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Abstract

Over the past two decades, the theory of tumor evolution has largely focused on
the selective sweeps model. According to this theory, tumors evolve by a succession of
clonal expansions that are initiated by driver mutations that have a fitness advantage
over the resident types. A 2015 study of colon cancer [44] has suggested an alternative
theory of tumor evolution, the so-called Big Bang model, in which all of the necessary
driver mutations are acquired before expansion began, and the evolutionary dynamics
within the expanding population are predominantly neutral. In this paper, we will
describe a simple mathematical model inspired by work of Hallatschek and Nelson [25]
that makes quantitative predictions about spatial patterns of genetic variability. While
this model has some success in matching observed patterns in two dimensions, it fails
miserably in three dimensions. Despite this failure, we think the model analyzed here
will be a useful first step in building an accurate model.

1 Introduction

In the 1950s Fisher and Holloman [20] and Nordling [41] found that within the age range
25–74, the logarithm of the cancer death rate increased in direct proportion to the logarithm
of the age, with a slope of about 6 on a log-log plot. Nordling grouped all types of cancer
together and considered only men, but the pattern persisted when Armitage and Doll [1]
separated cancers by their type and considered men and women separately. Nordling [41]
suggested that the slope of six on a log-log plot would be explained if a cancer cell was the
end result of seven successive mutations.

In the studies cited above, the stages were unspecified events. That changed in 1971 with
Knudson’s study of retinoblastoma [31]. Based on observations of 48 cases of retinoblastoma
and published reports, he hypothesized that the disease is a cancer caused by two mutational
events. He based this on the observation that the incidence time was exponential for the
patients with multiple bilateral tumors, but looked like a gamma(2,λ) distribution for the
less serious unilateral cases. He hypothesized that the more serious patients had a germline
mutation in the underlying gene while the less serious patients needed to have mutations
occur in both copies of the underlying gene. In current terminology the gene, later identified
as RB1 is a tumor suppressor gene. Trouble begins when both copies are knocked out.
For more on the development of these ideas see [32], which was written to mark the 30th
anniversary of the original paper.
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Figure 1: Clonal expansion in Barrett’s Esophagus. Figure is from [36].

In colon cancer the initiating event is thought to involve the inactivation of the tumor
suppressor gene APC (adenomatous polyposis coli). In 1990, Fearon and Vogelstein [18]
found a second piece of the puzzle when they noted that approximately 50% of colorectal
carcinomas, and a similar percentage of adenomas greater than 1 cm have mutations in the
RAS gene family, while only 10% of adenomas smaller than 1 cm have these mutations. In
the modern terminology, the members of the RAS family are oncogenes. A mutation in a
single copy is sufficient to allow progression. The analysis in [18] also suggested a role for
TP53 (which produces the tumor protein p53) in the progression to cancer. The protein p53
has been described as ”the guardian of the genome” because of its role in conserving stability
by preventing genome mutations. Mutations in the gene TP53 have since been implicated
in many cancers, see [21] and [48]. Combining these ideas leads to a four (or five) stage
description for colon cancer that is described for example in the books of Vogelstein and
Kinzel [47], and Frank [19].

In the multistage theory of carcinogenesis, it is thought that the sequence of “driver”
mutations produces a series of selective sweeps. This theory has been confirmed by whole
genome sequencing of cancer cells. Ding et al [10] have identified the clonal structure of
eight relapsed acute myeloid leukemia (AML) patients. In one patient the founding clone
1 accounted for 12.74% of the tumor at the time of diagnosis. The additional mutations in
clones 2 and 3 may have resulted in growth or survival advantages because they were 53.12%
and 29.04% of the tumor respectively. Only 5.10% of the cells were in clone 4 indicating
that it may have arisen last. However, the relapse evolved from clone 4 with the resultant
clone 5 having 78 new somatic mutations compared to the sampling at day 170.

A mathematical theory has been developed for the clonal expansion model to make
predictions about the level of intratumor heterogeniety [4, 15], the number of passenger
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Figure 2: Cartoon picture of the Big Bang theory. Arrows mark the times of mutations.
Colors indicate their spatial extent.

