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Abstract

Here we will use results of Cox, Durrett, and Perkins [56] for voter model perturba-
tions to study spatial evolutionary games on Zd, d ≥ 3 when the interaction kernel is
finite range, symmetric, and has covariance matrix σ2I. The games we consider have
payoff matrices of the form 1 + wG where 1 is matrix of all 1’s and w is small and
positive. Since our population size N = ∞, we call our selection small rather than
weak which usually means w = O(1/N).

The key to studying these games is the fact that when the dynamics are suitably
rescaled in space and time they convergence to solutions of a reaction diffusion equa-
tion (RDE). Inspired by work of Ohtsuki and Nowak [28] and Tarnita et al [35, 36] we
show that the reaction term is the replicator equation for a modified game matrix and
the modifications of the game matrix depend on the interaction kernel only through
the values of two or three simple probabilities for an associated coalescing random
walk.

Two strategy games lead to an RDE with a cubic nonlinearity, so we can describe
the phase diagram completely. Three strategy games lead to a pair of coupled RDE,
but using an idea from our earlier work [59], we are able to show that if there is a
repelling function for the replicator equation for the modified game, then there is
coexistence in the spatial game when selection is small. This enables us to prove
coexistence in the spatial model in a wide variety of examples including the behavior
of four evolutionary games that have recently been used in cancer modeling.
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Spatial evolutionary games

1 Introduction

Game theory was invented by John von Neumann and Oscar Morgenstern [1] to
study strategic and economic decisions of humans. Maynard Smith and Price [2], intro-
duced the concept into ecology in order to explain why conflicts over territory between
male animals of the same species are usually of the “limited war” type and do not cause
serious damage. As formulated in John Maynard Smith’s classic book, [3], this is the

Example 1.1. Hawks-Doves game. When a confrontation occurs, Hawks escalate and
continue until injured or until an opponent retreats, while Doves make a display of force
but retreat at once if the opponent escalates. The payoff matrix is

Hawk Dove
Hawk (V − C)/2 V

Dove 0 V/2

Here V is the value of the resource, which two doves split, and C is the cost of compe-
tition. There are two conventions in the literature for the interpretation of the payoff
matrix. Here we are using the one in which the first row gives the payoffs for the Hawk
strategy based on the opponent’s strategy choice.

If we suppose that C > V then a frequency p = V/C of Hawks in the population
represents an equilibrium, since in this case each strategy has the same payoff. The
equilibrium is stable. If the frequency of the Hawk strategy rises to p > V/C then the
Hawk strategy has a worse payoff than the Dove strategy so its frequency will decrease.

Axelrod and Hamilton [4], see also [5], studied the evolution of cooperation by in-
vestigating

Example 1.2. Prisoner’s dilemma. Rather than formulate this in terms of prisoners
deciding whether to confess or not, we consider the following game between coopera-
tors C and defectors D. Here c is the cost that cooperators pay to provide a benefit b to
the other player.

C D
C b− c −c
D b 0

If b > c > 0 then the defection dominates cooperation, and, as we will see, altruistic
cooperators are destined to die out in a homogeneously mixing population. This is un-
fortunate since the (D,D) payoff is worse than (C,C) payoff. Nowak and May [11, 12]
found an escape from this dilemma by showing that spatial structure allowed persis-
tence of cooperators. Huberman and Glance [13] suggested that this was an artifact
of the synchronous deterministic update rule, but later work [14, 15] showed that the
same phenomena occurred for asynchronous stochastic updates.

There are many examples of 2 × 2 games with names like Harmony, the Snowdrift
Game, and the Battle of the Sexes, see e.g., [21], but as we will see in Section 6 there
are really only 3 (or 4) examples. To complete the set of possibilities, we now consider

Example 1.3. Stag Hunt. The story of this game was briefly described by Rousseau
in his 1755 book A Discourse on Inequality. If two hunters cooperate to hunt stag (an
adult male deer) then they will bring home a lot of food, but there is practically no
chance of bagging a stag by oneself. If both hunters go after rabbit they split what they
kill. An example of a game of this type is:
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Stag Hare
Stag 3 0
Hare 2 1

In this case if the two strategies have frequency p = 1/2 in the population, then the two
strategies have equal payoffs. If the frequency of the stag strategy rises to p > 1/2 then
it has the better payoff and will continue to increase so this is an unstable equilibrium.

In the forty years since the pioneering work of Maynard Smith and Price [2] evolu-
tionary game theory has been used to study many biological problems. For surveys see
[6]–[10]. This is natural because evolutionary game theory provides a general frame-
work for the study of frequency dependent selection. In the references we have listed
representative samples of work of this type, [16]–[37]. There are literally hundreds of
references, so we have restricted our attention to those that are the most relevant to
our investigations.

In recent years, evolutionary game theory has been applied to study cancer. This
provides an important motivation for our work, so we will now consider four examples
beginning with one first studied by Tomlinson [48].

Example 1.4. Three species chemical competition. In this system, there are cells
of three types.

1. Ones that Produce a toxic substance, and are sensitive to toxins produced by
other cells.

2. Others that are Resistant to the toxin, but do not produce it.

3. Wild type cells that are Sensitive to the toxin but do not produce it.

Based on the verbal description, Tomlinson wrote down the following game matrix.

P R S

P z − e− f + g z − e z − e+ g

R z − h z − h z − h

S z − f z z

Here, and in what follows it is sometimes convenient to number the strategies 1 = P ,
2 = R and 3 = S. For example, this makes it easier to say that Gij is the payoff to a
player who plays strategy i against an opponent playing strategy j. Taking the rows in
reverse order, z is the baseline fitness while f is the cost to a sensitive cell due to the
presence of the toxin. The cost of resistance to the toxin is h. In top row e is the cost of
producing the toxin, and g is advantage to a producer when it interacts with a sensitive
cell.

It is interesting to note that in the same year [48] was published, Durrett and Levin
[62] used a spatial model to model the competition two strains of E. coli, whose be-
haviors correspond to strategies P , R, and S above. In their model, there are also
empty cells (denoted by 0). Thinking of a petri dish, their system takes place on the two
dimensional lattice with the following dynamics.

• Individuals of type i > 0 give birth at rate βi with their offspring sent to a site
chosen at random from the four nearest neighbors of x. If the site is occupied
nothing happens.

• Each species dies at rate δi due to natural causes, while type 3’s die at an addi-
tional rate γ times the fraction of neighbors of type 1 due to the effect of colicin.
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Example 1.5. Glycolytic phenotype. It has been known for some time that cancer
cells commonly switch to glycolysis for energy production. Glycolysis is less efficient
than the citrate cycle in terms of energy, but allows cell survival in hypoxic environ-
ments. In addition, cells with glycolytic metabolism can change the pH of the local
microenvironment to their advantage.

The prevalence of glycolytic cells in invasive tumor suggests that their presence
could benefit the emergence of invasive phenotypes. To investigate this using evolu-
tionary game theory, Basanta et al [45] considered a three strategy game in which cells
are initially characterized as having autonomous growth (AG), but could switch to gly-
colysis for energy production (GLY ), or become increasing mobile and invasive (INV ).
The payoff matrix for this game, which is the transpose of the one in their Table 1, is:

AG INV GLY

AG 1
2 1 1

2 − n

INV 1− c 1− c
2 1− c

GLY 1
2 + n− k 1− k 1

2 − k

Here c is the cost of mobility, k is the cost to switch to glycolysis, and n is the detriment
for nonglycolytic cell in glycolytic environment, which is equal to the bonus for a gly-
colytic cell. Recently this system has been extended to a four player game by adding an
invasive-glycolytic strategy, see [43].

Example 1.6. Tumor-Stroma Interactions. Tumors are made up of a mixed popula-
tion of different types of cells that include normal structures as well as ones associated
with malignancy, and there are multiple interactions between the malignant cells and
the local microenvironment. These intercellular interactions effect tumor progression.
In prostate cancer it has been observed that one can have three different outcomes:

(i) The tumor remains well differentiated and relatively benign. In this case the local
stromal cells (also called connective tissue) may serve to restrain the growth of the
cancer.

(ii) Early in its genesis the tumor acquires a highly malignant phenotype, growing
rapidly and displacing the stromal population (often called small cell prostate cancer).

(iii) The tumor co-opts the local stroma to aid in its growth.

