to be γM and γF , and
argue that the epidemic is supercritical when the transmission rates for the two sexes satisfy

√
λMλF > λc =

√
< k >M < k >F

< k2 >F < k2 >M

where the pointy brackets indicate expected value and k is shorthand for the degree distri-
bution. Here λc is positive when γM , γF > 3.

Berger, Borgs, Chayes, and Saberi (2004) have considered the contact process on the
Barabási-Albert preferential attachment graph, which has a power law degree distribution
with α = 3. They have shown that λc = 0. Their proof starts with the following observation.
Here, we follow the formulation in Lemma 4.8.2 of Durrett (2007).

Lemma 1.1. Suppose G is a star graph with center 0 and leaves 1, 2, . . . , k. Let At be the
set of vertices infected in the contact process at time t when A0 = {0}. If kλ2 → ∞, then
P (Aexp(kλ2/10) 6= ∅) → 1.

Using this Lemma and the fact that when there are n vertices, the vertex of largest degree
in the preferential attachment graph has O(n1/2) neighbors, they show that starting from
all sites occupied the infection survives for time ≥ exp(cn1/2) for some constant c. Based
on results for the contact process on (Z mod n) by Durrett and Liu (1988) and Durrett and
Schonmann (1988), and on (Z mod n)d by Mountford (1993), it is natural to conjecture that
in the contact process on Gn, the infection survives for time ≥ exp(cn) for some constant c.
It certainly cannot last longer, because the total number of edges is O(n), and so even if all
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sites are occupied at time 0, there is a probability ≥ exp(−cn) that all sites will be vacant
at time 1.

The next result is the main result of this paper. It shows that the physicists’ mean field
computations are incorrect, i.e., λc = 0 for all α > 3, and it gives almost the right lower
bound on the survival time.

Theorem 1. Consider a Newman, Strogatz and Watts random graphs Gn on the vertex set
{1, 2, . . . , n}, where the degrees di satisfy P (di = k) ∼ Ck−α as k → ∞ for some constant
C and some α > 3, and P (di ≤ 2) = 0. Let {ξ1

t : t ≥ 0} denote the contact process on the
random graph Gn starting from all sites occupied, i.e., ξ1

0 = {1, 2, . . . , n}. Then for any value
of the infection rate λ > 0, there is a positive constant p(λ) so that for any δ > 0

inf
t≤exp(n1−δ)

P

(
|ξ1

t |
n

≥ p(λ)

)
→ 1 as n →∞.

One could assume that ν > 1 and look at the process on the giant component, but we
would rather avoid this complication. The assumption P (di ≤ 2) = 0 is convenient, because
it implies the following.

Lemma 1.2. Consider a Newman, Strogatz and Watts graphs, Gn, on n vertices, where the
degrees of the vertices, di, satisfy P (di ≤ 2) = 0, and the mean of the size biased degree
distribution ν < ∞. Then P (Gn is connected ) → 1 as n → ∞, and if Dn is the diameter
of Gn, P (Dn > (1 + ε) log n/ log ν) → 0 for any ε > 0.

The size of the giant component in the graph is given by the nonextinction probability of the
two-phase branching process, so P (di ≤ 2) = 0 is needed to have the size ∼ n. Intuitively,
Lemma 1.2 is obvious because the worst case is the random 3-regular graph, and in this case,
the graph is not only connected and has diameter ∼ (log n)/(log 2), see Sections 7.6 and 10.3
of Bollobás (2001), but the probability of a Hamiltonian cycle tends to 1, see Section 9.3 of
Janson, Luczak, and Ruciński (2000). We have not been able to find a proof of Lemma 1.2
in the literature, so we give one in Section 5. By comparing the growth of the cluster with
a branching process it is easy to show P (Dn < (1− ε) log n/ log ν) → 0 for any ε > 0.

Theorem 1 shows that the fraction of infected sites in the graph Gn is bounded away
from zero for a time longer than exp(n1/2). So using self-duality we can now define a quasi-
stationary measure ξ1

∞ on the subsets of {1, 2, . . . , n} as follows. For any subset of vertices
A, P (ξ1

∞ ∩ A 6= ∅) ≡ P (ξA
exp(n1/2)

6= ∅). Let Xn be uniformly distributed on {1, 2, . . . , n}
and let ρn(λ) = P (Xn ∈ ξ1

∞). Berger, Borgs, Chayes and Saberi (2004) show that for
the contact process on the Bŕabasi-Albert preferential attachment graph, there are positive,
finite constants so that

bλC ≤ ρn(λ) ≤ Bλc.

In contrast, we get reasonably good numerical bounds on the critical exponent.

Theorem 2. Suppose α > 3. If 0 < λ < λ0 and 0 < δ < 1, then there exists two constants
c(α, δ) and C(α, δ) so that as n →∞

P (cλ1+(α−2)(2+δ) ≤ ρn(λ) ≤ Cλ1+(α−2)(1−δ)) → 1.
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When α is close to 3 and δ is small, the powers in the lower and upper bounds are close to
3 and 2. As α →∞ and δ → 0 the ratio of the two bounds converges to 2.

The intuition behind the lower bound is that if the infection starts from a vertex of degree
d(x) ≥ (10/λ)2+δ, then it survives for a long time with a probability bounded away from 0.
The density of such points is ∼ Cλ(2+δ)(α−1), but we can improve the bound to the one given
by looking at neighbors of these vertices, which have density ∼ Cλ(2+δ)(α−2) and will infect
their large degree neighbor with probability ≥ cλ.

For the upper bound we show that if m(α, δ) is large enough and the infection starts
from a vertex x such that there is no vertex of degree ≥ λ−(1−δ) within distance m from x,
then its survival is very unlikely. To get the extra factor of λ we note that the first event
must a birth. Based on the proof of Lemma 1.1, we expect that survival is unlikely if there
is no nearby vertex of degree ≥ λ−2 and hence the lower bound gives the critical exponent.

Having seen ρn(λ) in Theorem 2, it is natural to speculate that ρn(λ) → ρ(λ) as n →∞.
By the heuristics for the computation of λc in the SIR model, it is natural to guess that,
when α > 2, ρ(λ) is the expected probability of weak survival for the contact process on a
tree generated by the two-phase branching process, starting with the origin occupied.

Here the phrase ‘weak survival’ refers to set of infected sites being not empty for all
times, in contrast to ‘strong survival’ where the origin is reinfected infinitely often. As in the
case of the contact process on the Bollobás-Chung small world studied by Durrett and Jung
(2007), it is the weak survival critical value that is the threshold for prolonged persistence
on the finite graph.

Sketch of the proof of Theorem 1.

