Limiting behavior for the distance of a
random walk

Nathanaél Berestycki' and Rick Durrett?

March 5, 2007

Abstract

In this paper we study some aspects of the behavior of random walks on large
but finite graphs before they have reached their equilibrium distribution. This
investigation is motivated by a result we proved recently for the random transpo-
sition random walk: the distance from the starting point of the walk has a phase
transition from a linear regime to a sublinear regime at time n/2. Here, we study
the examples of random 3-regular graphs, random adjacent transpositions, and
riffle shuffles. In the case of a random 3-regular graph, there is a phase transi-
tion where the speed changes from 1/3 to 0 at time 3log,n. A similar result is
proved for riffle shuffles, where the speed changes from 1 to 0 at time log, n. Both
these changes occur when a distance equal to the average diameter of the graph is
reached. However in the case of random adjacent transpositions, the behavior is
more complex. We find that there is no phase transition, even though the distance
has different scalings in three different regimes.
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1 Introduction

Random walks on large finite graphs have been the subject of intense research over
the last 25 years. First used as mathematical models for problems related to card
shuffling, they have also recently found some applications in the field of large-scale
genome evolution (see, e.g., [10], [14, 15]). Since the pioneering work of Diaconis
and Shahshahani [13], much of the work has traditionally focused on the cutoff
phenomenon, which describes the way random walks on finite graphs converge
(with respect to a given metric on probability distributions on the underlying
graph) to their equilibrium distribution in a dramatically short period of time.
See, for instance, the excellent monographs by Diaconis [10] and Saloff-Coste [22].
However, much less is known about how a random walk behaves before it has
reached its equilibrium distribution. The goal of this paper is to precisely study
aspects of this question for different examples. The result of our analysis is that
in some cases there is an intermediary phase transition (in the sense of the phase
transition of [5], recalled below), while in some other cases there is a more complex
system of transitions between different regimes with no precise cutoff.

The starting point of our investigation is a result we recently proved for a
random walk on the permutation group S, on n markers. Let (X', > 0) be
the continuous-time random transposition random walk. This means that X}* is a
permutation and that at rate 1, we change the current permutation by performing
a transposition of two randomly chosen elements. X™ may be thought of as a
continuous-time simple random walk on the Cayley graph of S,, generated by the
set of transpositions. Let D} be the graphical distance of X from its starting
point, i.e., D} is the minimal number of transpositions necessary to change X'
into X{'. The main result of Berestycki and Durrett [5] is that D} has a phase
transition at time n/2 as n — oo. Writing —, for convergence in probability,
Theorem 3 in [5] may be restated as follows.

Theorem 0. Let t > 0. Asn — oo, n™' D}, —, f(t) where f(t) is defined by:

t fort <1/2

) = 1- Z %tkl;Z (2te™)*  fort >1/2

k=1

The function f(t) is differentiable but the second derivative blows up as¢ | 1/2.
For ¢ > 1/2 we have f(t) < t. In words, the distance from the starting point of the
random walk X" asymptotically has a phase transition from linear to sublinear
speed at time t = n/2.



Having seen this result, we ask in what situations does a random walk on a
finite graph have a similar phase transition.

Organization of the paper. The rest of the paper is organized as follows. In
the rest of this section we state our results which concern four different exam-
ples: random walk on a high-dimensional hypercube, random walk on a large
random 3-regular graph, random adjacent transposition random walk, and the
Gilbert-Shannon-Reeds riffle shuffle. We then discuss some related results and
open problems in section 2. The proofs are in section 3, 4 and 5.

1.1 Random walk on the hypercube

We start with a trivial example. Let X' be the random walk on the hypercube
{0,1}" that jumps at rate 1, and when it jumps the value of one randomly chosen
coordinate is changed. We assume that X = 0. By considering a version of the
chain that jumps at rate 2, and when it jumps the new coordinate takes on a
value chosen at random from {0, 1} it is easy to see that, when n = 1,

ByX! =1) = (1—e™))2

Let D} be the distance from X] to X[, i.e., the number of coordinates that
disagree. Since the coordinates in the continuous time change are independent,
we easily obtain the following result.

Proposition 1. Asn — oo, n™'D", — (1 — e™2")/2 in probability.

Although this result is very simple, we note that Diaconis et al. [12] have shown
that a discrete-time variant of this random walk undergoes an intermediary phase
transition whose features present striking similarities with Theorem 0. After ¢
moves, let W (t) be the distance below which the probability of the random walk
being at a given vertex of the hypercube is above average, i.e. P;(x) > 1/2™ (this
W is well-defined because the probability of being at a particular vertex depends
only the distance of that vertex to the origin). Then a consequence of the results
of [12] is that there exists an a > 0 such that if ¢ = An for some A > 0,

p=Afor A <«

n~'W(t) — p where {
p<Afor A\ >«

Moreover a numerical approximation of o and a parametric relationship between p

and A are given (see (3.10) in [12]). A similar but simpler parametric relationship

exists between ¢ and f(¢) in Theorem 0. However the precise relation to our work

remains elusive at this point.



1.2 Random walk on a random 3-regular graph

A 3-regular graph is a graph where all vertices have degree equal to 3, and by
random 3-regular graph we mean a graph on n vertices chosen uniformly at random
from all 3-regular graphs on the n vertices.