To understand the origin of these behaviors, Basanta et al [44] formulated a game with
three types of players S = stromal cells, I = cells that have become independent of the
micro-environment, and D = cells that remain dependent on the microenvironmnet.
The payoff matrix is:

S D I

S 0 α 0
D 1 + α− β 1− 2β 1− β + ρ

I 1− γ 1− γ 1− γ

Again this is the transpose of their matrix. Here γ is the cost of being environmen-
tally independent, β cost of extracting resources from the micro-environment, α is the
benefit derived from cooperation between S and D, and ρ benefit to D from paracrine
growth factors produced by I.

Example 1.7. Multiple Myeloma. Normal bone remodeling is a consequence of a dy-
namic balance between osteoclast (OC) mediated bone resorption and bone formation
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due to osteoblast (OB) activity. Multiple myeloma (MM ) cells disrupt this balance in
two ways.

(i) MM cells produce a variety of cytokines that stimulate the growth of the OC popu-
lation.

(ii) Secretion of DKK1 byMM cells inhibits OB activity.

OC cells produce osteoclast activating factors that stimulate the growth of MM cells
where asMM cells are not effected by the presence of OB cells. These considerations
lead to the following game matrix. Here, a, b, c, d, e > 0.

OC OB MM

OC 0 a b

OB e 0 −d
MM c 0 0

For more on the biology, see Dingli et al. [46].

A number of other examples have been studied. Tomlinson and Bodmer [49] studied
games motivated by angiogenesis and apototsis. See Basanta and Deutsch [40] for a
survey of this and other early work. Swierniak and Krzeslak’s survey [47] contains the
four examples we have covered here, as well as a number of others.

2 Overview

In a homogeneously mixing population, xi = the frequency of players using strategy
i follows the replicator equation

dxi

dt
= xi(Fi − F̄ )

where Fi =
∑

j Gi,jxj is the fitness of strategy i and F̄ =
∑

i xiFi is the average fitness.
Twenty years ago, Durrett and Levin [16] studied evolutionary games and formu-

lated rules for predicting the behavior of spatial models from the properties of the
mean-field differential equations obtained by supposing that adjacent sites are inde-
pendent. See [60] for an overview of this approach. Our main motivation for revisiting
this question is that the recent work of Cox, Durrett, and Perkins [56] allows us to turn
the heuristic principles of [16] into rigorous results for evolutionary games with matri-
ces of the form Ḡ = 1 + wG, where w > 0 is small, and 1 is a matrix that consists of all
1’s.

We will study these games on Zd where d ≥ 3 and the interactions between an
individual and its neighbors are given by an irreducible probability kernel p(x) on Zd

with p(0) = 0 that is finite range, symmetric p(x) = p(−x), and has covariance matrix
σ2I. To describe the dynamics we let ξt(x) be the strategy used by the individual at x at
time t and

ψt(x) =
∑

y

Ḡ(ξt(x), ξt(y))p(y − x)

be the fitness of x at time t. In Birth-Death dynamics, site x gives birth at rate ψt(x) and
sends its offspring to replace the individual at y with probability p(y−x). In Death-Birth
dynamics, the individual at x dies at rate 1, and replaces itself by a copy of the one at y
with probability proportional to p(y − x)ψt(y).

When w = 0 either version of the dynamics reduces to the voter model, a system in
which each site at rate 1 changes its state to that of a randomly chosen neighbor. As
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we will explain in Section 3, when w is small, our spatial evolutionary game is a voter
model perturbation in the sense of Cox, Durrett, and Perkins [56]. Section 4 describes
the duality between the voter model and coalescing random walk, which is the key to
study of the voter model and its perturbations. More details are given in Section 10.
Section 4 also introduces the coalescence probabilities that are the key to our analysis
and states some identities between them that are proved in Section 11.

The next step is to show that when w → 0 and space and time are rescaled appro-
priately then frequencies of strategies in the evolutionary game converge to a limiting
PDE. Section 5 states the results, while Section 12 shows how these conclusions fol-
low from results in [56]. While this is a “known result,” there are two important new
features here. The reaction term is identified as the replicator equation for a modified
game, and it is shown that the modifications of the game matrix depend only on the
effective number of neighbors κ (defined in (2.1) below) and two probabilities for the
coalescing random walk with jump kernel p. The first fact allows us to make use of the
theory that has been developed for replicator equations, see [7].

Two strategy games are studied in Section 6. A complete description of the phase di-
agram for Death-Birth and Birth-Death dynamics is possible because the limiting RDE’s
have cubic reaction terms f(u) with f(0) = f(1) = 0, so we can make use of work of
[50, 51, 66, 67]. As a corollary of this analysis, we are able to prove that Tarnita’s for-
mula for two strategy games with weak selection holds in our setting. They say that a
strategy in a k strategy game is “favored by selection” if its frequency in equilibrium is
> 1/k when w is small. Tarnita et al [35] showed that this holds for strategy 1 in a 2 by
2 game if and only if

σG1,1 +G1,2 > G2,1 + σG2,2

where σ is a constant that depends only on the dynamics. In our setting σ = 1 for
Birth-Death dynamics while σ = (κ+ 1)/(κ− 1) for Death-Birth dynamics where

κ = 1

/∑
x

p(x)p(−x) (2.1)

is the “effective number of neighbors.” To explain the name note that if p is uniform on
a symmetric set S of size m, (i.e., x ∈ S implies −x ∈ S), and 0 6= S then κ = m.

In Section 7 we begin our study of three strategy games by analyzing the behavior
of their replicator equations. This is done using the invadability analysis developed in
[59]. The first step is to analyze the three 2 × 2 subgames. In 1, 2 subgame there are
four possibilities:

• strategy 1 dominates 2, 1 � 2;
• strategy 2 dominates 1, 2 � 1;
• there is a stable mixed strategy equilibrium which is the limit starting from any
point on the interior of the edge;

• there is an unstable mixed strategy which separates the sets of points that con-
verge to the two endpoints.

In the case that there is a mixed strategy equilibrium, we also have to see if it can be
invaded by the strategy not in the subgame, i.e., its frequency will increase when rare.

Our method for analyzing the spatial game is to prove the existence of a repelling
function (i.e., a convex Lyapunov function that blows up near the boundary and satisfies
some mild technical conditions, see Section 8.1 for a precise definition). Unfortunately,
a repelling function cannot exist when there is an unstable fixed point on some edge,
but this leaves a large number of possibilities. In Sections 8.2 and 8.3, we prove that
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they exist for three of the four classes of examples identified in Section 7 that have
attracting interior fixed points.

To build repelling functions, we construct for i = 1, 2, 3 a function hi that blows up
on {ui = 0}, and is decreasing along trajectories near the side ui = 0. We then pick
Mi large enough so that h̄i = max{hi,Mi} is always decreasing along trajectories and
define

ψ = h̄1 + h̄2 + h̄3

This repelling function is often easy to construct and allows us to prove coexistence
of the three types, but it does not allow us to obtain very precise information about
the frequencies of the three types in the equilibrium. An exception is the set of games
considered in Section 8.4 that are almost constant sum. In that case we have a re-
pelling function that is decreasing everywhere except at the interior fixed point ρ, so
Theorem 1.4 of [56] allows us to conclude that when w is small any nontrivial stationary
distribution for the spatial model has frequencies near ρ.

In Section 9, we turn our attention to the three strategy examples from the intro-
duction, Examples 1.4–1.7. Using the results from the Sections 7 and 8, we are able
to analyze these games in considerable detail. While we are able to treat a number of
examples, there are also some large gaps in our knowledge.

• Consider a three strategy game with payoff matrix

0 α3 β2

β3 0 α1

α2 β1 0

where αi < 0 < βi so that the strategies have a rock-paper-scissors cyclic domi-
nance relationship. Find conditions for coexistence of the three strategies in the
spatial game. For the replicator equation the condition is β1β2β3 + α1α2α3 > 0.

• Perhaps the most important open problem is that we cannot handle the case in
which the replicator equation is bistable, i.e., there are two locally attracting fixed
points u∗ and v∗. See Examples 7.2B and 7.3B. By analogy with the work of Durrett
and Levin [16], we expect that the winner in the spatial game is dictated by the
direction of movement of the traveling wave solution that tends to u∗ at −∞ and v∗

at ∞. However, we are not aware of results that prove the existence of traveling
waves solutions, or methods to prove convergence of solutions to them.

• A less exciting open problem is prove “dying out results” which show that one
strategy takes over the system (see Examples 7.1A and 7.3A) or that one strategy
dies out leaving an equilibrium that consists of a mixture of the other two strate-
gies (see Examples 7.2A, 7.3C and 7.3D). Given results in Section 8, it is natural to
start by finding suitable convex Lyapunov functions. However, (i) in contrast to the
repelling functions used to prove coexistence, these functions must be decreasing
everywhere except at the point which is the limiting value of the replicator equa-
tion, and (ii) auxillary arguments such as the ones used in Chapter 7 of [56] are
needed to prove that the limiting frequencies are 0 rather than just small.