The remainder of the paper is devoted to proofs. Let V ε
n be the set of vertices in the

graph Gn with degree at least nε. We call the points in V ε
n stars. We say that a star of

degree k is hot if at least λk/4 of its neighbors are infected and is lit if at least λk/10 of
its neighbors are infected. Our first step, taken in Lemma 2.2, is to improve the proof of
Lemma 1.1 to show that a hot star will remain lit for time exp(cnε) with high probability.

To keep the system going for a long time, we cannot rely on just one star. There are
O(n1−ε(α−1)) stars in this graph which has diameter O(log n). If one star goes out, presence
of a lit star can make it hot again within a time 2nε/3 with probability at least n−b. See
Lemmas 2.3 and 2.4 for this. Lemma 2.6 shows that a lit star gets hot within 2 exp(nε/3)
units of time with probability

≥ 1− 5 exp(−λ2nε/3/16),

and Lemma 2.5 shows that a hot star eventually succeeds to make a non-lit star hot within
exp(nε/2) units of time with probability

≥ 1− 8e−λ2nε/80.

Using these estimates, we can show that the number of lit stars dominates a random walk
with a strong positive drift, and hence more than 3/4’s of the collection will stay lit for a
time O(exp(n1−αε)). See Proposition 1 at the end of Section 2 for the argument.
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To get a lower bound on the density of infected sites, first we bound the probability of
the event that the dual process, starting from a vertex of degree (10/λ)2+δ, reaches more
than 3/4’s of the stars. We do this in two steps. In the first step (see Lemma 3.2) we get
a lower bound for the probability of the dual process reaching one of the stars. To do this,
we consider a chain of events in which we reach vertices with degree (10/λ)k+δ for k ≥ 2
sequentially. In the second step (see Lemma 3.3) we again use a comparison with random
walk to show that, with probability tending to 1, the dual process, starting from any lit
star, will light up more than 3/4’s of the stars. Then we show that the above events are
asymptotically uncorrelated, and use a second moment argument to complete the proof of
Theorem 1 and the lower bound for the density in Theorem 2.

Open Problem. Improve the bounds in Theorem 2 and extend the result to α > 1.

When 2 < α < 3 the size biased distribution has infinite mean. Chung and Lu (2002, 2003)
obtained bounds on the diameter in this case, and later van der Hofstadt, Hooghiemstra,
and Zamenski (2007) showed

Hn ∼
2 log log n

− log(α− 2)

When 1 < α < 2 the size-biased distribution has infinite mass. van der Hofstadt,
Hooghiemstra, and Zamenski (2006) have shown in this case if Hn is the distance between 1
and 2 then

lim
n→∞

P (Hn = 2) = lim
n→∞

1− P (Hn = 3) = p ∈ (0, 1)

so the graph is very small.
All of the results about the persistence of infection at stars in Section 2 are valid for any

α, since they only rely on properties of the contact process on a star graph and an upper
bound on the diameter. The results in Section 3, rely on the existence of the size biased
distribution and hence are restricted to α > 2. The proof of the lower bound should be
extendible to that case, but the proof of the upper bound given in Section 4 relies heavily on
the size-biased distribution having finite mean. When 1 < α < 2, the size-biased distribution
does not exist and the situation changes drastically. We guess that in this case ρn(λ) = O(λ).

2 Persistence of infection at stars

Let ε > 0 and let V ε
n be the set of vertices in our graph Gn with degree at least nε. We

call these vertices stars. We say that a vertex of degree k is hot if it has at least L = λk/4
infected neighbors and we call it lit if it has at least 0.4L = λk/10 infected neighbors. We
will show that if ε is small, then in the contact process starting from all vertices occupied,
most of the stars in V ε

n will remain lit for time O(exp(n1−αε).
We begin with a slight improvement of Lemma 1.1 which gives a numerical estimate of

the failure probability, but before that we need two simple estimates.

Lemma 2.1. If 0 ≤ x ≤ a ≤ 1 then ex ≤ 1 + (1 + a)x and e−x ≤ 1− (1− 2a/3)x.
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Proof. Using the series expansion for ex

ex ≤ 1 + x +
ax

2

(
1 +

1

2
+

(
1

2

)2

+ · · ·

)

e−x ≤ 1− x +
ax

2

(
1 +

(
1

2

)2

+

(
1

2

)4

+ · · ·

)

and summing the geometric series gives the result.

Lemma 2.2. Let G be a star graph with center 0 and leaves 1, 2, . . . , k. Let At be the set of
vertices infected in the contact process at time t. Suppose λ ≤ 1 and λ2k ≥ 50. Let L = λk/4
and let T = exp(kλ2/80)/4L. Let PL,i denote the probability when at time 0 the center is at
state i and L leaves are infected. Then

PL,i

(
inf
t≤T

|At| ≤ 0.4L

)
≤ 7e−λ2k/80 for i = 0, 1.

Proof. Write the state of the system as (m, n) where m is the number of infected leaves and
n = 1 if the center is infected and 0 otherwise. To reduce to a one dimensional chain, we will
concentrate on the first coordinate. When the state is (m, 0) with m > 0, the next event will
occur after exponential time with mean 1/(mλ + m), and the probability that it will be the
reinfection of the center is λ/(λ + 1). So the number of leaf infections N that will die while
the center is 0 has a shifted geometric distribution with success probability λ/(λ + 1), i.e.,

P (N = j) =

(
1

λ + 1

)j

· λ

λ + 1
for j ≥ 0.

Let NL be the realization of N when the state of the system is (L, 0). Then NL will be more
than 0.1L with probability

PL,0(NL > 0.1L) ≤ (1 + λ)−0.1L ≤ e−λL/20 = e−λ2k/80. (2.1)

Here we use the inequality 1 + λ ≥ eλ/2. If NL ≤ 0.1L, then there will be at least 0.9L
infected leaves when the center is infected.

The next step is to modify the chain so that the infection rate is 0 when the number of
infected leaves is L = λk/4 or greater. In this case the number of infected leaves ≥ Yt where

at rate

Yt → Yt − 1 λk/4

Yt → Yt + 1 3λk/4 for Yt < L .

Yt → Yt −N 1
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To bound the survival time of this chain, we will estimate the probability that starting
from 0.8L it will return to 0.4L before hitting L. During this time Yt is a random walk that
jumps at rate λk + 1. Let X be the change in the random walk in one step. Then

X =


−1 with probability (λk/4)/(λk + 1)

+1 with probability (3λk/4)/(λk + 1)

−N with probability 1/(λk + 1),

and so

EeθX = eθ · 3

4
· λk

λk + 1
+ e−θ · 1

4
· λk

λk + 1

+
1

λk + 1

∞∑
j=0

e−θj

(
1

λ + 1

)j

· λ

λ + 1
.