The key to our proof is a construction of random 3-regular graphs due to
Bollobés and de la Vega [8] (see also Bollobas [7]). This construction goes as
follows. We suppose n is even. Expand each vertex ¢ into 3 “mini-vertices”
3i, 3i+1 and 3i+2, and consider a random matching o(j) of the 3n mini-vertices.
A random 3-regular graph G, is then obtained by collapsing back the n groups of
3 mini-vertices into n vertices while keeping the edges from the random matching.
We may end up with self-loops or multiple edges, but with a probability that is
positive asymptotically, we do not, so the reader who wants a neat graph can
condition on the absence of self-loops and multi-edges. In this case the resulting
graph is a uniform 3-regular random graph.

Departing from our choices in the previous example, we consider the discrete
time random walk X7, k > 0, that jumps from j to [o(3] +1)/3] where i is chosen
at random from {0, 1,2}. (We have used this definition since it works if there are
self-loops or multiple edges.) Let ﬁf be the distance from the starting point at
time t¢.

Theorem 1. For fized t > 0

D[tlogQTL} —, min (E’ 1)
log, n 3

An intuitive description of a random 3-regular graph, as seen from vertex 1,
can be given as follows. Grow the graph by successively adding vertices adjacent
to the current set. Branching process estimates will show that as long as the
number of vertices investigated is O(n'~), this portion of the graph looks very
much like a regular tree in which each vertex has 2 edges going away from the
root and 1 leading back towards the root. Thus, until the distance of X, from
Xo is > (1 — €)logyn, D} evolves like a biased random walk on the nonnegative
integers, with transition probabilities p(z,z + 1) = 2/3 and p(z,z — 1) = 1/3,
and reflection at 0. After k£ moves we expect this walk to be at distance k/3. On
the other hand, once the walk reaches a distance corresponding to the diameter
of the graph, which is log, n by Bollobas and de la Vega [8], or Theorem 2.13 in
Worwald [23], it should remain at this level. Indeed, it cannot go any further,
since this is the diameter. On the other hand the tree structure below makes it
hard for it to come down back toward the root.



Open Problem 1. The techniques developed for the random walk on a 3-regular
graph should be useful when dealing with random walk on the giant cluster of
a Erdés-Rényi random graph with p = ¢/n and ¢ > 1, which locally has the
geometry of a “Poisson mean ¢ Galton-Watson tree”. We conjecture that the
random walk exhibits a phase transition like the one in Theorem 1 but with a
different constants in place of 3 and 1 on the right-hand side. One technical
problem is that the diameter is strictly larger than the average distance between
points logn/(log ¢), see Chung and Lu [9], so we don’t have the easy upper bound.

1.3 Random adjacent transpositions

Let X}' be the continuous time random adjacent transposition random walk on
n markers. An intuitive description of the process is as follows. We are thinking
of X;(j) as the location of particle j, but the dynamics are easier to formulate in
terms of Y;(i) := X, !(i), which is the number of the particle at location i. At rate
1, we change the permutation by picking 1 <7 < n—1 at random and exchanging
the values of Y;"(i) and Y;"(i + 1). Without loss of generality we can suppose X[
is the identity permutation /. In other words, we have n particles numbered 1
to n initially sorted in increasing order, and at rate 1 we exchange two adjacent
particles. More formally, at rate 1, we change the value of the permutation from
X' to X[ by setting

X =1X], (1)

where 7 is equal to the transposition (i,7 + 1) with probability 1/(n — 1) for
1<i<n-1.

Given a permutation o, there is a convenient formula which gives the distance
daqj(0) from o to I, i.e., the minimum number of adjacent transpositions needed
to build o.

dagj(0) =Inv(o) :=#{1 <i<j<n:0(i) >0o(j)} (2)

Inv(o) is called the number of inversions of o. This formula is a quiet result. See,
e.g., Diaconis and Graham [11], which includes earlier references to Kendall [20]
and Knuth [21, section 5.1.1.]. If we view the set of permutations S,, of {1,...,n}
as a graph where there is an edge between o and ¢’ if and only if ¢/ can be obtained
from o by performing an adjacent transposition (in the sense defined above), then
X; has the law of simple random walk on this graph and d,q;(X;) is the length
of the shortest path between the current state of the walk, X;, and its starting
point, the identity.

Erikkson et al. [18] and later Eriksen [17], who were also motivated by ques-
tions in comparative genomics, considered the problem of evaluating the distance



for the discrete time chain X,? Relying heavily on formula (2) they were able to
carry out some explicit combinatorial analysis, to obtain various exact formulae
for this expected distance, such as this one:

k

Edag(X7) Z - s K g 1)27”CT+4dT (fﬂ (3)

r=0

where C, are the Catalan numbers and d, is a less famous non-negative integer
sequence, defined in [17].

While formula (3) is exact, it is far from obvious how to extract useful asymp-
totics from it. We will take a probabilistic approach based on the formula

D = dadj Z ]_{Xn >Xn(j (4)

1<j

If 1 < i < nis fixed, the trajectory X7(i) of the i*® particle is a continuous
time simple random walk on {1,...,n} starting at ¢ with jumps at rate 2/(n — 1)
and reflecting boundaries at 1 and n that cause the particle to stay put with
probability 1/2.

Two such trajectories, say those of particles 2 and 7 with ¢ < j, move by the
nearest neighbor stirring process on {1,...,n} (which for indistinguishable parti-
cles produces the simple exclusion process). When the particles are not adjacent,
they perform independent simple random walks. When they are adjacent, the
only things that can happen are an exchange of the two particles, or one of them
moves away from the other (see figure below for an illustration). As the reader
can probably guess, and Durrett and Neuhauser [16] have proved on Z, when n is
large the random walks behave as if they are independent.