3 Voter model perturbations

The state of the system at time t is ξt : Zd → S where S is a finite set of sates that
are called strategies or opinions. ξt(x) gives the state of the individual at x at time t.
To formulate this class of models, let fi(x, ξ) =

∑
y p(y − x)1(ξ(y) = i) be the fraction of

neighbors of x in state i. In the voter model, the rate at which the voter at x changes
its opinion from i to j is

cvi,j(x, ξ) = 1(ξ(x)=i)fj(x, ξ)
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The voter model perturbations that we consider have flip rates

cvi,j(x, ξ) + ε2hε
i,j(x, ξ) (3.1)

The perturbation functions hε
ij may be negative (and will be for games with nega-

tive entries) but in order for the analysis in [56] to work, there must be a law q of
(Y 1, . . . Y m) ∈ (Zd)m and functions gε

i,j ≥ 0, which converge to limits gi,j as ε → 0, so
that for some γ <∞, we have for ε ≤ ε0

hε
i,j(x, ξ) = −γfi(x, ξ) + EY [gε

i,j(ξ(x+ Y 1), . . . ξ(x+ Y m))] (3.2)

In words, we can make the perturbation positive by adding a positive multiple of the
voter flip rates. This is needed so that [56] can use gε

i,j to define jump rates of a Markov
process.

We have assumed that p is finite range. As (3.4) and (3.6) will show, q is a pointmass
on the vector of sites that can be reached from 0 by two steps taken according to p.
Applying Proposition 1.1 of [56] now implies the existence of a suitable gε

i,j and that all
our calculations can be done using the original perturbation. However, to use Theorems
1.4 and 1.5 in [56] we need to suppose that

hi,j = lim
ε→0

hε
i,j .

has |h(i, j)− hε(i, j)| ≤ Cεr for some r > 0, see (1.41) in [56]. We will study two update
rules. In the first the perturbation is independent of ε. In the second the last condition
holds with r = 2.

Let ξε
t be the process with flip rates given in (3.1). The next result is the key to the

analysis of voter model perturbation. Intuitively it says that if we rescale space to εZd

and speed up time by ε−2 the process converges to the solution of a partial differential
equation. The first thing we have to do is to define the mode of convergence. Given
r ∈ (0, 1), let aε = dεr−1eε, Qε = [0, aε)d ∩ εZd, and |Qε| the number of points in Qε. For
x ∈ aεZ

d and ξ ∈ Ωε the space of all functions from εZd to S let

Di(x, ξ) = |{y ∈ Qε : ξ(x+ y) = i}|/|Qε|

We endow Ωε with the σ-field Fε generated by the finite-dimensional distributions.
Given a sequence of measures λε on (Ωε,Fε) and continuous functions vi, we say that
λε has asymptotic densities vi if for all 0 < δ,R <∞ and all i ∈ S

lim
ε→0

sup
x∈aεZd,|x|≤R

λε(|Di(x, ξ)− vi| > δ) → 0

Theorem 3.1. Suppose d ≥ 3. Let vi : Rd → [0, 1] be continuous with
∑

i∈S vi = 1.
Suppose the initial conditions ξε

0 have laws λε with local density vi and let

uε
i (t, x) = P (ξε

tε−2(x) = i)

If xε → x then uε
i (t, xε) → u(t, x) the solution of the system of partial differential equa-

tions:
∂

∂t
ui(t, x) =

σ2

2
∆ui(t, x) + φi(u(t, x))

with initial condition ui(0, x) = vi(x). The reaction term

φi(u) =
∑
j 6=i

〈1(ξ(0)=j)hj,i(0, ξ)− 1(ξ(0)=i)hi,j(0, ξ)〉u

where the brackets are expected value with respect to the voter model stationary dis-
tribution νu in which the densities are given by the vector u.
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Intuitively, since on the fast time scale the voter model runs at rate ε−2 versus the
perturbation at rate 1, the process is always close to the voter equilibrium for the
current density vector u. Thus, we can compute the rate of change of ui by assuming
the nearby sites are in that voter model equilibrium. The restriction to dimensions d ≥ 3
is due to the fact that the voter model does not have nontrivial stationary distributions
in d ≤ 2. For readers not familiar with the voter model, we recall the relevant facts in
Section 10.

Theorem 1.2 in [56] gives more information. It shows that the joint distribution of
the values at xε + εyi converges to those of the voter model with densities ui(t, x). In
addition, it shows that if we consider k points xk

ε with ε−1|xj
ε − xk

ε | → ∞ then the finite
dimensional distributions near these points are asymptotically independent. Once this
is done, see Theorem 1.3 in [56], it is easy to conclude that the local densities at time t,
Di(x, ξt) converge to ui(t, x) in L2 uniformly on compact sets. This result makes precise
the sense in which the rescaled particle system converges to the solution of a PDE.

The results we have just stated are proved in [56] only for the case S = {0, 1}. The
proof is almost 30 pages but it is easy to see that it extends easily to a general finite set
S. The proof begins by constructing the process with flip rates (3.1) on Zd using Poisson
processes to generate the changes at each site. This enables us to construct for each x
and t a dual process ζε,x,t

s which is what Durrett and Neuhauser call the “influence set.”
If we know the values of ξε

t−s on ζ
ε,x,t
s then we can compute ξε

t (x). In the dual particles
undergo random walks at rate 1, coalescing when they hit, and at rate ε2 we have to
add points z + Y 1, . . . z + Y m when an event in the perturbing process occurs at a point
z currently in the dual. Only the rates at which various sets are added is relevant, not
how they are used to compute the change of state in the process, so the convergence
of the dual to branching Brownian motion is the same as before, and that result leads
easily to the conclusions stated above.

Update rules. We will consider two versions of spatial evolutionary game dynamics.

Birth-Death dynamics. In this version of the model, a site x gives birth at a rate equal
to its fitness ∑

y

p(y − x)Ḡ(ξ(x), ξ(y))

and the offspring replaces a “randomly chosen neighbor of x.” Here and in what follows,
the phrase in quotes means z is chosen with probability p(z − x). If we let ri,j(0, ξ) be
the rate at which the state of 0 flips from i to j, then setting w = ε2 and using symmetry
p(x) = p(−x), we get

ri,j(0, ξ) =
∑

x

p(x)1(ξ(x) = j)
∑

y

p(y − x)Ḡ(j, ξ(y))

=
∑

x

p(x)1(ξ(x) = j)

(
1 + ε2

∑
k

fk(x, ξ)Gj,k

)
= fj(0, ξ) + ε2

∑
k

f
(2)
j,k (0, ξ)Gj,k, (3.3)

where f (2)
j,k (0, ξ) =

∑
x

∑
y p(x)p(y − x)1(ξ(x) = j, ξ(y) = k), so the perturbation, which

does not depend on ε is
hi,j(0, ξ) =

∑
k

f
(2)
j,k (0, ξ)Gj,k (3.4)

Death-Birth Dynamics. In this case, each site dies at rate one and is replaced by a
neighbor chosen with probability proportional to its fitness. Using the notation in (3.3)
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the rate at which ξ(0) = i jumps to state j is

r̄i,j(0, ξ) =
ri,j(0, ξ)∑
k ri,k(0, ξ)

=
fj(0, ξ) + ε2hi,j(0, ξ)
1 + ε2

∑
k hi,k(0, ξ)

= fj + ε2hi,j(0, ξ)− ε2fj

∑
k

hi,k(0, ξ) +O(ε4) (3.5)

The new perturbation, which depends on ε, is

h̄ε
i,j(0, ξ) = hi,j(0, ξ)− fj

∑
k

hi,k(0, ξ) +O(ε2) (3.6)

It is not hard to see that it also satisfies the technical condition (3.2).

There are a number of other update rules. In Fermi updating, a site x and a
neighbor y are chosen at random. Then x adopts y’s strategy with probability

[1 + exp(β(Fx − Fy))]−1

where Fz =
∑

w p(w − z)G(ξ(z), ξ(w)). The main reason for interest in this rule is the
Ising model like phase transition that occurs, for example in Prisoner’s Dilemma games
as β is increased, see [19, 24, 25].