If e−θ/(λ + 1) < 1, the third term on the right is

λ

λk + 1
· 1

1 + λ− e−θ
.

If we pick θ < 0 so that e−θ = 1 + λ/2, then

EeθX =
λk

λk + 1

(
1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+

2

λk

)
.

Since 1/(1 + x) < 1− x + x2 for 0 < x < 1,

1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+

2

λk
− 1

<

(
−λ

2
+

λ2

4

)
3

4
+

λ

8
+

2

λk

< −3λ

16
+

λ

8
+

2

λk
,

where in the last inequality, we have used λ < 1. Since we have assumed λ2k ≥ 50, the
right-hand side is < 0.

To estimate the hitting probability we note that if φ(x) = exp(θx) and Y0 ≥ 0.6L, then
φ(Yt) is a supermartingale until it hits L. Let q be the probability that Yt hits the interval
(−∞, 0.4L] before returning to L. Since θ < 0, we have φ(x) ≥ φ(0.4L) for x ≤ 0.4L. So
using the optional stopping theorem we have

qφ(0.4L) + (1− q)φ(L) ≤ φ(0.8L),

which implies that

q ≤ φ(0.8L)/φ(0.4L) = exp(0.4θL) ≤ e−λ2k/40,
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as e−θ = 1 + λ/2 ≥ eλ/4 when λ/4 < 1/2 (sum the series for ex).
At this point we have estimated the probability that the chain started at a point ≥ 0.8L

will go to L before going below 0.4L. When the chain is at L, the time until the next jump
is exponential with mean 1/(L + 1) ≥ 1/2L. The probability that the jump takes us below
0.8L is (since 1 + λ ≥ eλ/2)

≤ (1 + λ)−0.2L ≤ e−λL/10 = e−λ2k/40.

Thus the probability that the chain fails to return to L, M = eλ2k/80 times before going
below 0.4L is

≤ 2e−λ2k/80.

Using Chebyshev’s inequality on the sum, SM of M exponentials with mean 1 (and hence
variance 1),

P (SM < M/2) ≤ 4/M.

Multiplying by 1/2L we see that the total time, TM of the first M excursions satisfies

P (TM < M/4L) ≤ 4e−λ2k/80.

Combining this with the previous estimate on the probability of having fewer than M returns
and the error probability in (2.1) proves the desired result.

Thus Lemma 2.2 shows that a hot star will remain lit for a long time with probability
very close to 1. Our next step is to investigate the process of transferring the infection from
one star to another. The first step in doing that is to estimate what happens when only the
center of the star infected.

Lemma 2.3. Let G be a star graph with center 0 and leaves 1, 2, . . . , k. Let 0 < λ < 1,
δ > 0 and suppose λ2+δk ≥ 10. Again let Pl,i denote the probability when at time 0 the center
is in state i and l leaves are infected. Let τ0 be the first time 0 becomes healthy, and let Tj

be the first time the number of infected leaves equals j. If L = λk/4, γ = δ/(4 + 2δ), and
K = λk1−γ/4, then for k ≥ k0(δ)

P0,1(TK > τ0) ≤ 2/kγ,

PK,1(T0 < TL) ≤ exp(−λ2k1−γ/16) ≤ 1/kγ,

E0,1(TL|TL < ∞) ≤ 2.

Combining the first two inequalities P0,1(TL < ∞) ≥ 1−2/kγ, and using Markov’s inequality,
if we can infect a vertex of degree at least k such that k ≥ k0(δ) and λ2+δk > 10, then with
probability ≥ 1− 5/kγ the vertex gets hot within the next kγ units of time.

Proof. Note that τ0 ∼ exp(1), and for any t ≤ τ0, the leaves independently becomes healthy
at rate 1 and infected at rate λ. Let p0(t) is the probability that leaf j is infected at time t
when the central vertex of the star has remained infected for all times s ≤ t. p0(0) = 0 and

dp0(t)

dt
= −p0(t) + (1− p0(t))λ = λ− (λ + 1)p0(t).
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So solving gives p0(t) =
∫ t

0
λe−(λ+1)(t−s) ds = λ

λ+1

(
1− e−(λ+1)t

)
. From this it follows that

P0,1(TK < τ0) ≥ P (Binomial(k, p0(k
−γ)) > K)P (τ0 > k−γ). (2.2)

Now if kγ > 8/3, (λ + 1)k−γ ≤ 3/4 and it follows from Lemma 2.1 that

p0(k
−γ) ≥ λk−γ/2.

Writing p = p0(k
−γ) to simplify formulas, if θ > 0

P (Binomial(k, p) ≤ K) ≤ eθK
(
1− p + pe−θ

)k
.

Since log(1 + x) ≤ x the right-hand side is

≤ exp

(
θλk1−γ

4
+ (e−θ − 1)

λk1−γ

2

)
.

Taking θ = 1/2 and using Lemma 2.1 to conclude e−1/2 − 1 ≤ −1/3, the above is

≤ exp(−λk1−γ/24) ≤ exp(−k1/2−γ/8),

since λ2k ≥ 9. Using this in (2.2), the right-hand side is

≥ (1− exp(−k1/2−γ/8))(1− k−γ) ≥ 1− 2/kγ,

if k1/2−γ ≥ 8γ log k.
Using the supermartingale from the proof of Lemma 2.2, if q = PK,1(T0 < TL), then we

have
q · 1 + (1− q)eθL ≤ eθK ,

and so q ≤ eθK ≤ e−λK/4. In the last step we have used eθ = 1/(1 + λ/2) ≤ e−λ/4, which
comes from Lemma 2.1. Filling in the value of K, e−λK/4 = e−λ2k1−γ/16. Now

λ2k1−γ = (λ2+δk)2/(2+δ)k1−γ−2/(2+δ) ≥ 102/(2+δ)kδ/(4+2δ).

So if kδ/(4+2δ) > 16 · 10−2/(2+δ)γ log k, then e−λK/4 ≤ 1/kγ.
To bound the time we use the lower bound random walk Yt from Lemma 2.2. EN = 1/λ,

so

EYt =

(
λk

2
− 1

λ

)
t =

(
λ2k − 2

2λ

)
t.