1 i j n

On different time scales we see three different behaviors. At small times, the
behavior is given by a messy formula that defines a smooth function. For an integer
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x >0, let T* denote the hitting time of the level z by a rate 4 random walk on Z
starting at 0. Let {Y(¢),¢ > 0} and {Y’(¢),t > 0} be moved by random stirring
on Z, with Y(0) = 0 and Y’(0) = 1 and let p(u) be the probability that at time u
the relative order of the two particles has changed, i.e., p(u) = P[Y (u) > Y'(u)],
and note that this is the same as requiring the particles to have been exchanged
an odd number of times. For all ¢ > 0, let

F(t) = Z/OtP[Tx € dslp(t — 5) (5)

and recall the formula for the distance D! given in (4).

Theorem 2. Lett > 0. Then n='D, —, f(t) as n — oo where f is the function
defined by (5). f(t) is infinitely differentiable, and moreover it has the asymptotic

behavior
1 2
lim m =-FK (max B4S> =4/—
t—oo /t 2 0<s<1 7r

where By is a standard Brownian motion.

To check the second equality in the limit, recall that by the reflection principle,

P (max B45) =2P(By > 1)

0<s<1

so integrating gives
1 [e.o]
—F (max B48) = / P(By > z)dr = EBf = 2EB
2 0<s<1 0

2 /oo _Izd 2
= — ze T =14/—
V21 Jo m

The next result looks at the distance of the random walk at times of order n?,
i.e., when each particle has moved of order n? times, and hence has a significant
probability of hitting a boundary. Let p;(u,v) denotes the transition function of
B, a one-dimensional Brownian motion run at speed 2 reflecting at 0 and 1.

Theorem 3. Let ¢t > 0.

1 1 1 1 y _ _
— s —p / du/ dv/ pe(u, x)dx/ pe(v,y)dy = P[By(t) > Ba(t)]
0 u 0 0

where By and By are independent copies of B started uniformly on 0 < B;1(0) <
By(0) <1 evolving independently.



In between the two extremes we have a simple behavior, anticipated by the
limit in Theorem 2.

Theorem 4. Let s = s(n) with s — oo and s/n* — 0. Then

1 2

n\/gnsp T

Recently, Angel et al. [2] have also used the simple exclusion process to analyze
a process on the Cayley graph of the symmetric group generated by adjacent
transpositions, but this time in the context of sorting networks.

1.4 Riffle shuffles

The Gilbert-Shannon-Reeds shuffle, or riffle shuffle, is a mathematical model for
the way card players shuffle a deck of cards. It can be viewed as a nonreversible
random walk on the permutation group. We identify the order of the deck of n
cards with an element of the permutation group S,, by declaring that (i) is the
label of the card in position ¢ of the deck (and hence 7~'(i) is the position in
the deck of the card whose label is 7). The most intuitive way to describe this
shuffle is to say that at each time step, o,, is obtained from o, 1 by first cutting
the deck into two packets, where the position of the cut has a Binomial (n,1/2)
distribution. The two packets are then riffled together in the following way: if the
two packets have respective sizes a and b, drop the next card from the first packet
with probability a/(a 4+ b) and from the second with probability b/(a + b). This
goes on until cards from both packets have been dropped, and the resulting deck
forms o,. This shuffle has been extensively studied. See, e.g., Bayer and Diaconis
[3] and Aldous [1], for results about the mixing time of this random walk, which
is (3/2)log, n for the total variation distance.

Bayer and Diaconis [3] were able to prove the following remarkable exact for-
mula for the probability distribution of the random walk after a given number of
steps. Let m € §,, be a permutation, viewed as an arrangement of cards, and let
r = R(m) be the number of rising sequences of w. A rising sequence of 7 is a
maximal subset of cards of this arrangement consisting of successive face values
displayed in order. For instance, if n = 13 and the deck consists of the following
arrangement:

1 728 9310 45 11 6 12 13

then there are two rising sequences:

1 2 3 4 5 6
7 8 9 10 11 12 13



Theorem 1 of Bayer and Diaconis [3] states that after m shuffles,

Pl — ) — ] (2m+n—R(7r)) ©)

- omn n

Note that a consequence of the Bayer-Diaconis formula (6) is that the chance
of 7 is positive if and only if 2™ — R(7w) > 0 or m > [log, R(m)]. Therefore,
the distance of a permutation 7 to the identity (where here the distance means
the minimal number of riffle shuffles needed to build ¢,,), is given by the explicit
formula

dps(m) = [logy R(m)] (7)

Based on these ideas, it is easy to prove the following result. Let D(m) be the
distance to the identity of the random walk after m shuffles.

Theorem 5. Lett > 0.

D('_t 10g2 nJ) — min(t, 1)
log, n
Remark. It is interesting to note that this random walk reaches the average
distance of the graph abruptly at time log, n, while it reaches uniformity at time
(3/2)logy n (see, e.g., Aldous [1] and Bayer-Diaconis [3]). This contrasts with the
conjectured situation for random 3-regular graphs.

When t < 1, this result can be deduced from Fulman’s recent paper [19],
although our methods are much more elementary. However, Fulman obtains some
much more precise results, which describe what happens near the transition point
when t = 1, and convey some information about the fluctuations when ¢t < 1.
This result and related open problems will be discussed in the next section.