In Imitate the best one adopts the strategy of the neighbor with the largest fitness.
All of the matrices Ḡ = 1+wG have the same dynamics, so this is not a voter model per-
turbation. In discrete time (i.e., with synchronous updates) the process is deterministic.
See Evilsizor and Lanchier [38] for recent work on this version.

4 Voter model duality

In this section we set w = 0, so Ḡ = 1 and the system becomes the voter model.
Let ξt(x) be the state of the voter at x at time t. The key to the study of the voter
model is that we can define for each x and t, random walks ζx,t

s , 0 ≤ s ≤ t that move
independently until they hit and then coalesce to one walk, so that

ξt(x) = ξt−s(ζx,t
s ) (4.1)

Intuitively, the ζx,t
s are genealogies that trace the origin of the opinion at x at time t.

See Section 10 for more details about this and other facts about the voter model we cite
in this section.

Consider now the case of two opinions. A consequence of this duality relation is that
if we let p(0|x) be the probability that two continuous time random walks with jump
distribution p, one starting at the origin 0, and one starting at x never hit then

〈ξ(0) = 1, ξ(x) = 0〉u = p(0|x)u(1− u)

To prove this, we recall that the stationary distribution νu is the limit in distribution
as t → ∞ of ξu

t , the voter model starting with sites that are independent and = 1 with
probability u, and then observe that (4.1) implies

P (ξu
t (0) = 1, ξu

t (x) = 0) = P (ξu
0 (ζ0,t

t ) = 1, ξu
0 (ζx,t

t ) = 0) = u(1− u)P (ζ0,t
t 6= ζx,t

t )

Letting t→∞ gives the desired identity.
To extend this reasoning to three sites, let p(0|x|y) be the probability that the three

random walks never hit and let p(0|x, y) be the probability that the walks starting from
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x and y coalesce, but they do not hit the one starting at 0. Considering the possibilities
that the walks starting from x and y may or may not coalesce:

〈ξ(0) = 1, ξ(x) = 0, ξ(y) = 0〉u = p(0|x|y)u(1− u)2 + p(0|x, y)u(1− u)

Let v1, v2, v3 be independent and chosen according to the distribution p and let
κ = 1/P (v1+v2 = 0) be the “effective number of neighbors” defined in (2.1). The coales-
cence probabilities satisfy some remarkable identities that will be useful for simplifying
formulas later on. Since the vi have the same distribution as steps in the random walk,
simple arguments given in Section 11 show that

p(0|v1) = p(0|v1 + v2) = p(v1|v2) (4.2)

p(v1|v2 + v3) = (1 + 1/κ)p(0|v1) (4.3)

Here p(0|v1) =
∑

x p(0|x)P (v1 = x), p(0|v1 + v2) =
∑

x,y p(0|x + y)P (v1 = x)P (v2 = y),
etc.

It is easy to see that for any x, y, z coalescence probabilities must satisfy

p(x|z) = p(x, y|z) + p(x|y, z) + p(x|y|z) (4.4)

Combining this with the identities for (4.2), (4.3) leads to

p(0, v1|v1 + v2) = p(0, v1 + v2|v1) = p(v1, v1 + v2|0) (4.5)

p(v1, v2|v2 + v3) = p(v2, v2 + v3|v1) = p(v1, v2 + v3|v2) + (1/κ)p(0|v1) (4.6)

All of the identities stated here are proved in Section 11. From (4.4) and (4.5) it follows
that

p(0|v1) = 2p(x, y|z) + p(0|v1|v1 + v2) (4.7)

where x, y, z is any ordering of 0, v1, v1 + v2. Later, we will be interested in p1 =
p(0|v1|v1 + v2) and p2 = p(0|v1, v1 + v2). In this case, (4.7) implies

2p2 + p1 = p(0|v1) (4.8)

Similar reasoning to that used for (4.7) gives

p(v1|v2)(1 + 1/κ) = 2p(v2, v2 + v3|v1) + p(v1|v2|v2 + v3) (4.9)

= 2p(v1, v2|v2 + v3) + p(v1|v2|v2 + v3) (4.10)

p(v1|v2)(1− 1/κ) = 2p(v1, v2 + v3|v2) + p(v1|v2|v2 + v3) (4.11)

Later, we will be interested in p̄1 = p(v1|v2|v2 + v3) and p̄2 = p(v1|v2, v2 + v3). In this
case, (4.9) implies that

2p̄2 + p̄1 = p(v1|v2)(1 + 1/κ) (4.12)

We will also need the following consequence of (4.9) and (4.4)

p̄2 − p(v1|v2)/κ = p(v1|v2)− p̄1 − p̄2 = p(v1, v2 + v3|v2) > 0 (4.13)

Work of Tarnita et al. [35, 36] has shown that when selection is weak (i.e., w � 1/N
where N is the population size) one can determine whether a strategy in an k-strategy
game is favored by selection (i.e., has frequency > 1/k) by using an inequality that is
linear in the entries of the game matrix that involves one (k = 2) or two (k ≥ 3) constants
that depend on the spatial structure. Our analysis will show that on Zd, d ≥ 3, the only
aspects of the spatial structure relevant for a complete analysis of the game with small
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selection are p(0|v1) and p(0|v1|v1 + v2) for Birth-Death updating and κ, p(v1|v2) and
p(v1|v2|v2 + v3) for Death-Birth updating.

The coalescence probabilities p(0|v1) = p(v1|v2) are easily calculated since the differ-
ence between the positions of the two walkers is a random walk. Let Sn be the discrete
time random walk that has jumps according to p and let

φ(t) =
∑

x

eitxp(x)

be its characteristic function (a.k.a Fourier transform). The inversion formula implies

P (Sn = 0) = (2π)−d

∫
(−π,π)d

φn(t) dt

so summing we have

χ ≡
∞∑

n=0

P (Sn = 0) = (2π)−d

∫
(−π,π)d

1
1− φ(t)

dt

For more details see pages 200–201 in [61]. Since the number of visits to 0 has a
geometric distribution with success probability p(0|v1) it follows that

p(0|v1) =
1
χ

In the three dimensional nearest neighbor case it is know that χ = 1.561386 . . . so we
have

p(0|v1) = p(v1|v2) = 0.6404566

To evaluate p(0|v1|v1 + v2) and p(v1|v2|v2 + v3) we have to turn to simulation. Sim-
ulations of Yuan Zhang suggest that p(0|v1|v1 + v2) ∈ [0.32, 0.33] and p(v1|v2|v2 + v3) ∈
[0.34, 0.35].

5 PDE limit

In a homogeneously mixing population the frequencies of the strategies in an evo-
lutionary game follow the replicator equation, see e.g., Hofbauer and Sigmund’s book
[7]:

dui

dt
= φi

R(u) ≡ ui

∑
k

Gi,kuk −
∑
j,k

ujGj,kuk

 . (5.1)

Birth-Death dynamics. Let

p1 = p(0|v1|v1 + v2) and p2 = p(0|v1, v1 + v2).

In this case the limiting PDE in Theorem 3.1 is ∂ui/∂t = (1/2d)∆u+ φi
B(u) where

φi
B(u) = p1φ

i
R(u) + p2

∑
j 6=i

uiuj(Gi,i −Gj,i +Gi,j −Gj,j). (5.2)

See Section 12 for a proof. Formula (4.7) implies that

2p(0|v1, v1 + v2) = p(0|v1)− p(0|v1|v1 + v2),

so it is enough to know the two probabilities on the right-hand side.
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If coalescence is impossible then p1 = 1 and p2 = 0 and φi
B = φi

R. There is a second
more useful connection to the replicator equation. Let

Ai,j =
p2

p1
(Gi,i +Gi,j −Gj,i −Gj,j).

This matrix is skew symmetric Ai,j = −Aj,i so
∑

i,j uiAi,juj = 0 and it follows that

φi
B(u) is p1 times the RHS of the replicator equation for the game matrix A + G. This

observation is due to Ohtsuki and Nowak [28] who studied the limiting ODE that arises
from the nonrigorous pair approximation. In their case, the perturbing matrix, see their
(14), is

1
κ− 2

(Gi,i +Gi,j −Gj,i −Gj,j).

To connect the two formulas note if space is a tree in which each site has κ neighbors
then p(0, v1) = 1/(κ − 1). Under the pair approximation, the coalescence of 0 and v1 is
assumed independent of the coalescence of v1 and v1 + v2, so

p2

p1
=

p(0|v1, v1 + v2)
p(0|v1|v1 + v − 2)

=
p(v1, v1 + v2)
p(v1|v1 + v − 2)

=
1

κ− 2
.