Let T Y
L be the hitting time of L for the random walk Yt. Using the optional stopping theorem

for the martingale Yt − (λ2k − 2)t/2λ and the bounded stopping time T Y
L ∧ t we get

EYT Y
L ∧t −

(
λ2k − 2

2λ

)
E
(
T Y

L ∧ t
)

= EY0 = 0.
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Since EYT Y
L ∧t ≤ L = λk/4, it follows that

E(T Y
L ∧ t) ≤

(
2λ

λ2k − 2

)
L =

λ2k/2

λ2k − 2
=

1

2− 4/λ2k
≤ 1,

as by our assumption λ2k ≥ 4. Letting t →∞ we have ET Y
L ≤ 1. Since Yt is a lower bound

for the number of infected leaves, TL1[TL<∞] ≤ T Y
L . Hence

E0,1(TL|TL < ∞) =
E0,1

(
TL1[TL<∞]

)
P0,1(TL < ∞)

≤ E0,1T
Y
L

P0,1(TK < τ0)PK,1(TL < T0)
≤ 1/(1/2) = 2

for large k.

To transfer infection from one vertex to another we use the following Lemma.

Lemma 2.4. Let v0, v1, . . . vm be a path in the graph and suppose that v0 is infected at time
0. Then the probability that vm will become infected by time m is ≥ (e−1(1− e−λ)e−1)m.

Proof. The first factor is the probability that the infection at v0 lasts for time 1, the second
the probability that v0 infects v1 by time 1, and the third the probability that the infection
at v1 remains until time 1. Iterating this m times brings the infection from 0 to m.

When the diameter of the graph is ≤ 2 log n, the probability in Lemma 2.4 is ≥ n−b for
some b ∈ (1/2,∞), and the time required is ≤ 2 log n. Combining this with Lemma 2.3
(with k = nε and γ = 1/3) shows that if n is large, then with probability ≥ Cn−b we can
use one hot star to make another star hot within time 2nε/3. Using Lemma 2.2 and trying
repeatedly gives the following Lemma.

Lemma 2.5. Let s1 and s2 be two stars in V ε
n and suppose that s1 is hot at time 0. Then,

for large n, s2 will be hot by time T = exp(nε/2) with probability

≥ 1− 8e−λ2nε/80.

Proof. If n is large, Lemma 2.2 shows that s1 remains lit for T units of time with probability
≥ 1 − 7e−λ2nε/80. Let tn = 2nε/3 and consider the discrete time points tn, 2tn, . . .. At all of
these time points we can think of a path starting from an infected neighbor of s1 up to s2.
Using one such path the infection gets transmitted to s2 and it gets hot in 2nε/3 units of
time with probability ≥ Cn−b for some constant C. So s1 fails to make s2 hot by time T
with probability

≤ (1− Cn−b)T/tn ≤ exp(−Cn−bT/tn) ≤ exp(−λ2nε/80)

for large n. For the first inequality we use 1 − x ≤ e−x. Combining with the first error
probability in this proof, we get the result.

Next we show that a lit star becomes hot with a high probability, and then helps to make
other non-lit stars lit.
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Lemma 2.6. Let s be a star of V ε
n and suppose that s is lit at time 0. Then s will be hot by

time 2 exp(nε/3) with probability

≥ 1− 5 exp(−λ2nε/3/16),

if n is large.

Proof. Since s is lit, it has at least λnε/10 infected neighbors at time 0. If s itself is not
infected at time 0, let N be the number of leaf infections that die out before s gets infected.
Using similar argument as in the beginning of the proof of Lemma 2.2,

P (N = j) =

(
1

λ + 1

)j

· λ

λ + 1
for j ≥ 0,

which implies
P (N > λnε/20) ≤ (1 + λ)−λnε/20 ≤ e−λ2nε/40,

as 1+λ > eλ/2 by Lemma 2.1. Also the time TM taken for M = λnε/20 leaf infections to die
out is a sum of M exponentials with mean at most 1/(λ+1)M ≤ 1/M . Now if n2ε/3 > 40/16,

the above error probability is ≤ e−λ2nε/3/16.
Using Chebyshev’s inequality on the sum, SM of M exponentials with mean 1 (and hence

variance 1), we see that if exp(nε/3) ≥ 2, i.e., nε/3 > log 2

P (SM > M exp(nε/3)) ≤ 1

M(exp(nε/3)− 1)2
≤ 4

M exp(2nε/3)
≤ exp(−λ2nε/3/16).

where in the final inequality we have used M > 4, i.e., nε > 80/λ, and λ2/16 < 2.
Multiplying by 1/M we see that the total time, TM , satisfies

P (TM > exp(nε/3)) ≤ exp(−λ2nε/3/16).

Combining these two error probabilities gives that s will be infected along with at least
λnε/20 infected neighbors within exp(nε/3) units of time with error probability

≤ 2 exp(−λ2nε/3/16). (2.3)

Now λnε/20 ≥ λnε/3/4, when n2ε/3 > 5. So if s is infected and has at least λnε/20 infected
neighbors, then using the second inequality of Lemma 2.3 (with γ = 2/3 and k = nε), s
becomes hot with error probability

≤ exp(−λ2nε/3/16).

Finally using Markov’s inequality and the third inequality of Lemma 2.3, the time Ts taken
by s to get hot, after it became infected, is more than T = exp(nε/3) with probability

≤ 2 exp(−nε/3) ≤ 2 exp(−λ2nε/3/16),

as λ < 1. Combining all these error probabilities proves the Lemma.
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We now use Lemmas 2.5, 2.6 and 2.2 to prove that if the contact process starts from all
sites infected, then for a long time at least 3/4’s of the stars will be lit.

Proposition 1. Let Iε
n,t be the set of stars in V ε

n which are lit at time t in the contact process

{ξ1
t : t ≥ 0} on Gn. Let tn = 2 exp(nε/2) and Mn = exp(n1−αε). Then there is a stopping

time Tn such that Tn ≥ Mn · tn and

P
(∣∣Iε

n,Tn

∣∣ ≤ (3/4) |V ε
n |
)
≤ exp(−Cnε).

Proof. Let αn = |V ε
n |. Clearly |Iε

n,0| = αn. We will estimate the probability that starting from
(7/8)αn lit stars, the number goes below (3/4)αn before reaching αn. Define the stopping
times τis’ and σis’ as follows. Let τ0 = σ0 = 0 and for i ≥ 0 let

τi+1 ≡ inf
{
t > τi + σitn :

∣∣Iε
n,t

∣∣ = (7/8)αn

}
,

σi+1 ≡ min
{

s ∈ N :
∣∣∣Iε

n,τi+1+s·tn

∣∣∣ 6∈ ((3/4)αn, αn)
}

.