2 Related results and open problems

2.1 A theorem of J. Fulman.

Fix an a > 0 and consider the state of the Gilbert-Shannon-Reeds riffle shuffle
after m = |log,(an)| shuffles. Part of Fulman’s result may be reformulated in the
following way. Let R(o,,) be the number of rising sequences of ,,.

Theorem (Fulman [19]). Suppose a > 1/(27).

L B(R(on)) — a - el/a%l (8)

n



To see why this indeed the same as his Proposition 4.5, simply note that his
Ry, coincides with the law of o' for m = 2*. Since

R(o) = Des(oc™) — 1

where Des(o) is the number of descents of o, (8) follows immediately. Using
(7), Fulman’s result (8) has an immediate interpretation for the distance to the
identity after m shuffles. Using in particular the Stein method, he also finds that
the variance of R(o,,) is approximately C,n for some explicit but complicated
C, > 0, and that R(o,,) is asymptotically normally distributed with this mean
and variance. For smaller values of m, in particular for m = tlog,n and t < 1
(i.e., before the phase transition point of Theorem 5), he finds that the number of
rising sequences is approximately 2™ — Z, where Z is a Poisson random variable
with mean A := 2™ /n. This parallels in a striking way the Poisson and normal
deviations observed by us in [5].

Open Problem 2. In (8), what is the behavior of E(R(o,,)) for values of «
smaller than 1/(27) ?

It is not clear at this point whether (8) also holds for o < 1/(27), although it is
tempting to let & — 0 and get that for small values of o the walk is “almost” linear
(the fraction term with the exponential is much smaller than the other term).

2.2 Geometric interpretation of phase transitions.

The techniques used to prove the results in this paper, and other results such as
Theorem 0 or Fulman’s result, rely in general on ad hoc formulae for the distance
of a point on the graph to a given starting point. For the moment there does
not seem to be any general technique to approach these problems. However we
note that a geometric approach has been proposed by [4]. The main result of [4]
relates the existence of such phase transitions to some qualitative changes in the
hyperbolic properties of the underlying graph of the random walk: the space looks
hyperbolic to the random walk until a certain critical radius. Beyond this critical
radius, space starts wrapping around itself and ceases to look hyperbolic. (While
[4] is only concerned with the random transposition transposition random walk,
it is easy to rephrase this result for more general walks with phase transitions).
This is for instance consistent with Theorem 1 for random 3-regular graphs, where
we indeed expect hyperbolicity to break down at distance log,n. However this
hyperbolicity criterion seems hard to use in practice. Can a general method be
developed 7

10



2.3 Cyclic adjacent transpositions.

Following a question raised to us by W. Ewens, we now turn our attention to
a process closely related to the random adjacent transpositions analyzed in the
present paper. Suppose that we modify the dynamics of X} defined by (1) by also
allowing the transposition 7 = (1 n) in addition to 7 = (1 2), (2 3),...,(n—1 n).
That is, we only exchange adjacent particles, but now adjacent is interpreted in a
cyclical way. Informally, we have n particles equally spaced on the unit circle, and
exchange adjacent particles at rate 1. For a given configuration of particles o, let
d(o) be the number of moves it takes to put the particles pack in order using only
exchanges of adjacent particles, and let D} = d(X}"). We conjecture that in this
setting, Theorems 2 and 4 still hold. For large times we conjecture the following
result as an analogue of Theorem 3.

Conjecture 3. Lett > 0.

1 1
s —p —E( Ral) )

where |R;| denotes the Lebesque measure of the range of a Brownian motion with
unit speed on the circle of radius 1.

The difficulty here is that there is no exact formula analogous to (2) for the
distance of a permutation using cyclic transpositions.

3 Random walk on a random 3-regular graph

Let G, be a random 3-regular graph as constructed in the introduction using the
approach of Bollobas and de la Vega [8]. Let X} be the discrete time random walk
on GG, where for simplicity we drop both the superscript n and the hat to indicate
discrete time. We assume that X, = 1 and write D} for the graph distance from
X to Xg. Our goal is to prove Theorem 1, that is, for fixed ¢ > 0

Dit1og, n t
_ltlogyn] —, min <_’ 1> (10)
log, n 3

3.1 Proof for the subcritical regime

Let v be a vertex at distance [ from the root. We say that v is a “good” vertex
if it has two edges leading away from the root (at distance [ + 1) and one leading
back to distance | — 1. Otherwise we say that v is a “bad” vertex. Let B(l) be
the set of all bad vertices at distance [.

11



Lemma 1. Let 2 < v < n be a vertex distinct from the root. Given that v is at
distance | from the root, P(v € B(l)) < 2i/n where i = 2.

Proof. First consider the event that v has an edge leading to some other vertex
at distance [. Since it is at distance [, it must have at least one edge leading
backwards, so there are only two other edges left. In particular there are at most
2! = 4 vertices at distance [. In G, those i vertices at distance [ correspond to
2¢ unpaired mini-vertices, so the probability of a connection sideways to another
vertex at distance ¢ is smaller than 2i/3n.

When v has two edges leading forward, the probability that one of its children
is connected to another vertex from level [ is also smaller than 2i/3n since there
are at most 2 edges leading to level [ + 1. Since v has at most 2 children, this
gives a probability of at most 4i/3n. Combining this with the estimate above
gives 2i/3n + 4i/3n = 2i/n. O

A simple heuristic now allows us to understand that with high probability the
random walk will not encounter any vertices as long as we are in the subcritical
regime. Before we encounter a bad vertex, the distance is a (2/3,1/3) biased
random walk and hence spends an average of 2 steps at any level. Hence, the
expected number of bad vertices encountered until time distance (1 — ¢) log, n is

smaller than
(1—€)loggn ol

Z 2—=0(n"*°)—0
n
=1
To prove this rigorously, let A, denote the event that by time k the random walk
has never stepped on a bad vertex up to time k.