Death-Birth Dynamics. Let

p̄1 = p(v1|v2|v2 + v3) and p̄2 = p(v1|v2, v2 + v3).

Note that in comparison with p1 and p2, 0 has been replaced by v1 and then the other two
vi have been renumbered. In this case the limiting PDE is ∂ui/∂t = (1/2d)∆u + φi

D(u)
where

φi
D(u) = p̄1φ

i
R(u) + p̄2

∑
j 6=i

uiuj(Gi,i −Gj,i +Gi,j −Gj,j)

− (1/κ)p(v1|v2)
∑
j 6=i

uiuj(Gi,j −Gj,i). (5.3)

Again see Section 12 for a proof. The first two terms are the ones in (5.2). The similarity
is not surprising since the numerators of the flip rates in (3.5) are the flip rates in (3.3).
The third term comes from the denominator in (3.5). Formula (4.9) implies that

2p(v1|v2, v2 + v3) = (1 + 1/κ)p(v1|v2)− p(v1|v2|v2 + v3),

so it is enough to know the two probabilities on the right-hand side.
As in the Birth-Death case, if we let

Āi,j =
p̄2

p̄1
(Gi,i +Gi,j −Gj,i −Gj,j)−

p(v1|v2)
κp̄1

(Gi,j −Gj,i),

then φD
i (u) is p̄1 times the RHS of the replicator equation for Ā+G. Again, Ohtsuki and

Nowak [28] have a similar result for the ODE resulting from the pair approximation. In
their case the perturbing matrix, see their (23), is

1
κ− 2

(Gi,i +Gi,j −Gj,i −Gj,j)−
κ

(κ+ 1)(κ− 2)
(Gi,j −Gj,i).

This time the connection is not exact, since under the pair approximation

p(v1|v2)
κp̄1

=
p(v1|v2)

κp(v1|v2|v2 + v3)
=

1
κp(v2|v2 + v3)

=
κ− 1

κ(κ− 2)
.

EJP 0 (2012), paper 0.
Page 14/66

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Spatial evolutionary games

6 Two strategy games

We now consider the special case of a 2× 2 games.

1 2
1 α β

2 γ δ

(6.1)

Let u denote the frequency of strategy 1. In a homogeneously mixing population, u
evolves according to the replicator equation (5.1):

du

dt
= u{αu+ β(1− u)− u[αu+ β(1− u)]− (1− u)[γu+ δ(1− u)]}

= u(1− u)[β − δ + Γu] ≡ φR(u) (6.2)

where we have introduced Γ = α− β − γ + δ. Note that φR(u) is a cubic with roots at 0
and at 1.if there is a fixed point in (0, 1) it occurs at

ū =
β − δ

β − δ + γ − α
(6.3)

Using results from the previous section gives the following.

Birth-Death dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u+ φB(u) where φB(u) is
the RHS of the replicator equation for the game(

α β + θ

γ − θ δ

)
(6.4)

and θ = (p2/p1)(α+ β − γ − δ).

Death-Birth dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u+ φD(u) where φD(u) is
the RHS of the replicator equation for the game in (6.4) but now

θ = (p̄2/p̄1)(α+ β − γ − δ)− (p(v1|v2)/κp̄1)(β − γ).

6.1 Analysis of 2× 2 games

Suppose that the limiting PDE is ∂u/∂t = (1/2d)∆u + φ(u) where φ is a cubic with
roots at 0 and 1. There are four possibilities

S1 ū attracting φ′(0) > 0, φ′(1) > 0
S2 ū repelling φ′(0) < 0, φ′(1) < 0
S3 φ < 0 on (0, 1) φ′(0) < 0, φ′(1) > 0
S4 φ > 0 on (0, 1) φ′(0) > 0, φ′(1) < 0

To see this, we draw a picture. For convenience, we have drawn the cubic as a piecewise
linear function.

S1 �
�@

@
@��

�
- S2

@@�
�
�@@�
-

S3 HH
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��
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We say that i’s take over if for all L

P (ξs(x) = i for all x ∈ [−L,L]d and all s ≥ t) → 1 as t→∞.

Let Ω0 = {ξ :
∑

x ξ(x) = ∞,
∑

x(1 − ξ(x)) = ∞} be the configurations with infinitely
many 1’s and infinitely many 0’s. We say that coexistence occurs if there is a station-
ary distribution ν for the spatial model with ν(Ω0) = 1. The next result follows from
Theorems 1.4 and 1.5 in [56]. The PDE assumptions and the other conditions can be
checked as in the arguments in Section 1.4 of [56] for the Lotka-Volterra system.

Theorem 6.1. If ε < ε0(G), then:
In case S3, 2’s take over. In case S4, 1’s take over.
In case S2, 1’s take over if ū < 1/2, and 2’s take over if ū > 1/2.
In case S1, coexistence occurs. Furthermore, if δ > 0 and ε < ε0(G, δ) then any station-
ary distribution with ν(Ω0) = 1 has

sup
x
|ν(ξ(x) = 1)− ū| < δ.

We write i � j if strategy i dominates strategy j, i.e., it gives a strictly larger payoff
against every reply. To begin to apply Theorem 6.1, we note that if φ is the RHS of the
replicator equation for the game matrix in (6.1) then the cases are:

β > δ β < δ

α < γ S1. Coexistence S3. 2 � 1
α > γ S4. 1 � 2 S2. Bistable

(6.5)

To check S1 we draw a picture.

((((
((((

((((
XXXXXXXXXXXX

0 1u

β

δ

γ

α

When the frequency of strategy 1 is u ≈ 0 then strategy 1 has fitness ≈ β and strategy
2 has fitness ≈ δ, so u will increase. The condition α < γ implies that when u ≈ 1 it will
decrease and the fixed point is attracting. When both inequalities are reversed in S2,
the fixed point exists but is unstable. Finally the second strategy dominates the first in
S3, and the first strategy dominates the second in S4.

6.2 Phase diagram

At this point, we can analyze the spatial version of any two strategy game. In the
literature on 2 × 2 games it is common to use the following notation for payoffs, which
was introduced in the classic paper by Axelrod and Hamilton [4].

C D
C R S

D T P

Here T = temptation, S = sucker payoff, R = reward for cooperation, P = punishment
for defection. If we assume, without loss of generality, that R > P then there are 12
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Figure 1: Phase diagram from Hauert’s simulations

possible orderings for the payoffs. However, from the viewpoint of Theorem 6.1, there
are only four cases.

Hauert [22] simulates spatial games with R = 1 and P = 0 for a large number of
values of S and T . He considers three update rules: (a) switch to the strategy of the
best neighbor, (b) pick a neighbor’s strategy with probability proportional to the differ-
ence in scores, and (c) pick a neighbor’s strategy with probability proportional to its
fitness, or in our terms Death-Birth updating. He considers discrete and continuous
time updates using the von Neumann neighborhood (four nearest neighbors) and the
Moore neighborhood (which also includes the diagonally adjacent neighbors). The pic-
ture most relevant to our investigation here is the graph in the lower left corner of his
Figure 5, reproduced here as Figure 1, which shows equilibrium frequencies of the two
strategies in continuous time for update rule (c) on the von Neumann neighborhood.
Similar pictures can be found in the work of Roca, Cuesta, and Sanchez [33, 34].

Our situation is different from his, since the games we consider are small perturba-
tions of the voter model game 1, but as we will see, the qualitative features of the phase
diagrams are the same. Under either update the game matrix changes to

C D
C α = R β = S + θ

D γ = T − θ δ = P

Birth-Death updating. In this case

θ =
p2

p1
(R+ S − T − P ) (6.6)

We will now find the boundaries between the four cases using (6.5). Letting λ = p2/p1 ∈
(0, 1), we have α = γ when

R− T = −θ = −λ(R+ S − T − P )
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Rearranging gives λ(S − T ) = (1 + λ)(T −R), and we have

T −R =
λ

λ+ 1
(S − P ) (6.7)

Repeating this calculation shows that β = δ when

T −R =
λ+ 1
λ

(S − P ) (6.8)

This leads to the four regions drawn in Figure 2. Note that the coexistence region is
smaller than in the homogeneously mixing case.