We need to look at time lags that are multiples of tn in the definition of σi because in our
worst nightmare (which is undoubtedly a paranoid delusion) all the lit stars of degree k ≥ nε

at time τi+1 have exactly 0.1k infected neighbors .
Lemma 2.6 implies that a lit star of V ε

n gets hot within time 2 exp(nε/3) ≤ exp(nε/2)
(for large n) with probability ≥ 1 − 5 exp(−λ2nε/3/16). Combining with Lemma 2.2 gives
that a lit star at time 0 gets hot by time tn/2 and remains lit at time tn with probability
≥ 1 − 6 exp(−λ2nε/3/16) for large n. Now if |Iε

n,t| < αn for some t, then the number of lit
stars will increase at time t + tn with probability ≥ P (A ∩B), where

A : All the lit stars will get hot by tn/2 units of time, and be lit for time tn.

B : A non-lit star will become hot by time tn/2 in presence of another hot star,

and remain lit for another tn/2 units of time.

Now using the above argument P (A) ≥ 1 − 6n exp(−λ2nε/3/16), as there are at most n
stars. Combining Lemma 2.5 and 2.2 gives P (B) ≥ 1 − 9 exp(−λ2nε/80). So P (A ∩ B) ≥
1 − exp(−nε/4) for large n. Using the stopping times

∣∣Iε
n,τi+r·tn

∣∣ ≥ Wr for r ≤ σi, where
{Wr : r ≥ 0} is a discrete time random walk satisfying

Wr → Wr − 1 with probability exp
(
−nε/4

)
,

Wr → Wr + 1 with probability 1− exp
(
−nε/4

)
, (2.4)

and W0 = (7/8)αn. Now θWr is a martingale where

θ =
exp(−nε/4)

1− exp(−nε/4)
< exp(−nε/4/2). (2.5)

13



If q is the probability that Wr goes below (3/4)αn before hitting αn, then applying the
optional stopping theorem

q · θ(3/4)αn + (1− q) · θαn ≤ θ(7/8)αn ,

which implies
q ≤ θ(αn/8) ≤ exp

(
−Cn1−(α−1)ε

)
,

as αn ∼ Cn1−(α−1)ε for some constant C. So the probability that the random walk fails to
return to αn at least Mn = exp(n1−αε) times before going below (3/4)αn is ≤ exp(−Cnε).
Now if

K = min
{
i ≥ 1 :

∣∣Iε
n,τi+σi·tn

∣∣ ≤ (3/4)αn

}
,

the coupling with the random walk will imply P (K ≤ Mn) ≤ exp(−Cnε), and hence for
Tn ≡ τMn + σMn · tn

P
(∣∣Iε

n,Tn

∣∣ ≤ (3/4) |V ε
n |
)
≤ exp(−Cnε).

As σi ≥ 1 for all i, by our construction Tn ≥ Mn · tn, and we get the result.

So the infection persists for time longer than exp (n1−αε) in the stars of V ε
n .

3 Density of infected stars

Proposition 1 implies that if the contact process starts with all vertices infected, most of
the stars remain lit even after exp(n1−αε) units of time. In this section we will show that
the density of infected stars is bounded away from 0 and we will find a lower bound for the
density. We start with the following Lemma about the growth of clusters in the random
graph Gn, when we expose the neighbors of a vertex one at a time. For more details on this
procedure see Section 3.2 of Durrett (2007).

Lemma 3.1. Suppose 0 < δ ≤ 1/8. Let A be the event that the two clusters, starting from
1 and 2 respectively, intersect before their sizes grow to nδ. Then

P (A) ≤ Cn−( 1
4
−δ).

Proof. If d1, . . . , dn are the degrees of the vertices, then

P

(
max
1≤i≤n

di > n3/(2α−2)

)
≤ n · P (d1 > n3/(2α−2)) ≤ c/

√
n (3.1)

for some constant c. Suppose all the degrees are at most n3/(2α−2). Suppose R1 and R2 are
the clusters starting from 1 and 2 up to size nδ. Let B be the event that R1 contains a
vertex of degree ≥ n1/(2α−2). Let en be the sum of degrees of all those vertices with degree
≥ n1/(2α−2). While growing R1 the probability that a vertex of degree ≥ n1/(2α−2) will be
included on any step is

≤ en∑n
i=1 di − nδ+3/(2α−2)

≡ βn.
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Since the size biased distribution is qk ∼ Ck−(α−1) as k →∞,
∑

s≥k qs ∼ Ck−(α−2) as k →∞,

and we have en ∼ Cn1−(α−2)/(2α−2) and hence βn ∼ Cn−(α−2)/(2α−2) as n → ∞. So for large
n βn ≤ c1n

−1/4 for some constant c1, when α > 3. Thus

P (Bc) ≥ 1− c1/n
1/4−δ.

If Bc occurs, all the degrees of the vertices of R1 are at most n1/(2α−2). In that case, while
growing R2 the probability of choosing one vertex from R1 is

≤ nδ+1/(2α−2)∑n
i=1 di − nδ+3/(2α−2)

≤ c2/n
1−δ−1/(2α−2).

So the conditional probability

P (Ac|Bc) ≥
(
1− c2n

−(1−δ−1/(2α−2))
)nδ

≥ 1− c2/n
1−2δ−1/(2α−2).

Hence combining these two

P (Ac) ≥ (1− c1/n
1/4−δ)(1− c2/n

1−2δ−1/(2α−2)) ≥ 1− C1/n
1/4−δ,

and that completes the proof.

Lemma 3.1 will help us to show that in the dual contact process, staring from any vertex
of degree ≥ (10/λ)2+δ for some δ > 0, the infection reaches a star of V ε

n , with probability
bounded away from 0.

Lemma 3.2. Let ξA
t be the contact process on Gn starting from ξA

0 = A. Suppose 0 < ε <
1/20(α− 1). Then there are constants λ0 > 0, n0 < ∞, c0 = c0(λ, ε) and pi > 0 independent
of λ < λ0, n ≥ n0 and ε such that if T = nc0, v2 is a vertex with degree d(v2) ≥ (10/λ)2+δ

for some 0 < δ < 1 and v1 is a neighbor of v2,

P
(
ξ
{v2}
T ∩ V ε

n

)
≥ p2, P

(
ξ
{v1}
T+1 ∩ V ε

n

)
≥ p1λ.

Proof. The second conclusion follows immediately from the first, since the probability that
v1 will infect v2 before time 1, and that v2 will stay infected until time 1 is

≥ λ

λ + 1
(1− e−(λ+1))e−1 ≥ cλ.

Let Λm be the set of vertices in Gn of degree ≥ (10/λ)m+δ for m ≥ 2. Define γ = δ
2(2+δ)

and

B = 2(α− 1) log(10/λ), u =
(
e−1(1− e−λ)e−1

)−(B+1)
,

wn ≡ log(nε)/ log(10/λ)− δ Tm = T 1
m + T 2

m where T 1
m = (10/λ)(m+δ)γ T 2

m = um.

and let nc0 =
∑wn

m=2 Tm.
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Define the chain of events Em inductively as follows. Let E2 =
{

ξ
{v2}
T2

∩ Λ3 6= ∅
}

and for

m ≥ 3, having defined E2, . . . , Em−1, we let

Em =
{

ξ
{vm}
Tm

∩ Λm+1 6= ∅
}

, and vm ∈ ξ
{vm−1}
Tm−1

∩ Λm.