Lemma 2. Asn — 0o, P(As1-c)l0g,n) — 1.

On this event, for each 1 < j < 3(1 — ¢)log, n, X; has probability 2/3 to move
away from the root and 1/3 to move back towards the root, and the first part of
Theorem 1 follows easily.

Proof. By Lemma 1 the probability that some vertex within distance L of 1 is
bad is

if L =(1/3)logyn.
Since for each vertex there are at most two edges leading out and one leading
back, the distance from the starting point is bounded above by a (2/3,1/3) biased

12



random walk. Standard large deviations arguments imply that there are constants
C and « depending on p so that

P(d(X}) > pk) < Ce™* (11)

Summing from k& = L to oo, we see that with high probability d(A) < pk for all
k> L.
When this good event occurs for k > L, it follows from Lemma 1 that

P(Ap1) > P(Ay) (1 — 2—) > H (1 - 2%)

Taking the logarithm, we have for large n

k .
i

log P(A > 1 1-2—

og P(Ap1) > j:ZLOg< n)

J kp
> —422_>_ 12

n-— 1—-2=7 n

We want to take k = 3(1 — ¢) log, n. By choosing p close enough to 1/3 so that
3p(1—¢) < 1, we have 2% /n = n= with o > 0 which proves the desired result. [

3.2 Proof for the supercritical regime

Here we wish to prove that if k = tlog,n, with ¢t > 3(1 — ¢), then d(X}) ~ log, n.
As already noted, this is the diameter of G,, so all we have to prove is that once
it reaches this distance it stays there. To do this we let

L(a,b) :={2<v <n:d) € [alog,n,blog,n]}

and consider L(1 —e,1 —9).

Intuitively, this strip consists of about n!'~¢ trees, each with at most n
vertices. However, there are sideways connections between these trees so we have
to be careful in making definitions. Let vy,...,v, be the m vertices at level
(1 —¢)logyn. For j=1,.... mifve L(1—¢,1-9), wesay that v € Tj if v; is
the closest vertex to v among vy, ..., vp,.

To estimate the number of sideways connections (i.e., edges between vertices
v and v’ in different 7}’s), we use:

e—0

Lemma 3. The number of subtrees that T is connected to is dominated by a
branching process with offspring distribution Binomial(n=°,n=?).

13



Proof. Each tree to which we connect requires a bad connection (i.e., one of the
two possible errors in Lemma 1). Suppose we generate the connections sequen-
tially. The upper bound in Lemma 1 holds regardless of what happened earlier
in the process, so we get an upper-bound by declaring each vertex at level [ bad
independently with probability 2i/n with i = 2!, so this probability is at most
n~%. Since there are at most n°% vertices in a given subtree, the lemma follows
immediately. [

Lemma 4. If 6 > €/2 then there exists some K = K(g,6) > 0 such that,
P(there is a cluster of trees T; with more than K bad vertices) — 0

Proof. The worst case occurs when each bad connection in a tree leads to a new

one. Let
X £ Bin(n*, n~?)

be the offspring distribution of the branching process of the previous Lemma. In

particular
E(X)=0(n"*) =0

Let ¢ = n°2° and let N = n°% be the total number of vertices in T;, so X <
Binomial(N, ¢/N).

Lemma 3 follows from a simple evaluation of the tail of the total progeny Z
of a branching process with offspring distributed as X. To do this, we let

i = R () () (-5 e

be the moment generating function of X — 1. Let Sy be a random walk that takes
steps with this distribution and Sy = 1. Then 7 = inf{k : Sy = 0} has the same
distribution as Z. Let Ry = exp(6Sy)/¢n(0)*. Ry is a nonnegative martingale.
Stopping at time 7 we have e’ > E(¢n(0)77). If ¢on(6) < 1 it follows that

P(r = y)on(0)" < E[on(0)7] < ¢
Using ¢n(6) < e ?exp(c(e? — 1)) now we have

P(r>y) < ¢f (6_9 exp(c(ee — 1)))y

14



To optimize the bound we want to minimize c(e? — 1) — . Differentiating this
means that we want ce? — 1 =0 or § = —log(c). Plugging this and recalling that
7 and Z have the same distribution we have

1
P(Z > y) < —exp(—(c—1—1Inc)y)
c
Substituting ¢ = n~* with a = 26 — ¢, we find that
P(Z = y) < n”exp(y(1 — alog(n)))

Since there are m < n'~¢ trees to start with, the probability that one of them has
more than y trees in its cluster is smaller than

n' " n*exp(y(1 — alogn))

so if
y > arl-e = K(d,¢)
a
then the probability than one cluster contains more than y trees tends to 0. This
implies that with probability 1 asymptotically, no cluster of trees has more than
K bad vertices, since the branching process upper-bound is obtained by counting
every bad vertex as a sideways connection. O

With Lemma 4 established the rest is routine. In each cluster of trees there is
a stretch of vertices of length > alog, n where a = (e — ¢)/(K + 1) with no bad
vertices. The probability of a downcrossing of such a strip by a (2/3,1/3) random
walk is < (1/2)%!°82" = =% 50 the probability of one occurring in n%? time steps
tends to 0.