(neutral) mutations in cancer cells [2, 46], and more practical questions such the evolution
of resistance to treatmentt [26, 35, 45], the effectiveness of combination therapy [3, 29, 38],
and the potential effectiveness of screening to reduce ovarian cancer [9]. See [13] for an
introduction to the mathematics underlying many of these applications.

The picture of successive selective sweeps has been confirmed by comparing primary tu-
mors and their metasases [50], and by regional sequencing of breast cancer [39], glioblastoma
[43], and renal carcinoma [22]. Thus it was surprising when Sottoriva et al introduced and
validated a ‘big Bang’ model in which all driver mutations were present at the time of tumor
initiation. They collected genetic data of various types from 349 individual tumor glands
were sampled from the opposite sides of 15 colorectal tumors and large adenomas. Data
presented in Figure 3 of their paper shows that adenomas were characterized by mutations
and copy number aberrations (CNA) that segregated between tumor sides. In contrast the
majority of carcinomas exhibited the same private CNA in individual glands from different
sides of the tumor. Follow up work of Ryser et al [42] found evidence of early abnormal
cell movement in 8 of 15 invasive colorectal carcinomas (“born to be bad”) but not in four
benign adenomas

The mutation patterns found by Sottoriva et al. [44] are similar to those found by Hal-
latschek et al [23] in a remarkable experimental paper. Two fluorescently labeled strains
of E. coli were mixed and placed at the center of an agar plate containing a rich growth
medium. The central region of the plate exhibits a dense speckled pattern reminiscent of
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the initial mixed population. From this ring toward the boundary of the colony, the popula-
tion segregates into single colored sectors with boundaries that fluctuate. [25] and [30] have
developed and analyzed models for the development of sectors in the system.

Figure 3: Yeast growth patterns.

2 Biased Voter Model

A natural first step is to investigate genealogies in the biased voter model, which was intro-
duced by Williams and Bjerknes [49] as a canceer model in 1972. In contrast to Durrett,
Foo and Leder [16] there will be only two types of cells: 0 = wild type, 1 = cancer cells,
and there are only neutral mutations, i.e., no type 2’s will be created, and there are no new
mutations from type 0 to type 1.

In the biased voter model, 0’s give birth at rate 1, and 1’s at rate λ. In either case the new
individual is sent to a randomly chosen nearest neighbor on Zd. Since we are concerned with
solid tumors we will be primarily concerned with d = 2, 3. To key to analyzing the biased
voter model is its duality with a branching coalescing random walk ζt, see [6, 5]. To explain
the duality we have to construct the process. For each x ∈ Zd and nearest neighbor y we
have a Poisson process T x,yn with rate 1/2d, and a Poisson process Sx,yn with rate (λ− 1)/2d.
At times T x,yn we put a δ at x and draw an arrow from y to x. The arrow reaches the the
point x just above the δ. At times Sx,yn we draw an arrow from y to x. We think of δ’s
as dams that stop the flow of fluid, and arrows that spread the fluid in the direction of the
arrow. If we inject fluid at the bottom at the sites of A and allow the fluid to only flow up,
being blocked by δ’s and flowing across arrows in the direction of their orientation the sites
reached by fluid at time t are ξAt . See Figure 4 for an example.
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Figure 4: Construction of the biased voter model. Thicklines show the flow of fluid and
indicate the (x, t) with ξt(x) = 1.

To define the dual ζx,ts , 0 ≤ s ≤ t we start at x at time t. Fluid flows down, is blocked
by δ’s and moves across the arrows in the opposite direction to their orientation. From the
definition it should be clear that x ∈ ξt if and only if some site in ζx,tt is occupied at time 0.
Tat is,

{x ∈ ξAt } = {ζx,tt ∩ A 6= ∅}
To define the dual starting from a set of sites B let ζB,ts = ∪x∈Sζx,ts . It is immediate that

{ξAt ∩B 6= ∅} = {ζB,tt ∩ A 6= ∅}

From the construction it is easy to see in the dual, particles jump to each nearest neighbor
at rate 1/2d, give birth onto each nearest neighbor at rate (λ− 1)/2d. This system is called
a coalescing branching random walk