Let Am be the event that the clusters of size (10/λ)(m+δ+1)(α−2) starting from two neighbors
of vm do not intersect and

F = ∩wn
m=2Am.

Since ε < 1/20(α − 1), the cluster size (10/λ)(m+δ+1)(α−2) is at most n1/10 for m ≤ wn. So
using Lemma 3.1 and the fact

(
k
2

)
< k2,

P (F c) ≤

(
wn∑

m=2

(10/λ)2m+2δ

)
cn−(1/4−1/10) ≤ n2εcn−(1/4−1/10) < cn−(1/4−3/20) < 1/6

for large n.
Since each vertex has degree at least 3, if F occurs then by the choice of B the neigh-

borhood of radius Bm around vm will contain more than (10/λ)(m+δ+1)(α−2)+m vertices. Let
Gm be the event that the neighborhood of radius Bm around vm intersects Λm+1. In the
neighborhood of vm probability of having a vertex of Λm+1 is at least c(λ/10)(m+δ+1)(α−2).
Hence

P (Gc
mF ) ≤

(
1− c(λ/10)(m+δ+1)(α−2)

)(10/λ)m+(m+δ+1)(α−2)

≤ exp(−(10/λ)m).

If λ is small,
∑∞

m=2 exp(−(10/λ)m) ≤ 1/6.
On the intersection of F and Gm we have a vertex of Λm+1 within radius Bm of vm.

Using Lemma 2.2 and Lemma 2.3, in the contact process
{

ξ
{vm}
t : t ≥ 0

}
, vm gets hot at

time T 1
m and remains lit till time Tm with error probability ≤ cλ(m+δ)γ for small λ. If vm

is lit, then Lemma 2.4 shows that vm fails to transfer the infection to some vertex in Λm+1

within time T 2
m with probability

≤
[
1− (e−1(1− e−λ)e−1)Bm

]T 2
m/(Bm) ≤ exp

[
−(e−1(1− e−λ)e−1)−m/(Bm)

]
≡ ηm.

where ≡ indicates we are making a definition, and hence P (Ec
mGmF ) ≤ cλ(m+δ)γ + ηm. If λ

is small
∑wm

m=2[cλ
(m+δ)γ + ηm] ≤ 1/6, we can take p2 = 1/2 and the proof is complete.

Lemma 3.2 gives a lower bound on the probability that an infection starting from a
neighbor of a vertex of degree ≥ (10/λ)2+δ reaches a star. Lemma 2.3 shows that if the
infection reaches a star, then with probability tending to 1 the star gets hot within nε/3 units
of time. Combining these two we get the following.

Proposition 2. Suppose 0 < ε < 1/20(α − 1). There are constants λ0 > 0, n0 < ∞
c1 = c1(λ, ε) and p1 > 0, which does not depend on λ < λ0, n ≥ n0 and ε, such that for any
vertex v1 with a neighbor v2 of degree d(v2) ≥ (10/λ)2+δ for some δ ∈ (0, 1), and T = nc1

the probability that ξ
{v1}
T contains a hot star is bounded below by p1λ.
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Next we will show that if we start with one lit star, then after time exp(nε/2) at least
3/4’s of the stars will be lit.

Lemma 3.3. Let Iε
n,t be the set of stars which are lit at time t in the contact process on Gn

such that |Iε
n,0| = 1. Then for T ′ = exp(nε/2)

P (|Iε
n,T ′| < (3/4)|V ε

n |) ≤ 7 exp(−λ2nε/3/16).

Proof. Let s1 be the lit star at time 0. As seen in Proposition 1, s1 remains lit at time
T ′ = exp(nε/2) with probability ≥ 1 − 6 exp(−λ2nε/3/16) for large n. With probability
≥ Cn−b another star gets hot within time tn = 2nε/3 and remains lit at time T ′. Using
similar argument as in Lemma 2.5, the process fails to make (3/4)|V ε

n | many stars lit by time
T ′ with probability

≤ (3/4)|V ε
n |(1− Cn−b)T ′/tn ≤ (3/4)|V ε

n | exp(−Cn−bT ′/tn) ≤ exp(−λ2nε/3/16),

as |V ε
n | = Cn1−(α−1)ε and 1 − x ≤ e−x. So combining with the earlier error probability we

get the result.

Now we are almost ready to prove our main result. However, we need one more Lemma
that we will use in the proof of the theorem.

Lemma 3.4. Let F and G be two events which involve exposing nδ many vertices starting
at 1 and 2 respectively for some 0 < δ ≤ 1/8. Then

|P (F ∩G)− P (F )P (G)| ≤ Cn−(1/4−δ).

Proof. Let R1 and R2 be the clusters for exposing nδ many vertices starting from 1 and 2
respectively, and let A be the event that they intersect. Clearly

P (F ∩G) ≤ P (A) + P (F ∩G ∩ Ac)

= P (A) + P (F ∩ Ac) P (G ∩ Ac)

≤ P (A) + P (F )P (G).

Using similar argument for F c and G we get

|P (F ∩G)− P (F )P (G)| ≤ P (A).

We estimate P (A) using Lemma 3.1.

Lemma 3.4 shows that two events which involve exposing at most n1/8 vertices starting
from two different vertices are asymptotically uncorrelated. Now we give the proof of the
main theorem.
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Proof of Theorem 1. Given δ > 0, choose ε = min{δ/α, 1/20(α − 1)}. Let An be the
set of vertices in Gn with a neighbor of degree at least (10/λ)2+δ. Clearly |An|/n →
c0(λ/10)(2+δ)(α−2) as n →∞ for some constant c0. Define the random variables Yx, x ∈ An as
Yx = 1 if the dual contact process starting from x can light up a star of V ε

n and 0 otherwise.
By Proposition 2, EYx ≥ p1λ for some constant p1 > 0 and for any x ∈ An.

If we grow the cluster starting from x ∈ An and exposing one vertex at a time, we can find
a star on any step with probability at least cn−(α−2)ε. So with probability 1− exp (−cnε), we
can find a star of V ε

n within the exposure of at most nαε vertices. So, with high probability,
lighting a star up is an event involving at most n(α+1)ε many vertices. As (α + 1)ε < 1/8,
using Lemma 3.4, we can say

P (Yx = 1, Yz = 1)− P (Yx = 1) P (Yz = 1)

≤ (1− exp (−cnε)) Cn−(1/4−(α+1)ε) + exp (−cnε) ≡ θn.