4 Random adjacent transpositions

Let X, which we write for now on without the superscript n, to be the continuous
time walk on permutations of {1,2,...n} in which at rate 1 we pick a random
1 <i < n—1and exchange the values of X;(i) and X;(i+1). Asindicated in (2) the
distance from a permutation o to the identity is dag;(0) = #{i < j: o(i) > ()},
the number of inversions of o.

4.1 Small times

The reflecting boundaries at 1 and n are annoying complications, so the first thing
we will do is get rid of them. To do this and to prepare for the variance estimate
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we will show that if i < j are far apart then the probability X;(i) > X;(j) is small
enough to be ignored. Let Pl*! be the probabilities for the stirring process with
reflection at a and b, with no superscript meaning no reflection.

Lemma 5. PM( X, (1) > X,,(5)) < 8P(X(0) > (5 —14)/2)
Proof. A simple coupling shows

PU(Xo (i) > Xu(5)) < PO97(X,(0) > X(j — i) for some s < nt)
< 2P0 ( max X,(0) > (j — i)/Q)

0<s<nt

Using symmetry and then the reflection principle, the last quantity is

< 4P (g X.(0) > (- )/2) < 8P(Xe(0) > (- )2)

0<s<n
which completes the proof. O]

Since the random walk on time scale nt moves at rate 2,

S
Eexp(0X,:(0)) = Z © T 2

k=0

) = exp(—2t + t(e’ + 7))

Using Chebyshev’s inequality, if 6§ > 0
P(X(0) > 1) < exp(—0z + t[e? + e —2)) (12)
Taking 6 =1
P(X,:(0) > ) < Cie™™ where C; =exp((e+e ' —2)t)

When z = 3logn the right-hand side is C;n ™3, so using Lemma 5, for fixed ¢
it suffices to consider “close pairs” with 0 < 7 — i < 6logn. The number of close
pairs with i < 3logn or j > n — 3logn is < 36log”n, so we can ignore these as
well, and the large deviations result implies that it is enough to consider random
stirring on Z.

We are now ready to prove the first conclusion in Theorem 2: if £ > 0 then as
n — 0o

== [ P € dslplt - 5) (13)
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Proof of (13). It is clear from the Markov property that if X;(i) and X;(j) are
moved by stirring on Z then

PG > X)) = | P € dslplt — s)

With the large deviations bound in (12) giving us domination we can pass to the
limit to conclude

SRS

> PO > Xi) = Y [ Pt e ddple =)

1<i<j<n

To prove convergence in probability let

$ii = Lixwsxig) — P(Xe (1) > Xi(4))

By remarks above it suffices to consider the sum over 1 < ¢ < 57 < n with
0<j—i<6logn,i>3logn and j <n — 3logn which we denote by ¥*, and if
i’ > j + 6logn then

E¢&; &y < 4Cm ™3

since the random variables have [{] < 1 and will be independent unless some
random walk moves by more than 3logn in the wrong direction. From this it
follows that

E(27¢;)° <n-(6logn)® +4Cn3(n - 6logn)?

and the result follows from Chebyshev’s inequality. m

The remaining detail is to show that f is smooth and that as t — oo,

1
lim ()T =3I (m 345) (14)
where B. is a standard Brownian Motion. The fact that f is infinitely differentiable
follows easily from repeated use of Lebesgue’s theorem and the fact that both p(u)
and dP(T* € du)/du are infinitely differentiable smooth functions. This is itself
easily checked: for instance, if g; is the probability that a simple random walk in
discrete time started at 0 hits z in j steps, then T% = Z;’ix ¢;Gamma(j,4), so T
has a smooth density. A similar argument also applies for the function p(u).

Proof of (14). The result follows easily from two simple lemmas.

Lemma 6. p(t) — 1/2 ast — oo.
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Proof. Each time there is jump when the particles Y and Y’ are adjacent, they
have a probability 1/3 of being exchanged the next step. So, conditionally on
the number of such jumps N, the number of actual swaps between Y and Y’
is Binomial(N,1/3). Now, Y > Y if and only if the number of times they are
swapped is odd. Hence the lemma follows from the two observations : (i) As
t — oo, the number of jumps while they are adjacent to each other — oo, and
(ii) as N — oo, P[Binomial(N,p) is odd] — 1/2 for any given 0 < p < 1. For
(i), observe that the discrete-time chain derived from {|Y; —Y/| — 1, > 0} is a
reflecting random walk on {0, 1,...}, and therefore visits 0 infinitely many times.
(ii) is an easy fact for Bernoulli random variables. O

Lemma 7.

1 o0
— Y P[T" € (t —logt,t)] — 0
ﬁ; [T € (t —logt, 1)]

Proof. The random walk can only hit a new point when it jumps so

=12 (Z 1{Tze(t_10gt7t)}) < t_l/QE(#jumps of the random walk in(t — logt,t))

=1

< t7Y2. (4logt) — 0
since jumps occur at rate 4. ]

It is now straightforward to complete the proof. Let € > 0. Fix T" large enough
so that |p(t) — 1/2| < € as soon as t > T. Then by Lemma 7, for t > T" := eT
letting W; be a simple random walk on Z in continuous time jumping at rate 1,

tY2f() = 72 i/tlogt P[T® € ds|p(t — s) 4 o(1)
r=1 0

IN

1 -1/2 - x
(§+€)t ZP[T <t—logt] +o(1)

r=1
1 1
(2—1—5)15 ElP(Sgﬁz(gtW%>m>

1
— (— —1—5) E max By,.
2 s<1

IN

by Donsker’s theorem. The other direction liminf; ., t =42 f(t) > (1/2—¢) E max,<; By,
can be proved in the same way. O]
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4.2 Large times

Our next goal is to prove that if ¢ > 0 then

% Zstﬁ/ol du/ul dv/olpt(u,x)dx/oypt(v7y)dy:P[Bl(t) > By(t)]  (15)

in probability and where B; and £:32 are two reflecting Brownian motions run at
speed 2 started uniformly on 0 < B;(0) < B(0) < 1 and evolving independently.