In the coexistence region, the equilibrium is

ū =
S − P + θ

S − P + T −R
(6.9)

Plugging in the value of θ from (6.6) this becomes

ū =
(1 + λ)(S − P ) + λ(R− T )

S − P + T −R
(6.10)

Note that in the coexistence region, ū is constant on lines through (S, T ) = (P,R).
In the lower left region where there is bistability, 1’s win if ū < 1/2 or what is the

same if strategy 1 is better than strategy 2 when u = 1/2, that is,

R+ S + θ > T − θ + P

Plugging in the value of θ this becomes (1 + 2λ)(R+ S − T − P ) > 0 or

R− T > P − S. (6.11)

Writing this as R+S > T+P , we see that the population converges to strategy 1 when it
is “risk dominant”, a term introduced by Harsanyi and Selten [6]. Note that bistablity in
the replicator equation disappears in the spatial model, an observation that goes back
to Durrett and Levin [16].

Death-Birth updating. The phase diagram is similar to that for Birth-Death up-
dating but the regions are shifted over in space. Since the algebra in the derivation
is messier, we state the result here and hide the details away in Section 13. If we let
µ = p̄2/p̄1, ν = p(v1|v2)/κp̄1,

P ∗ = P − ν(R− P )
1 + 2(µ− ν)

, R∗ = R+
ν(R− P )

1 + 2(µ− ν)
,

and let λ = µ− ν, then the two lines α = γ and β = δ can be written as

T −R∗ =
λ

1 + λ
(S − P ∗) and T −R∗ =

1 + λ

λ
(S − P ∗).

This leads to the four regions drawn in Figure 3. In the coexistence region, the equi-
librium ū is constant on lines through (S, T ) = (R∗, P ∗). In the lower left region where
there is bistability, 1’s win if

R∗ − T > P ∗ − S.

Even though Hauert’s games do not have weak selection, there are many similarities
with Figure 1. The equilibrium frequencies are linear in the coexistence region, and
in the lower left, the equilibrium state goes from all 1’s to all 2’s over a very small
distance.
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Figure 2: Phase diagram for Birth-Death Updating.

6.3 Tarnita’s formula

Tarnita et al. [35] say that strategy C is favored over D in a structured population,
and write C > D, if the frequency of C in equilibrium is > 1/2 in the game Ḡ = 1 + wG

when w is small. Assuming that

(i) the transition probabilities are differentiable at w = 0,

(ii) the update rule is symmetric for the two strategies, and

(iii) strategy C is not disfavored in the game given by the matrix

C D

C 0 1
D 0 0

they argued that

I. C > D is equivalent to σR + S > T + σP where σ is a constant that only depends on
the spatial structure and update rule.

By using results for the phase diagram given above, we can show that

Theorem 6.2. I holds for the Birth-Death updating with σ = 1 and for the Death-Birth
updating with σ = (κ+ 1)/(κ− 1).

Proof. For Birth-Death updating it follows from (6.11) that this is the correct condition
in the bistable quadrant. By (6.10), in the coexistence quadrant,

ū =
(1 + λ)(S − P ) + λ(R− T )

S − P + T −R

Cross-multiplying we see that ū > 1/2 when we have

0 < (1/2 + λ)(S − P ) + (λ+ 1/2)(R− T ) = (1/2 + λ)(R+ S − T − P )
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Figure 3: Phase diagram for Death-Birth Updating.

Thus in both quadrants the condition is R + S > T + P . The proof of the formula for
Death-Birth updating is similar but requires more algebra, so again we hide the details
away in Section 13. Since the derivation of the formula from the phase diagram in the
Death-Birth case is messy, we also give a simple self-contained proof of Theorem 6.2 in
this case.

6.4 Concrete examples

In this, we present calculations for concrete examples to complement the general
conclusions from the phase diagram. Before we begin, recall that the original and
modified games are

C D

C R S

D T P

C D

C α = R β = S + θ

D γ = T − θ δ = P

where θ = (p2/p1)(R+ S − T − P ) for Birth-Death updating and

θ =
p̄2

p̄1
(R+ S − T − P )− p(v1|v2)

κp̄1
(S − P )

for Death-Birth updating.

Example 6.3. Prisoner’s Dilemma. As formulated in Example 1.2

C D
C R = b− c S = −c
D T = b P = 0

Under either updating the matrix changes to
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C D
C α = b− c β = −c+ θ

D γ = b− θ δ = 0

In the Birth-Death case, θ = (p2/p1)(b − c − c − b) = −2cp2/p1. In this modified game
Γ = α − β − γ + δ = 0 and β − δ < 0 so recalling φR(u) = u(1 − u)[β − δ + Γu], the
cooperators always die out. Under Death-Birth updating

θ = −2c
p̄2

p̄1
− (−c− b)

p(v1|v2)
κp̄1

.

Again Γ = 0 so the victor is determined by the sign of

p̄1(β − δ) = −cp̄1 − 2cp̄2 + (c+ b)
p(v1|v2)

κ

Identity (4.9) implies that 2p̄2 + p̄1 = p(v1|v2)(1 + 1/κ) so cooperators will persist if

(−c+ b/κ)p(v1|v2) > 0.

Since p(v1|v2) > 0 the condition is just b/c > κ giving a proof of the result of Ohtsuki
et al. [29], which has already appeared as Corollary 1.14 in Cox, Durrett, and Perkins
[56].

Example 6.4. Nowak and May [11] considered the “weak” Prisoner’s Dilemma game
with payoff matrix:

C D
C R = 1 S = 0
D T = b P = 0

As you can see from Figure 3, if Death-Birth updating is used, these games will show
a dramatic departure from the homogeneously mixing case. Nowak and May used “im-
itate the best dynamics” so the process was deterministic and there are only finitely
many different evolutions. See Section 2.1 of [12] for locations of the transitions and
pictures of the various cases. When 1.8 < b < 2, if the process starts with a single
D in a sea of C’s, and color the sites based on the values of (ξn−1(x), ξn(x)) a kalei-
doscope of Persian carpet style patterns results. As Huberman and Glance [13] have
pointed out, these patterns disappear if asynchronous updating is used. However, work
of Nowak, Bonhoeffer and May [14, 15] showed that their conclusion that spatial struc-
ture enhanced cooperation remained true with stochastic updating or when games were
played on random lattices.

Example 6.5. The Harmony game has P < S and T < R. In this game strategy 1
dominates strategy 2, but in contrast to Prisoner’s dilemma the payoff for the outcome
(C,C) is the largest in the matrix. Licht [75] used this game to explain the proliferation
of MOUs (memoranda of understanding) between securities agencies involved in inter-
national antifraud regulation. From Figures 2 and 3, we see that in the spatial model
cooperators take over the system.

Example 6.6. Snowdrift game. In this game, two motorists are stuck in their cars on
opposite sides of a snowdrift. They can get out of their car and start shoveling (C) or
do nothing (D). The payoff matrix is

C D
C R = b− c/2 S = b− c

D T = b P = 0
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That is, if both players shovel then the work is cut in half, but if one player cooperates
and the other defects then the C player gains the benefit of sleeping in his bed rather
than in his car.

The story behind the game makes it sound frivolous, however, in a paper published
in Nature [32], the snowdrift game has been used to study “facultative cheating in
yeast.” For yeast to grow on sucrose, a disaccharide, the sugar has to be hydrolyzed,
but when a yeast cell does this, most of the resulting monosaccharide diffuses away.
None the less, due to the fact that the hydrolyzing cell reaps some benefit, cooperators
can invade a population of cheaters.

If b > c then the game has a mixed strategy equilibrium, which by (6.3) is

S − P

S − P + T −R
=

b− c

b− (c/2)

Under either update rule the modified payoff becomes

C D
C b− c/2 b− c+ θ

D b− θ 0

and using (6.3) again the equilibrium changes to

ū =
S − P + θ

S − P + T −R
=
b− c+ θ

b− (c/2)

assuming that this stays in (0, 1). If this ū > 1, then 1 becomes an attracting fixed point;
if ū < 0, then 0 is attracting.

If θ > 0 then spatial structure enhances cooperation. If we use Birth-Death updating:

θ =
p2

p1
(R+ S − T − P ) =

p2

p1
(b− 3c/2)

If we use Death-Birth updating:

θ =
p̄2

p̄1
(R+ S − T − P )− p(v1|v2)

κp̄1
(S − P )

=
p̄2

p̄1
(b− 3c/2)− p(v1|v2)

κp̄1
(b− c)

Hauert and Doebeli [23] have used simulation to show that spatial structure can inhibit
the evolution of cooperation in the snowdrfit game. One of their examples has R = 1,
S = 0.38, T = 1.62, and P = 0 in which case θ < 0 for both update rules. At the end of
their article they conclude that “space should benefit cooperation for low cost to benefit
ratios,” which is consistent with our calculation. For more discussion of the contrasting
effects on cooperation in Prisoner’s Dilemma and Snowdrift games, see the review by
Doebeli and Hauert [26].