ζx,tt gives the set of potential ancestors of the individual at x at time t. To find the actual
ancestor, we could follow the approach of the ancestral selection graph and starting from the
values of ξ0 on ζx,tt and work our way back up the graphical representations to see which
arows produced births. Here we will follow the approach in Neuhauseer’s work on competing
contact processes [40] and inductively define an ordering of the points in the dual ζx,ts as we
work backwards. The actual ancestor will be the first occupied site in the list. Looking at
the example drawn in Figure 5 and working backwards from time t, the arrow from 0 to −1
will be an actual birth only if at that point −1 is vacant and 0 is occupied. To encode this
we write the dual as −1, 0. The next two arrows as we work down is a voter arrow so the
dual changes to −2, 0 and then to −2, 1. The arrow from −3 to −2 will be an actual birth
only if at that point −2 is vacant and −3 is occupied, but if this is the case −3 will be the
actual ancestor so the dual is now −2,−3, 1. Taking into account the last two arrows we see
that the actual ancestor is the first occupied site on the list −1, −3, 1, 2.
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Figure 5: The dual ζ−1,t
t = {−3,−1, 1, 2} so −1 will be occupied at time t if one of these

sites is.

Bramson and Griffeath [6, 5] showed that if we start with a single type 1 at the origin
then when ξ0

t does not die out, it grows linearly and has an asymptotic shape D. That is,
for any ε > 0, there is a tε (which depends on the outcome ω) so that on {T0 = ∞} we have

(1− ε)tD ∩ Zd ⊂ ξt ⊂ (1 + ε)tD for t ≥ tε(ω). (1)

D is convex and has the same symmetries as those of Zd that leave the origin fixed, e.g.,
rotation by 90 degrees around an axis, or reflection through a hyperplane through the origin
perpendicular to an axis.

Figure 6: Behavior of the ancestral lineage of a cell in the biased voter model.

If we select an x well away from the boundary at time t then initially all branching
arrows connect two occupied sites. In this case they will not be part of the actual ancestral
lineage, so it consists entirely of voter arrows. Individual trajectories will move like a mean
zero random walk, and hence travel O(

√
s) in time s. As Figure 6 shows, this means that
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the lineage will go almost straight down until it comes to the edge of the space time cone
Γ = {(x, t) : x ∈ tD}. At this point the lineage will begin to contain branching events that
will take it back toward the origin. It is far from obvious what the path is doing when it is
near the boundary but it must get to the origin since x ∈ ξt implies 0 ∈ ζx,tt .

3 A simplified model

Figure 7: A one dimensional model with many individuals per site (or deme).

Hallatschek and Nelson [24] studied genealogies in a one dimensional system in which
sites (demes) can carry up to N individuals. Here we will follow the formulation of Durrett
and Fan [14]. There is one cell at each point of (L−1

n Z) × {1, . . . ,Mn}, whose cell-type is
either 1 or 0. The cells in deme w ∈ L−1

n Z only interact with those in demes w − L−1
n and

w + L−1
n and interact equally with all of those points. Hence each cell x = (w, i) has 2Mn

neighbors. Type-0 cells reproduce at rate 2Mnrn, type-1 cells at rate 2Mn(rn+θR−1
n ). When

reproduction occurs the offspring replaces a neighbor chosen uniformly at random. We define
the approximate density by

unt (w) :=
1

Mn

Mn∑
i=1

ξt(w, i)

and linearly interpolate between demes to define unt (w) for all w ∈ R.
let Cb(R) be the set of bounded continuous functions equipped with the metric

‖f‖ =
∞∑
k=1

sup
|x|≤k

|f(x)|

which induces the topology of uniform convergence on compact sets.

Theorem 1. Suppose that as n→∞, the initial condition un0 converges in Cb(R) to f0 and
that:

(a) rnMn/L
2
n → α ∈ (0,∞)

(b) rn/Ln → γ ∈ [0,∞)

(c) Mn/Rn → β ∈ [0,∞)
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(d) Ln →∞ and LnRn →∞

Then the approximate density process (unt )t≥0 converges in distribution in D([0,∞), Cb(R)),
as n → ∞, to a continuous Cb(R) valued process (ut)t≥0 which is the weak solution to the
stochastic partial differential equation (SPDE)

∂tu = α∆u+ 2θ β u(1− u) + |4γ u(1− u)|1/2 Ẇ (2)

with initial condition u0 = f0. Here Ẇ is the space-time white noise on [0,∞)× R.