Proof. We first show that the expected value converges. The first step is to observe
that the rescaled random walks X,,3;(7)/n, t > 0 converge to reflecting Brownian
Motion on [0, 1]. Indeed, Durrett and Neuhauser [16, (2.8)] showed that for fixed
1 < j, the rescaled pair of random walks converge to two independent Brownian
Motions. They did this on Z but the proof extends in a straightforward way to
the current setting. Their proof shows that if i/n — x and j/n — y we have

P[Xs1(i) > Xu2o(§)] = Pay[Ba(t) > Ba(t)]
This implies that the convergence occurs uniformly on the compact set so
1 N 1 . ) _
—EDs = — > PXuui(i) > Xpui(j)] — P[Bi(t) > Ba(t)]
i<j

To get the convergence in probability, we use second moment estimates. Let

A = {Xpse(i) > X3, ()}

1 S|
E (ﬁ th) — m Z Z P[Az,] ﬂ A[mg]

1<j k<l
The first step is to observe that there are only O(n?) terms in which two of the
indices are equal so these can be ignored. When the four indices are distinct we
can again apply Durrett and Neuhauser’s [16] results to the 4-tuple of random
walks (X (), X(4), X(k), X (1)), to conclude that if i/n — z, j/n — y, k/n — 2’
and [/n — ¢/

P[AZ'J N Ahg] — nyy[Bl(t) > BQ(Tf)]PI/W/ [Bl(t> > BQ(t)]
From this it follows that

1 2 1 2

In other words, the variance of n=2D",, is asymptotically 0, and applying Cheby-
shev’s inequality, we get the convergence in probability to the limit of the means.
m
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4.3 Intermediate regime

The proof of Theorem 4 is a hybrid of the two previous proofs. We first truncate
to show that it suffices to consider ¢+ < j close together and far from the ends,
then we compute second moments. We begin with a large deviations result:

Lemma 8. For allx > 0 and t > 0 then

P(X,:(0) > ) < exp(—a?/8et) + exp(—x1n(2) — 2t)

Proof. First assume z < 4et. From (12) we have P(X,;(0) > x) < exp(—f0z +
tle? +e?—2]). When0 <6 <1

0> 9 6"
0 -0 — s
e +e 2 2[2+4'+6‘+
<921+02+94+ 2 <492
- 22 24 S 1-602/4 7 3

and by continuity this is valid also when # = 1. Taking 6§ = x/4et which is < 1
by assumption

P(X(0) > 7) < exp (_45‘7—; bt g (4%)2) < exp(—z2/8et)  (16)

When x > 4et, note that P(X,;(0) > z) is smaller than the probability that a
Poisson random variable with mean 2t is greater than x. Thus for any 6 > 0 this
is by Markov’s inequality smaller than exp(—6z + 2t(e? — 1)). This is optimal
when ¢’ = 2/2t, in which case we find that

P(Xn:(0) > x) < exp(—zln(zx/2t) + v — 2t) < exp(—z1n(2) — 2t) (17)

since © > 4et. Equations (16) and (17) give us two bounds valid in different
regions, so by summing them we get a bound that is everywhere valid, and this
concludes the proof. O

Proof of Theorem /. By assumption we can pick K,, — oo so that K2y/s/n — 0.
By Lemma 5,

1 1 >
- Z P[lyn](an(i) > an(])) < s Z P > ‘77/2)
n\/g 1,5>i4+Kn/s \/5 z=Kn\/5
= 8 [ POG0) > Loy
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Applying Lemma 8 it follows that

1
[Ln] . .
_n\/g B g PUM(X6(0) > Xs(j)) — 0
1,5>i+Kn+/s

Letting I; ; be the indicator of {X,s(i) > X,s(j)} it follows that

- \/_ Z I; ; — 0 in probability

1,j>i+Kn/s

i.e., we can restrict our attention to close pairs. Once we do this, we can eliminate
ones near the ends since

1 K,
st
i<Kn/5,j<i+Kn\/5
by assumption. In a similar way we can eliminate j > n — K,4/s.

It follows that it is enough to consider random stirring on Z. The result of
Durrett and Neuhauser [16] implies that if s — 00, i > K,,v/s, j < n— K,/s and

(j —i)/y/s — x then
1
El; — §P (max By > x)

0<t<1

where the right-hand side is 0 if x = oco. Writing X* again for the 7,5 with
i > Ky/s,j <n—Ky/sand 0 < j—i < K,/s, and using the domination that
comes from Lemma 8 it follows that

n 2 0<t<1

The next step is to compute the second moment. The number of terms with
one index in 7 < j equal to one of k& < [ with both pairs close is < n(K,+/s)?,
which when divided by (ny/s)? tends to 0. The result of Durrett and Neuhauser
[16] implies that terms in which all four indices are different are asymptotically
uncorrelated. We note that in Lemma 8 we can also get an upper-bound on
P(X,+(0) > 2)'/? by summing the square-roots of the two terms in (16) and (17)
since only one of them applies in a given region. This and Cauchy-Schwartz’s
inequality provide the justification for the passage to the limit:

1 N 1 2
(n\/g)Q 1<32k<4E([i,jIk,£) - <§E max B4t>

0<t<1

and the rest of the argument is the same as in Theorem 3. [

21



5 Riffle Shuffle

To prove Theorem 5, we make extensive use of the well-known trick which consists
in studying the inverse random walk (o7,,m > 1) rather than the random walk
itself. This is a random walk on &,, which has the following dynamics. For each
m > 1, o/ is obtained from o], _, by deciding independently for each card if it
goes in the upper or lower packet (each with probability 1/2). The upper packet
is then put on top of the lower packet. Bayer and Diaconis call such a shuffle an
inverse 2-shuffle, because there are two piles. More generally, consider the inverse
a-shuffle, where a is an integer greater or equal to 2. This process is defined by
the following dynamics: at each time step, every card is independently placed into
one of a packets with equal probability. At the end, the a packets (some of them
may be empty) are stacked one on top of the other. We shall use the following
well-known lemma due to Bayer and Diaconis (see [3, Lemma 1] for a proof).

Lemma 9. The law of 0,,' is the same as the result of an inverse 2™-shuffle.

Recall the definition of the number of rising sequences R(m) of a permutation 7
in section 5, and formula (7). Since R(c) = Des(c™!) + 1, where

Des(o)=#{1<i<n—1:0(i) >o(i+1)}

is the number of descents of o, it suffices to study the number of descents after
performing an inverse 2™ shuffle. We will use the terminology that ¢ has a descent
at i if o(i + 1) < o(i).

Let m = |logyn — logy(C'logn) |, for some C' > 0 whose value will be deter-
mined later. In an inverse 2™ shuffle, each pile contains a Binomial (n,p) number
of cards with p = 1/2™. The next elementary lemma shows that with high prob-
ability each pile has more than half what we expect.

Lemma 10. Let A be the event that each pile in an inverse 2™ shuffle contains
at least np/2 cards where p = 1/2™. Then P(A) =1 —o(n™').

Proof. Let S be a Binomial(n, p) random variable with p = 1/2™. The Laplace
transform of S is Ee™% = (1 — p+ pe=?)" = ¢(#). By Markov’s inequality

e~ P2P(S < np/2) < Be %

so we have
P(S <np/2) < exp(n[fp/2 +log ¢(0)])

Taking 0 = 1n2, ¢(0) = 1 — p/2, and hence log(¢(0)) < —p/2 so

P(S <np/2) < exp([log2 — 1]np/2)
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Using this result with p = 1/2™ and m = log,(n/C'logn) where C' is large, then
P(S <np/2) <n?

Since there are 2™ = ( ) piles, a simple union bound shows that with probability
greater than 1 — o(n™!), all 2™ piles are > np/2. O

The next step is to show that conditionally on the event A, with high proba-
bility each pile creates a descent in the permutation that results by putting the
piles on top of one another. A moment of thought shows that the last card of
pack i is not a descent for the resulting permutation only if the entire pack i is
filled before the first card of pack i 4+ 1 is dropped, an event that we will call B;.
Whenever a card is dropped in one of the piles i or i 4+ 1, the probability it will
go to pile i is just 1/2, so if the eventual size of pack i is a, P(B;) = 1/2% But
conditionally on A, we know a > np/2. We conclude that

(B ’A) <2- np/2 __ — 9~ Clogn/2 <n- 2

if C' is large enough. Hence with probability 1 — o(n™1), there are at least 2™ —
1 descents after a 2™-inverse shuffle. This implies that R(c,,) = 2™ and that
D(m) = m with probability 1 — o(n™!). To conclude to the first part of Theorem
5 (the part ¢ < 1) it suffices to note that if the distance is m at time m =
log,(n/Clogn), then it is also true that D(m') = m' for smaller values of m/,
since the distance can increase by at most 1 at each time step.

To finish the proof, it remains to show that if m = tlog,n and t > 1, D(m) ~
log, n. We start by the following lemma.

Lemma 11. With high probability there are at least n/4 non-empty piles.

Proof. When a card is dropped, and k piles have already been started, the prob-
ability that the card is dropped in an empty pile is 1 — k/2™. If we focus on the
first n/2 cards, k < n/2 necessarily, and since 2™ > n', it follows that this proba-
bility is greater than 1 — (1/2)n'~* > 1/2. Since this is independent for different
cards, the total number of non-empty piles is greater than a Bernoulli random
variable with parameters n and 1/2. This is greater than n/4 with probability
exponentially close to 1 by standard large deviations. O]

Ignoring the empty piles, we will argue in a way similar as above that these
n/4 piles give rise to at least cn descents with high probability (for some ¢ > 0)
when they are stacked one on top of the other. To see this, note that each non-
empty pile gives a new descent when it is stacked with the next non-empty pile
with positive probability. Indeed, with positive probability it is the pile on the
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right which gets filled first and this automatically gives rise to a descent. For
disjoint pairs of piles, this event happens independently and so by the law of large
numbers there are at least cn descents with high probability. This implies

R(o.,) > cen

with high probability. By (7), D(m) = [log, R(0,,)] > logyn — O(1) with high
probability. On the other hand the Bayer-Diaconis formula (6) tells us that the
diameter of the graph is [log,n] and hence we conclude

(logyn) ™" D(|tlogyn]) —; 1

as claimed for ¢t > 1.
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