Example 6.7. Hawk-dove game. As formulated in Example 1.1 the payoff matrix is

Hawk Dove
Hawk (V − C)/2 V

Dove 0 V/2

Killingback and Doebeli [17] studied the spatial version of the game and set V = 2,
β = C/2 to arrive at the payoff matrix

Hawk Dove
Hawk 1− β 2
Dove 0 1
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We will assume β > 1. In this case, (6.3) implies that the equilibrium mixed strategy
plays Hawk with probability ū = 1/β. To put this game into our phase diagram we need
to label the Dove strategy as Cooperate and the Hawk strategy as Defect:

C D
C R = 1 S = 0
D T = 2 P = 1− β

Under either of our update rules the payoff matrix changes to

H D
H 1− β 2 + θ

D −θ 1

where θ = (p2/p1)(2− β) in the Birth-Death case and

θ =
p̄2

p̄1
(2− β)− p(v1|v2)

κp̄1
· 1

for Death-Birth updating. In both cases the frequency of Hawks in equilibrium is

uH =
S − P + θ

S − P + T −R

see (6.9) and (13.6) below. In one of Killingback and Doebeli’s favorite cases, β = 2.2,
both of these terms are negative in the death-birth case, so the frequency of Hawks in
equilibrium is reduced, in agreement with their simulations.

While the conclusions may be similar, the updates used in the models are very differ-
ent. In [17], a discrete time dynamic (“synchronous updating”) was used in which the
state of a cell at time t+ 1 is that of the eight Moore neighbors with the best payoff. As
in the pioneering work of Nowak and May [11] this makes the system deterministic and
there are only finitely many different behaviors as β is varied with changes at β passes
through 9/7, 5/3, 2, and 7/3. Figure 1 in [17] shows spatial chaos, i.e., the dynamics
show a sensitive dependence on initial conditions. For more on this see [18]. In con-
tinuous time with small selection our results predict that as long as the mixed strategy
equilibrium is preserved in the perturbed game we will get coexistence of Hawks and
Doves in an equilibrium with density of Hawks and Doves close to that predicted by the
perturbed game matrix.

Example 6.8. The Battle of the Sexes is another game that leads to an attracting
fixed point in the replicator equation. The story is that the man wants to go to a sporting
event while the woman wants to go to the opera. In an age before cell phones they
make their choices without communicating with each other. If C is the choice to go to
the other person’s favorite and D is go to your own then the game matrix might be

C D
C R = 0 S = 1
D T = 2 P = −1

In Hauert’s scheme this case is defined by T > S > R > P in contrast to the inequalities
T > R > S > P for the snowdrift game, and Hawks-Doves.

Despite the difference in the inequalities the results are very similar. Again in either
case the modified payoffs in this particular example are

C D
C α = 0 β = 1 + θ

D γ = 2− θ δ = −1
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Under Birth-Death updating θ = 0 since R + S − T − P = 0, while for Death-Birth
updating

θ = −2p(v1|v2)
κp̄1

< 0.

Since the equilibrium changes to

ū =
S − P + θ

S − P + T −R

spatial structure inhibits cooperation.

Example 6.9. Stag Hunt. As formulated in Example 1.3,

Stag Hare
Stag R = 3 S = 0
Hare T = 2 P = 1

In Hauert’s scheme this case is defined by the inequalities R > T > P > S. Since
R > T and P > S, we are in the bistable situation. Returning to the general situation in
either case the modified payoffs in this particular example are

C D
C α = R β = S + θ

D γ = T − θ δ = P

If R+ S > T + P then θBD > 0 while for Death-Birth updating

θDB = θBD + (P − S)
p(v1|v2)
κp̄1

> 0.

So the 1’s win out. If R + S < T + P then θBD < 0 so the 2’s win, but θDB may be
positive or negative.

Under Birth-Death updating the winner is always the risk dominant strategy, and
under Death-Birth updating it often is. This is consistent with results in the economics
literature. See Kandori, Mailath, and Rob [74], Ellison [65] and Blume [52]. Blume uses
a spatially explicit model with a log-linear strategy revision, which turns the system into
an Ising model.

7 ODEs for the three strategy games

In this section we will prove results for the replicator equation in order to prepare
for analyzing examples in Section 9. For simplicity, we will assume the game is written
with zeros on the diagonal. For the replicator equation and for the spatial model with
Birth-Death updating, this entails no loss of generality.

G =
0 α3 β2

β3 0 α1

α2 β1 0
(7.1)

Here we have numbered the entries by the strategy that is left out in the corresponding
2× 2 game. It would be simpler to put the α’s above the diagonal and the β’s below but
(i) this scheme simplifies the statement of Theorem 7.6 and (ii) this pattern of α’s and
β’s is unchanged by a cyclic permutation of the strategies

2 3 1
2 0 α1 β3

3 β1 0 α2

1 α3 β2 0
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It is not hard to check that in general if the game G in (7.1) has an interior fixed
point it must be:

ρ1 = (β1β2 + α1α3 − α1β1)/D

ρ2 = (β2β3 + α2α1 − α2β2)/D (7.2)

ρ3 = (β3β1 + α3α2 − α3β3)/D

where D is the sum of the three numerators. Conversely if the ρi > 0 then this is an
interior fixed point. See Section 14 for details.

7.1 Special properties of replicator equations

To study replicator equations it is useful to know some of the existing theory. To
keep our treatment self-contained we will prove many of the results we need. Our first
two result are for n strategy games.

7.1.1 Projective transformation

Theorem 7.1. Trajectories ui(t) of the replicator equation for G are mapped onto tra-
jectories vi(t) for the replicator equation for Ĝij = Gij/mj by vi = uimi/

∑
k ukmk.

This comes from Exercise 7.1.3 in [7]. We will use this in the proof of Theorem 7.6 to
transform the game so that αi + βi constant. Another common application is to choose
mi = ρ−1

i where the ρi are the coordinates of the interior equilibrium in order to make
the equilibrium uniform.

Proof. To prove this note that

dvi

dt
=

uimi∑
k ukmk

∑
j

Gijuj −
∑
j,k

ujGj,kuk


− uimi

(
∑

k ukmk)2
∑

`

u`m`

∑
j

G`,juj −
∑
j,k

ujGj,kuk


The second terms on the two lines cancel leaving us with

=
uimi∑
k ukmk

∑
j

Gijuj −
∑

`

u`m`∑
k ukmk

G`,juj


=

(∑
k

ukmk

)
vi

∑
j

Gij

mj
vj −

∑
`

v`
G`,j

mj
vj


The factor

∑
k ukmk is a time change, so we have proved the desired result.

7.1.2 Reduction to Lotka-Volterra systems

We begin with the “quotient rule”

d

dt

(
ui

un

)
=
(
ui

un

)
[(Gu)i − (Gu)n] (7.3)
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Proof. Using the quotient rule of calculus,

d

dt

(
ui

un

)
=

1
un
ui[(Gu)i − uTGu]− ui

u2
n

un[(Gu)n − uTGu]

=
(
ui

un

)
[(Gu)i − (Gu)n]

which proves the desired result.

Theorem 7.2. The mapping vi = ui/un sends trajectories ui(t), 1 ≤ i ≤ n, of the
replicator equation

dui

dt
= ui[(Gu)i − uTGu]

onto the trajectories vi(t), 1 ≤ i ≤ n− 1, of the Lotka-Volterra equation

dvi

dt
= vi

ri +
n−1∑
j=1

Bijvj


where ri = Gi,n −Gn,n and Bij = Gi,j −Gn,j .

Proof. By subtracting Gn,j from the jth column, we can suppose without loss of gener-
ality that the last row is 0. By the quotient rule (7.3) and the fact that vi = ui/un

v′i = vi[(Gu)i − (Gu)n] = vi

n∑
j=1

Gi,jvjun

= unvi

Gi,n +
n−1∑
j=1

Gi,jvj


The factor un corresponds to a time change so the desired result follows.