The absolute value is to make the coeficicent well defined when u < 0. When θ > 0 the
solutions will stay nonnegative. For related results see the earlier work of Muller and Tribe
[37] and Doering, Mueller, and Smereka [11] on limits of long range voter models

To explain the terms in the limit

• α∂2
xu(x, t) = diffusion generated by the voter model component of the dynamics

• 2θβu(1− u) = increase in 1’s due to births from 1’s onto 0’s at rate 2Mnθ/Rn

• 2
√
γu(1− u) Ẇ fluctuation due to random reproduction

Hallatschek and Nelson [24] viewed the system in a reference frame moving at rate v and
made different parameter choices, so they ended up with the solution of the stochastic PDE

∂tu(x, t) = D∂2
xu(x, t) + v∂xu(x, t) + su(1− u) + ε

√
u(1− u)η (3)

where η is space-time white noise, see their equation (2). The term v∂xu(x, t) arises due to
the moving frame of reference.

Using arguments about the behavior of tracer particles placed into an expanding fluid
the authors of [24] argue that the probability density G(y, t|x, T ) that an individual at x at
time T was descended from an ancestor that lived at time y at time t satisfies

∂τG(y, t|x, T ) = D∂2
yG− ∂y[(v + 2D∂y ln(u(y, t))G] (4)

Recalling that a diffusion process with generator L = a(x)f ′′(x) + b(x)f ′(x) has a transition
probability that satisfies

∂tpt(x, y) = ∂2
y(a(y)pt(x, y))− ∂y(b(y)pt(x, y))

and comparing with (4), we see that in a fixed reference frame the coordinates of the ancestor
will be a diffusion process with generator

Lf(y) =
1

2
f ′′(y) +

d

dy
ln(u(y, τ)) · f ′(y) (5)

where τ = T − t since we are working backwards in time starting from x at time T . To see
this is reasonable note that if the interface was as it is drawn in Figure 7 then in the flat
part of the curve there would be no drift and the genealogy would be Brownian motion, in
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agreement with the heuristic picture in Figure 6. In the right side of the picture where u is
decreasing, there will be a drift to the left, which will keep the lineage close to the boundary.

If u is the solution to (3), then it is not smooth enough for the drift (d/dy) ln[u(y, t)] in
(4) to make sense mathematically. Even worse, in two dimensions there is no analogue of
Theorem 3, since in dimensions d > 1 SPDE do not have function-valued solutions. To avoid
these problems we could let P̄ denote the probability measure for the biased voter model
conditioned not to die out and switching to fixed reference frame replace the solution of (3)
by

u(x, t) = P̄ (ξt(x) = 1).

Since we do not know much about the right-hand side we will go one step further and let

u(x, t) = exp[ϕ((|x| − vt)/tα)] (6)

where ϕ(z) converges to 0 as z → −∞ and → −∞ as z → ∞. Here we have replaced the
limiting shape in (1) by a ball and introduced tα as a measure of the fluctuations of the
boundary. Thinking of the central limit theorem a natural choice is α = 1/2. However,
physicists’ arguments [28] and simulations of the Eden model (which has births and no
deaths) [51, 52, 34] suggest that in two dimensions the fluctuations of the boundary will be
of order t1/3 rather than the usual t1/2. It is not known what the fluctuations should be
in d > 2, so to accommodate a range of scalings we will allow α to vary and see how the
behavior changes.

Figure 8: The Eden model has a very rough boundary.
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Using the reasoning that led to (5), the process in d > 1 is:

Lf(y) =
1

2
∆f(y) +∇ ln(u(y, τ)) · f ′(y) (7)

where again τ = T − t. Suppose, for the moment, that we are in two dimensions. Our
next step is to change to polar coordinates. If we do this to Brownian motion (and add a
superscript 0 to indicate that we are transforming Brownian motion) the result has

dR0
t = dB1

t +
1

R0
t

ds dθ0
t = dB2

t /R
0
t

where the Bi
s are independent Brownian motions. See [12] for this and other stochstic calculus

facts that we use.
Since the drift in (7) is radial, in polar coordinates its angular part has

dθt = dB2
t /Rt.

The radial component

dRt = dB1
t +

(
1

Rt

+ τ−αφ′((Rt − vτ)/τα)

)
dt,

where ψ = ϕ′/ϕ. Writing Ut = Rt − v(T − t) to return to the moving frame of reference,
and dropping the first term which is small

dUt = dB1
t +

(
v + τ−αφ′(Ut/τ

α)
)
dt.