Using our bound on the covariances,

var

(∑
x∈An

Yx

)
≤ n +

(
n

2

)
θn,

and Chebyshev’s inequality gives

P

(∣∣∣∣∣∑
x∈An

(Yx − EYx)

∣∣∣∣∣ ≥ nγ

)
≤

n +
(

n
2

)
θn

n2γ2
→ 0 as n →∞,

for any γ > 0, since θn → 0 as n → ∞. Since EYx ≥ p1λ and |An|/n → c0(λ/10)(2+δ)(α−2),
if we take pl ≡ p1λ · c0(λ/10)(2+δ)(α−2)/2 then

lim
n→∞

P

(∑
x∈An

Yx ≥ npl

)
= 1. (3.2)

Now if Yx = 1, Proposition 2 says that the dual process starting from x makes a star hot
after T1 = nc1 units of time. Then by Lemma 3.3 within next T2 = exp(nε/2) units of time
the dual process lights up 75% of all the stars with probability 1− 7 exp(−λ2nε/3/16).

Let Iε
n,t be the set of stars which are lit at time t in the contact process {ξ1

t : t ≥ 0} and

T3 = inf
{
t > exp(n1−αε) :

∣∣Iε
n,t

∣∣ ≥ (3/4) |V ε
n |
}

.

By Proposition 1, P (T3 < ∞) ≥ 1− exp(−cnε). Let

S =
{
S ⊂ {1, 2, . . . , n} : ξ1

t = S ⇒ |Iε
n,t| ≥ (3/4)|V ε

n |
}

.
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Using the Markov property and self-duality of the contact process we get the following
inequality. For any subset B of the vertex set, and for the event Fn ≡ [T3 < ∞] we have

P
[(

ξ1
T1+T2+T3

⊃ B
)
∩ Fn

]
=
∑
S∈S

P
(
ξS
T1+T2

⊃ B
)
P
(
ξ1
T3

= S|Fn

)
P (Fn)

=
∑
S∈S

P
(
ξ
{x}
T1+T2

∩ S 6= ∅∀x ∈ B
)

P
(
ξ1
T3

= S|Fn

)
P (Fn)

≥
∑
S∈S

P
(
|ξ{x}T1+T2

∩ Iε
n,T3

| > (3/4)|V ε
n |∀x ∈ B

)
P
(
ξ1
T3

= S|Fn

)
P (Fn)

≥ P (Yx = 1∀x ∈ B)
(
1− 7|B| exp

(
−λ2nε/3/16

))
P (Fn)

≥ P (Yx = 1∀x ∈ B)(1− 2 exp
(
−cnε/4

)
),

as |B| ≤ n and P (Fn) ≥ 1− exp(−cnε). Hence for T = T1 + T2 + T3, combining with (3.2)
and using the attractiveness property of the contact process we conclude that as n →∞

inf
t≤T

P

(
|ξ1

t |
n

> pl

)
= P

(
|ξ1

T |
n

> pl

)
≥ P

(
ξ1
T ⊇ {x : Yx = 1},

∑
x∈An

Yx ≥ npl

)
→ 1, (3.3)

which completes the proof of Theorem 1, and proves the lower bound in Theorem 2.

4 Upper bound in Theorem 2

For the upper bound, we will show that if the infection starts from a vertex x with no vertex
of degree > 1/λ1−δ nearby, it has a very small chance to survive. To get the 1 in upper
bound we need to use the fact that first event in the contact process starting at x has to be
a birth so we begin with that calculation.

Let Λδ be the set of vertices of degree > λδ−1. Define Zx, x ∈ {1, 2, . . . , n} as Zx = 1

if the dual contact process {ξ{x}t : t ≥ 0} starting from x survives for T ′ = 1/λα−1 units of
time, and 0 otherwise. We will show EZx ≤ Cλ1+(α−2)(1−δ) for some constant C. If T1 is
the time for the first event in the dual process, then ET1 ≤ 1 and using Markov’s inequality
P (T1 > 1/λα−1) < λα−1. So if T1 < 1/λα−1, the first event must be a birth for Zx to be 1.
So for x ∈ Λδ,

P (Zx = 1) ≤ P (T1 > 1/λα−1) +
∑

i>λδ−1

pi
λi

λi + 1

≤ λα−1 + Cλ
∑

i>λδ−1

i−(α−1)

≤ λα−1 + Cλ · λ(α−2)(1−δ).
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For x ∈ Λc
δ, let w(λ) ≤ Cλ(α−2)(1−δ) be the size-biased probability of having a vertex of Λδ in

its neighborhood. If d(x) = i, the expected number of vertices in a radius m around x is at
most i · EZm, where Zm is the total progeny up to mth generation of the branching process
with offspring distribution qk = (k + 1)pk+1/µ ∼ ckα−1. So the expected number of vertices,
which are within a distance m = d(α − 1)/δe, the smallest integer larger than (α − 1)/δ,
from x and belong to Λδ, is

≤
(1/λ)1−δ∑

i=2

pi · i · EZm · Cλ(α−2)(1−δ) ≤ Cλ(α−2)(1−δ).

Using Markov’s inequality the probability of having at least one vertex of Λδ within a distance
m from x has the same upper bound as above.

Until we reach Λδ, |ξ{x}t | ≤ Yt where

Yt → Y1 − 1 at rate Yt

Yt → Yt + 1 at rate Ytλ · (1/λ)1−δ = Ytλ
δ

So Yt jumps at rate Yt(1 + λδ) and it jumps to Yt + 1 with probability λδ/(1 + λδ) < λδ. If

T1 < 1/λα−1, the first event in the dual process ξ
{x}
t must be a birth for Zx to be 1. Let

T2m is the time of the 2mth event after the first event. Then ET2m ≤ 2m/(1 + λδ) and using
Markov’s inequality

P (T2m > 1/λα−1) ≤ Cλα−1.

Now if T2m < 1/λα−1 and there is no vertex of Λδ within a distance m of x, the infection
starting at x survives for time T ′ only if Yt has at least m up jumps before hitting 0. If there
are ≤ m− 1 up jumps in the first 2m then Yt will hit 0 by T2m, as Y0 = 2. The probability
of this event is

≤ P (B ≥ m) where B ∼ Binomial (2m, λδ)

≤ 22mλmδ ≤ 22mλα−1.

Combining all three error probabilities, for any x ∈ Λc
δ,

P (Zx = 1) ≤ P (T1 > 1/λα−1) + P (T2m > 1/λα−1) +
∑

i≤λδ−1

pi
λi

λi + 1
· Cλ(α−2)(1−δ)

≤ Cλ1+(α−2)(1−δ).