If we let ψ(u) = vu+ φ(u/τα) then we can write the last equation as

dUt = dB1
t + ψ′(Ut) ds. (8)

To understand the behavior of this process we note that its generator can be written as

LUf(u) =
1

2
e−2ψ(u)∂u(e

2ψ(u)∂uf),

so if we let 〈f, g〉 =
∫
f(u)g(u)e2ψ(u) du then

〈g, LUf〉 = 〈LUg, f〉.

That is,

Lemma 1. LU is self-adjoint with respect to e2ψ.

To have a concrete example we let

φ(u) =

{
0 u ≤ 0

−u2/2 u ≥ 0
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so that

2ψ(u) =

{
2vu u ≤ 0

2vu− u2/τ 2α u ≥ 0

and the drift

b(u) =

{
v u ≤ 0

v − x/τ 2α u ≥ 0

To make e2ψ(u) a probability measure we have to normalize. To do this, we first suppose
that the second half of the definition applies on the whole line and write

2ψ(u) = 2vu− u2

τ 2α
= −

( u
τα

− vτα
)2

+ (vτα)2

from this we see that

Lemma 2. When e2ψ(u) is normalized to be a probability measure it is a normal with mean
vτ 2α and variance τ 2α/2.

From this, we see that it is legitimate to ignore the contribution from u ≤ 0. This result
shows us that it is not sensible to take α > 1/2 since in that case the distance of the lineage
from the tumor is much larger than the size of the tumor. The case α = 1/2 is also somewhat
suspicious from this point of view since the displacement of the lineage from the boundary
is of the same order as the diameter of the tumor. Later in Conclusion 2 we will see that
when α = 1/2 all the coalescences occur near the beginning of tumor growth.

‐10 0 10 20 30 40 50

tau = 216, alpha = 1/3

φ

location of lineage

drift v drift v ‐ x/ τ 2α

Figure 9: Picture of our concrete example indicating where the lineage is in equilibrium.

The reader should note that while (6) goes from 1 at vτ to ≈ 0 over a window of size
O(τα) the center of the stationary distribution is at vτ 2α, which the point where the drift is
0. Because of this it is natural to look instead at Ūt = Ut− τ 2αv. When we do this the drift
is just −ū/τ 2α, i.e., Ūt is an Ornstein-Uhlenbeck process.
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4 Discretization of Radial Process

To have the possibility for lineages to coalesce, we will discretize Ūs and θs to take place on
εZ. This is biologically natural since the tumor is composed of cells. To fix the units, we
will think of space as measured in cm, and time as measured in years.

• Since cells have a diameter of roughly 10 µm = 10−5m, ε ≈ 10−3.

• Since tumors are several cm in diameter and take years to form the speed v ≈ 1. For
simplicity we will set v = 1

The Ornstein-Uhlenbeck has unbounded drift, so a naive approach to discretization can
lead to negative jump rates. To avoid this, we will instead use a continuous time birth and
death process with stationary measure

µ(x) = exp(−x2/τ 2α) (9)

in which the rate of jumps from x to y, q(x, y), satisfies the detailed balance condition:

µ(x)q(x, x+ ε) = µ(x+ ε)q(x+ ε, x). (10)

To have (10) we need

q(x, x+ ε)

q(x+ ε, x)
=
µ(x+ ε)

µ(x)
= exp(−(2εx+ ε2)/τ 2α).

To do this we can take

q(x, x+ ε) =
ε−2

2
exp(−(2εx+ ε2)/2τ 2α), q(x+ ε, x) =

ε−2

2
exp((2εx+ ε2)/2τ 2α). (11)

To see that discretized chain is reasonable note that replacing x by x − ε in the second
formula this chain has infinitesimal mean

εq(x, x+ ε)− εq(x, x− ε) =
ε−1

2

[
exp−(2εx+ε2)/2τ2α

+ exp(2εx−ε2)/2τ2α
]
≈ − x

τα
,

and the infinitesimal variance

ε2q(x, x+ ε) + ε2q(x, x− ε) =
1

2

[
exp−(2εx+ε2)/2τ2α

+ exp(2εx−ε2)/2τ2α
]
≈ 1.

5 Angular Process

To discretize the angular process θt when R0 = R we let θ̄t be a process that jumps y →
y ± ε/R at rate (ε−2/2)(R2/R2

s) so that the infinitesimal variance is

2
ε2

R2
· ε

−2

2
· R

2

R2
s

=
1

R2
s

.
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The angular variable is easy to understand. If we condition on Rt, t ≥ 0 then

θ̄t − θ̄0 ≈ normal(0, σ2
t ) where σ2

t =

∫ t

0

1/R2
s ds (12)

Using the fact that in the limit as R→∞ Rs ∼ T − s = R− s we have∫ t

0

1

(R− s)2
ds =

1

R− t
− 1

R
=

t

R(R− t)

Remark 1. Note that for any δ > 0 this calculation is valid until t = R−Rδ because in that
case σ2 = O(R−δ).

Consider now two points at distance R from the center whose angular parts differ by
θ0 = aR−1/2. For the lineages can hit by time t we need

t

R(R− t)
= a2R−1 or t = a2(R− t) or t =

a2R

1 + a2

Conclusion 1. Tumor cells whose angles to the origin are separated by distance aR−1/2 will
coalesce after a time with mean

≈ a2R

1 + a2
(13)

Due to the somewhat informal nature of our arguments, we will call them conclusions
not theorems. To see what this says, note that when a = 3, t = 0.9R. If R = 5000 cells
which is a tumor with of order 108 cells and a radius 5 cm, 3R1/2 ≈ 210 cells. When a = 0.1
t ≈ 0.01R. In the concrete example 0.1R1/2 ≈ 7 cells

6 Coalescence of two lineages on the boundary

Consider now two independent genealogical processes (X̄1(t), θ̄1(t)) and (X̄2(t), θ̄2(t)). To
have both coordinates of order R we will let Ȳi(t) = Rθ̄i(t) to get a process that jumps
y → y±ε at rate (ε−2/2)(R2/R2

s). Let Zi(t) = (X̄i(t), Ȳi(t)). Let Tθ = min{t : Ȳ1(t) = Ȳ2(t)},
and let Tc = min{t : Z1(t) = Z2(t)} be the coalescence time. Conclusion 1 gives a lower
bound on the coalescence time by using Tθ ≤ Tc. We will now identify a situation in which
Tc occurs soon after Tθ.

Conclusion 2. Suppose that

X̄i(0) ∼ R, |X̄1(t)− X̄2(t) = O(Rα) |Ȳ1(t)− Ȳ2(t)| = Rβ.

If α < β < 1/2.
Tc = Tθ +O(R2α log2R)

Since Tθ = O(R2β) and α < β this says that Tc occurs soon after Tθ.
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Ideas that go into the proof. In Section 8 we will show that the radial process comes to
equilibrium in time O(R2α), and that in equilibrium P (X̄1(t) = X̄2(t)) ≈ R−α. Because of
this we can hope for coalescence when the amount of time the angular parts have been equal
|{t : θ̄1(t) = θ̄1(t)}| = O(Rα). Since the probability of equality is O(t−1/2) this should take
time R2α. However, due to the fact that two dimensional random walk is recurrent, we need
time O(R2α log2R). See Section 9 for details.

Note that the Y coordinates of lineages separated by Rβ with β < 1/2 will by conclusion
1 coalesce with high probability at a time that is o(R) so there will be solid patches of size
Rα by Rβ in polar coordinates in which most cells with the same ancestor.

7 Coalescence with interior lineages

Conclusion 3. Consider two lineages with

X̄1(0) ∼ b1R X̄2(0) ∼ b2R |Ȳ1(t)− Ȳ2(t)| = o(R1/2)

where b1 < b2. Then for any δ > 0 the probability the two lineages coalesce by time R − Rδ

tends to 0.

Ideas that go into the proof. The closer lineage will do a two dimensional random walk until
time (1−b1)R. The first time that the two lineages are at the same distance from the center,
the two angles will be separated by

√
R, so by the argument in Section 9 they will need

time at least O(R log2R) to coalesce. The stated result comes from the fact that Remark 1
implies our calculations are only valid until time R−Rδ.