Using an argument similar to the one at the end of the proof of Theorem 1

P

(∣∣∣∣∣∑
x

(Zx − EZx)

∣∣∣∣∣ > nγ

)
→ 0 as n →∞
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for any γ > 0. Since EZx ≤ Cλ1+(α−2)(1−δ) for all x ∈ {1, 2, . . . , n}, if we take pu =
3Cλ1+(α−2)(1−δ), then

P

(∑
x

Zx ≥ npu

)
→ 0 as n →∞.

So by making C larger in the definition of pu and using the attractiveness of the contact
process

inf
t≥T ′

P (|ξ1
t | ≤ pun) → 1

as n →∞.

5 Proof of connectivity and diameter

We conclude the paper with the proof of Lemma 1.2. We begin with a large deviations
result. The fact is well-known, but the proof is short so we give it for completeness.

Lemma 5.1. Let X1, X2, . . . be i.i.d., nonnegative with mean µ. If ρ < µ, then there is a
constant γ > 0 so that

P (X1 + · · ·+ Xk ≤ ρk) ≤ e−γk

Proof. Let φ(θ) = Ee−θX . If θ > 0 then

e−θρkP (X1 + · · ·+ Xk ≤ ρk) ≤ φ(θ)k.

So we have
P (X1 + · · ·+ Xk ≤ ρk) ≤ exp(k{θρ + log φ(θ)}).

log(φ(0)) = 0 and as θ → 0
d

dθ
log(φ(θ)) =

φ′(θ)

φ(θ)
→ −µ.

So log φ(θ) ∼ −µθ as θ → 0, and the result follows by taking θ small.

Proof of Lemma 1.2. We will prove the result in the following steps.

Step 1: Let kn = (log n)2. The size of the cluster Cx, starting from x ∈ {1, 2, . . . n}, reaches
size kn with probability 1− o(n−1).

Step 2: There is a B < ∞ so that if the size of Cx reaches size B log n, it will reach n2/3

with probability 1−O(n−2).

Step 3: Let ζ > 0. Two clusters Cx and Cy, starting from x and y respectively, of size
n(1/2)+ζ will intersect with probability 1− o(n−2).

Steps 2 and 3 follow from the proof of Theorem 3.2.2 of Durrett (2007), so it is enough
to do Step 1. Before doing this, note that if d1, . . . , dn are the degrees of the vertices, and
η > 0 then as n →∞,

P

(
max
1≤i≤n

di > n(1+η)/(α−1)

)
≤ n · P (d1 > n(1+η)/(α−1)) ∼ Cn−η.
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Given α > 3, we choose η > 0 small enough so that (1 + η)/(α− 1) < 1/2.
To prove step 1, we will expose one vertex at a time. Following the notation of Durrett

(2007), suppose At, Ut and Rt are the sets of active, unexplored and removed sites respectively
at time t in the process of growing the cluster starting from 1, with R0 = {1}, A0 = {z :
1 ∼ z} and U0 = {1, 2, . . . , n} − A0 ∪ R0. At time τ = inf{t : At = ∅} the process stops. If
At 6= ∅, pick it from At in some way measurable with respect to the process up to that time
and let

Rt+1 = Rt ∪ {it}
At+1 = At ∪ {z ∈ Ut : it ∼ z} − {it}
Ut+1 = Ut − {z ∈ Ut : it ∼ z}.

Here |Rt| = t + 1 for t ≤ τ and so C1 = τ + 1. If there were no collisions, then |At+1| =
|At| − 1 + Z where Z has the size biased degree distribution q. Let qη be the distribution
of (Z|Z ≤ n(1+η)/(α−1)). Then on the event {maxi di ≤ n(1+η)/(α−1)}, |At| is dominated by a
random walk St = S0 + Z1 + · · · + Zt, where S0 = A0 and Zi ∼ qη. Since qk−1 = kpk/µ, we
have q0 = q1 = 0 and hence qη

0 = qη
1 = 0. Then St increases monotonically.

If we let T = inf{m : Sm ≥ kn} then

P (|C1| ≤ kn) ≤ P (St − |At| ≥ 4 for some t ≤ T ). (5.1)

As observed above, if n is large, all of the vertices have degree ≤ nβ where β = (1 + η)/(α−
1) < 1/2. As long as St ≤ 2kn, each time we add a new vertex and the probability that it is
in the active set is at most

γn =
2knn

β∑n
i=1 di − 2knnβ

≤ Cknn
β−1

for large n. Thus the probability of two or more collisions while St ≤ 2kn is ≤ (2kn)2γ2
n =

o(n−1).
If ST −ST−1 ≤ kn, then the previous argument suffices, but ST −ST−1 might be as large

as nβ. Letting m > 1/(1−2β), we see that the probability of m or more collisions is at most

(nβ)m(Cnβ−1)m = o(n−1).

To grow the cluster we will use a breadth first search: we will expose all the vertices at
distance 1 from the starting point, then those at distance 2, etc. When a collision occurs,
we do not add a vertex, and we delete the one with which a collision has occurred, so two
are lost. There is at most one collision while St ≤ 2kn. Since S0 ≥ 3, it is easy to see that
the worst thing that can happen in terms of the growth of the cluster is for the collision to
occur on the first step, reducing S0 to 1. After this the number of vertices doubles at each
step so size kn is reached before we have gone a distance log2 kn from the starting point.

In the final step we might have a jump Sτ − Sτ−1 ≥ kn and m collisions, but as long as
kn = (log n)2 > 2m we do not lose any ground. In the growth before time T , each vertex,
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except for possibly one collision, has added two new vertices to the active set. From this it
is easy to see that the number of vertices in the active set is at least kn/2− 2m.

To grow the graph now, we will expose all of the vertices in the current active set, then
expose all of the neighbors of these vertices, etc. Let ε > 0. The proof of Theorem 3.2.2
in Durrett (2007) shows (see page 78) that if δ is small then until nδ vertices have been
exposed, the cluster growth dominates a random walk with mean ν − ε. Let J1, J2, . . . be
the successive sizes of the active set when these phases are complete. The large deviations
result, Lemma 5.1, implies that there is a γ > 0 so that

P (Ji+1 ≤ (ν − 2ε)Ji|Ji = ji) ≤ exp(−γji)

Since J1 ≥ (log n)2/2 − 8, it follows from this result that with probability ≥ 1 − o(n−1), in
at most (

1

2
+ ζ

)
log n

log(ν − ε)

steps, the active set will grow to size n(1/2)+ζ . Using the result from Step 3 and noting
that the initial phase of the growth has diameter ≤ log2 kn = O(log log n) the desired result
follows.
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