Using results of Cox and Griffeath [8] we can study the case b1 = b2. The next result is a
corollary of their formula (3.2). (The factor θ(1− θ) comes from the fact that they consider
the voter model starting from product measure with density θ.)

Conclusion 4. Consider two lineages with

X̄1(0) ∼ b1R log ‖Z̄1(0)− Z̄2(0)‖ ∼ (γ/2) logR

then the probability the two lineages coalesce by time t converges to 1− γ.

The theorem says that the density of the cluster of sites whose genealogies coalesce with that
of Z1(0) has a density that varies with the scale at which you examine it. Note that when
γ = 1/2 the limit is 0. Using the hitting time results from Section 9 one can show that if
‖X̄1(0)− X̄2(0)‖ ∼ a logR then the coalescence probability ∼ f(a)/ log n.

8 Equilibration of the centered radial process

When the initial separation is O(R1/2) the coalescence may or may not occur depending on
the variability of the radial component. In this section, we will show that the time for the
radial process seen from the moving reference frame to reach equilibrium is O(τ 2α). As we
have already shown in Lemma 2 the standard devition in equilibrium is O(τα). Consider
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first times t � T . In this case τ = T − t is constant and the radial process in the moving
reference frame is

dXt = dBt −Xt/τ
2α dt.

If we let β = 1/τ 2α to simplify notation, this SDE can be solved explicitly by

Xt = e−βt
(
X0 +

∫ t

0

eβs dBs

)
. (14)

A proof can be found on page 180 of [12] but it is easily checked by formally differentiating
the expression in (14)

dXt = −βe−βt
(
X0 +

∫ t

0

eβs dBs

)
+ dBt.

From this we see that when X0 = x, Xt is normal with mean 0 and variance∫ t

0

e−2β(t−s) ds =
1

2β
(1− e−2βt).

As t → ∞ this converges to normal(0,1/2β). In addition, we can see from the formula if
t� 1/β = τ 2α we are close to equilibrium.

We need to derive a convergence to equilibrium for the discretized process. To lead up
to this we will take another approach to the previous result. We start with the infinitesimal
generator for the OU process

Lf(x) =
1

2
f ′′(x)− x

τ 2α
f ′(x).

To look for an eigenfunction, we guess f1(x) = x which has

Lf1(x) = −x/τ 2α = (−1/τ 2α)f1(x).

For the Ornstein-Uhlenbeck generator it is known that −1/τ 2α is the largest negative eigen-
value so the rate of convergence to equilibrium is τ 2α.

To mimic this argument in the discrete setting note that what µ defined in (9) is not-
malized to a be a probability measure it is approximately

π(x) = ε(πτ 2α)1/2e−x
2/τ2α

, (15)

since summing over x gives a Riemann sum approximating the integral of a normal density.
From the definition of the rates q(x, y) it satisfies the detailed balance condition. Thus the
flow of probability across the edge (x, x+ ε) in equilibrium is

π(x)q(x, x+ ε) = π(x+ ε)q(x+ ε, x) ≡ Q(x, x+ ε).

To bound the spectral gap we look at the Dirichlet form

E(f, f) =
∑
x

Q(x, x+ ε)[f(x+ ε)− f(x)]2,
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and note
1− λ1 = inf{E(f, f) : var π(f) = 1}. (16)

If we take f1(x) = x then var π(f) = τ 2/α/2 while using (9) and (11)

E(f1, f1) =
∑
x∈εZ

ε(πτ 2α)1/2e−x
2/τ2α ε−2

2
exp(−(2εx+ ε2)/2τ 2α)ε2 (17)

=
1

2

∑
x∈εZ

ε(πτ 2α)1/2 exp

(
−x2 − εx− ε2/2

τ 2α

)
=

1

2

∑
x∈εZ

ε(πτ 2α)1/2 exp

(
−(x+ ε/2)2

τ 2α

)
e−ε

2/4τ2α ≈ 1/2

since when the last term is removed this is close to the integral of the density function for
the normal with mean −ε/2 and variance τ 2α/2. Using (16) now we conclude that in the
discretized version the spectral gap is close to 1/τ 2α, i.e., the distribution of X̄t comes to
equilibrium in time τ 2α ≤ T since 2α < 1.

9 Estimating the Coalescence Time

We begin by explaining the method we will use, starting with the simpler problem of deter-
mining how long it takes for two independent continuous time random walks to hit on Z2.
The methodology follows Section 3 of [53]. Let Wt be the difference in the positions of the
two walks and let T0 = min{t : Wt = 0}. Breaking things down according to the value of T0

and writing the density function of T0 as Px(T0 = s)∫ t

0

Px(Wr = 0) dr =

∫ t

0

Px(T0 = s)

∫ t−s

0

P0(Wr = 0) dr ds

≤
∫ t

0

Px(T0 = s)

∫ t

0

P0(Wr = 0) dr ds

so we have

Px(T0 ≤ t) ≥
∫ t

0
Px(Wr = 0) dr∫ t

0
P0(Wr = 0) dr

. (18)

Note that in using this result we want a lower bound on the numerator and an upper bound
on the denominator.

For a bound in the other direction we use∫ t+t0

0

Px(Wr = 0) dr ≥
∫ t

0

Px(T0 = s)

∫ t0

0

P0(Wr = 0) dr ds

which gives

Px(T0 ≤ t) ≤
∫ t+t0

0
Px(Wr = 0) dr∫ t0

0
P0(Wr = 0) dr

. (19)

Note that in using this result we want an upper bound on the numerator and a lower bound
on the denominator.

16



Proof of Conclusion 2. The assumption α < β implies that the centered radial component is
in equilibrium at times t ≥ R2β. Suppose X̄1(t) and X̄2(t) are independent and have the equi-
librium distribution (15). Using the fact that π(x) = π(−x) on εZ and is an approximation
to normal(0,τ 2α/2), we see that if t = o(R) then

P (X̄1(t) = X̄2(t)) =
∑
x

π(x)2 =
∑
x

π(x)π(−x)

= (π ∗ π)(0) ≈ ε(2πτ 2α)−1/2 ≈ C1εR
−α (20)

where ∗ indicates convolution and C1 = (2π)−1/2 is a constant. Using this and the local
central limit theorem we conclude that if K is large

E

∫ t

K

P (Z1(Tθ + s) = Z2(Tθ + s)) ds ≈ C1εR
−α · ε

∫ t

K

(2πs)−1/2 ds

∼ C2ε
2R−αt−1/2 (21)

where C2 = C1(2π)−1/2 · 2 = π−1

To get a lower bound on P (Tθ ≤ t) using (18) we have to compute∫ t

0

Pe(Z1(s) = Z2(s)) ds (22)

where e denotes the process starting from Z1(0) = Z2(0). The integrand is

≈

{
1/(2πs) s� R2α

R−α s� R2α

since in the first case the drift in the OU process is not significant and in the second the
radial part is in equilibrium. In the gap between the two cases the formulas are almost the
same, so the expression in (22) is

≈ ε2

(∫ R2α

1

(2πs)−1 ds+ C1R
−α
∫ t

R2α

(2πts)−1/2

)
= ε2

(α
π

logR + C2R
−αt1/2

)
(23)

Combining the last result with (21) and using (18) we see that if t = KR2α log2R then

P (Tc ≤ t) ≥ KC2

α/π +KC2

(24)

which is close to 1 if K is large. Since Tc ≥ Tθ we do not need a lower bound.

Conclusion 3 can be proved in almost the same way using (19).
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10 Discussion

At this point we have achieved our goal of analyzing the behavior of the lineages in the
simplified model and found that near the boundary the coalescence patterns are similar to
those found in the tumor data. Unfortunately, some other properties do not agree with
observed patterns

• The patches of cells that share the same genealogy with an interior lineage have diam-
eter O(R1/2) are not dense enough to be detected by biopsy.

• The genealogies we follow are τ 2α behind the front where the density of tumor cells is
very small.

exp(ϕ(τα)) = exp(−τ 2α/2)

Taking ϕ(u) = uγ/γ with γ > 2 keeps genealogies closer but still the density at their
location is low.

• In d = 3 if two cells are separated by logR at time t then, with high probability, they
coalesce after time R−Rδ, since three dimensional random walk is transient.

One of the problems with the current model is that there is considerable amount of turnover
of cells in the interior of the tumor. This is not realistic since cell divisions in the interior
are rare, and in some cases the cells will be hypoxic and die. We are currently investigating
variants that only have growth at the frontier.
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