Theorem 7.2 allows us to reduce the study of the replicator equation for three strat-
egy games to the study of two species Lotka-Volterra equation:

dx/dt = x(a+ bx+ cy)

dy/dt = y(d+ ex+ fy) (7.4)

If we suppose that bf − ce 6= 0 then the right-hand side is 0 when

x∗ =
dc− fa

bf − ce
y∗ =

ea− bd

bf − ce
(7.5)

Suppose for the moment that x∗, y∗ > 0. If we have an ODE

dx/dt = F (x, y) dy/dt = G(x, y)

with a fixed point at (x∗, y∗), then linearizing around the fixed point and setting X =
x− x∗ and Y = y − y∗ gives

dX

dt
=
∂F

∂x
X +

∂F

∂y
Y

dY

dt
=
∂G

∂x
X +

∂G

∂y
Y
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In the case of Lotka-Volterra systems this is:

dX/dt = x∗(bX + cY )

dY/dt = y∗(eX + fY )

In ecological competitions it is natural to assume that b < 0 and f < 0 so that the
population does not explode when the other species is absent. In this case the trace of
the linearization, which is the sum of the eigenvalues is x∗b+y∗f < 0. The determinant,
which is the product of the eigenvalues is x∗y∗(bf − ce), so the fixed point will be locally
attracting if bf−ec > 0. The next result was proved by Goh [68] in 1976, but as Harrison
[72] explains, it has been proved many times, and was known to Volterra in 1931.

Theorem 7.3. Suppose b, f < 0, bf − ec > 0, and x∗, y∗ > 0, which holds if dc− fa > 0
and ea− bd > 0. If A,B > 0 are chosen appropriately then

V (x, y) = A(x− x∗ log x) +B(y − y∗ log y)

is a Lyapunov function for the Lotka-Volterra equation, i.e., it is decreasing along solu-
tions of (7.4), and hence x∗, y∗ is an attracting fixed point.

Proof. A little calculus gives

dV

dt
= A(x− x∗)(a+ bx+ cy) +B(y − y∗)(d+ ex+ fy)

= Ab(x− x∗)2 + (Ac+Be)(x− x∗)(y − y∗) +Bf(y − y∗)2 (7.6)

since a = −bx∗ − cy∗ and d = −ex∗ − fy∗.
If c and e have different signs then we can choose A/B = −e/c, so that Ac+ Be = 0

and
dV

dt
= Ab(x− x∗)2 +Bf(y − y∗)2

Ab and Bf are negative so V is a Lyapunov function.
To deal with the case ce > 0, we write (7.6) as

1
2
(X,Y )Q

(
X

Y

)
where Q =

(
2Ab Ac+Be

Ac+Be 2Bf

)
We would like to arrange things so that the symmetric matrix Q is negative definite,
i.e., both eigenvalues are negative. The trace of Q, which is the sum of the eigenvalues
is Ab+Bf < 0. The determinant, which is the product of the eigenvalues, is

4ABbf − (A2c2 + 2ABce+B2e2) = 4AB(bf − ce)− (Ac−Be)2

To conclude both eigenvalues are negative, we want to show that the determinant is
positive. We have assumed bf − ce > 0. To deal with the second term we choose A,B so
that Ac−Be = 0.

Finally, we have to consider the situation ce = 0. We can suppose without loss of
generality that e = 0. In this case the determinant is A[4Bbf − Ac2] with bf > 0 so if
A/B is small this is positive.

It follows from Theorem 7.2 that

V̄ (u1, u2, u3) = A

(
u1

u3
− x∗ log

u1

u3

)
+B

(
u2

u3
− y∗ log

u2

u3

)
is a Lyapunov function for the replicator equation. Unfortunately for our purposes, it is
not convex near the boundary.
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7.2 Classifying three strategy games

To investigate the asymptotic behavior of the replicator equation in three strategy
games, we will use a technique we learned from mathematical ecologists [59]. We begin
by investigating the three two-strategy sub-games. When the game is written with 0’s
on the diagonal it is easy to determine the behavior of the 1 vs. 2 subgame. The mixed
strategy equilibrium, if it exists, is given by(

β3

α3 + β3
,

α3

α3 + β3

)
(7.7)

In equilibrium both types have fitness α3β3/(α3 + β3). There are four cases:

• α3, β3 > 0, attracting (stable) mixed strategy equilibrium.

• α3 > 0, β3 < 0, strategy 1 dominates strategy 2, or 1 � 2.

• α3 < 0, β3 > 0, strategy 2 dominates strategy 1, or 2 � 1.

• α3, β3 < 0, repelling (unstable) mixed strategy equilibrium unstable.

Note that here the word stable refers only to the behavior of the replicator equation on
the edge.

Our main technique for proving coexistence in the spatial game is to show the exis-
tence of a repelling function for the replicator equation associated with the (modified)
game. (See Section 8.1 for the definition.) A repelling function will not exist if on one
of the edges there is an unstable mixed strategy equilibrium, so we will ignore games
that have them. As the reader will soon see, if an edge, say u3 = 0, has a stable mixed
strategy equilibrium, we will also need to determine if the third strategy can invade:
i.e., if u1, u2 is close to the boundary equilibrium then u3 will increase.

Bomze [53] drew 46 phase portraits to illustrate the possible behaviors of the repli-
cator equation. A follow up paper twelve years later, [54], corrected the examples
associated with five of the cases and add two more pictures. Bomze considered situa-
tions in which an entire edge consists of fixed points or there was a line of fixed points
connecting two edge equilibria. Here, we will restrict our attention to “generic” cases
that do not have these properties. We approach the enumeration of possibilities by con-
sidering the number of stable edge fixed points, which can be 3, 2, 1, or 0, and then the
number of these fixed points that can be invaded.

7.2.1 Three edge fixed points

Here, and in the next three subsections, we begin with the example with an attracting
interior equilibrium. In this and the next two subsections this is the case in which all
edge fixed points can be invaded.

Example 7.1. Three stable invadable edge fixed points. (Bomze #7) If we as-
sume that all αi, βi > 0 (for notation see (7.1)), then there are three stable boundary
equilibria. We assume that in each case, the third strategy can invade the equilibrium.
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The 2 vs. 3 subgame has a mixed strategy equilibrium at

(p23, q23) =
(

α1

α1 + β1
,

β1

α1 + β1

)
.

Each strategy has fitness α1β1/(α1 +β1) at this point, so 1’s can invade this equilibrium
if

α3 ·
α1

α1 + β1
+ β2 ·

β1

α1 + β1
>

α1β1

α1 + β1
(7.8)

which we can rewrite as
α3α1 + β2β1 − α1β1 > 0 (7.9)

The invadability condition (7.9) implies that the numerator of ρ1 in (7.2) is positive.
The 1 vs. 3 subgame has a mixed strategy equilibrium at

(p13, q13) =
(

β2

α2 + β2
,

α2

α2 + β2

)
.

Each strategy has fitness α2β2/(α2 +β2) at this point, so 2’s can invade this equilibrium
if

β3 ·
β2

α2 + β2
+ α1 ·

α2

α2 + β2
>

α2β2

α2 + β2
(7.10)

which we can rewrite as
β2β3 + α1α2 − α2β2 > 0 (7.11)

The invadability condition (7.11) implies that the numerator of ρ2 given in (7.2) is posi-
tive.

The 1 vs. 2 subgame has a mixed strategy equilibrium at

(p12, q12) =
(

α3

α3 + β3
,

β3

α3 + β3

)
.

Each strategy has fitness α3β3/(α3 +β3) at this point, so 3’s can invade this equilibrium
if

α2 ·
α3

α3 + β3
+ β1 ·

β3

α3 + β3
>

α3β3

α3 + β3
(7.12)

which we can rewrite as
α2α3 + β1β3 − α3β3 > 0 (7.13)

The invadability condition (7.13) implies that the numerator of ρ3 in (7.2) is positive.
Combining the last three results we see that there is an interior equilibrium. To

apply Theorem 7.3, note that this game transforms into the Lotka-Volterra equation:

dx/dt = x[β2 − α2x+ (α3 − β1)y]

dy/dt = y[α1 + (β3 − α2)x− β1y] (7.14)
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with an interior equilibrium x∗, y∗ > 0. Clearly, b, f < 0. To check bf − ec > 0 we note
that by (7.13)

bf − ce = α2β1 − (α3 − β1)(β3 − α2)

= α2α3 + β1β3 − α3β3 > 0

which is the condition for ρ3 > 0.
For future reference note that if bf − ce > 0 and there is interior fixed point then

(7.5) implies
dc− fa > 0 and ea− bd > 0

Plugging in the coefficients, these conditions become

0 < α1(α3 − β1) + β1β2 = β1β2 + α1α3 − α1β1

0 < β2(β3 − α2) + α1α2 = β2β3 + α2α1 − α2β3

i.e., the numerators of ρ1 and ρ2 are positive.

Example 7.1A. If only TWO of the edge fixed points are invadable, then the numerator
of one of the ρi will be negative while the other two are positive, so there is no interior
equilibrium. Bomze #35 shows that the system will converge to the noninvadable fixed
point. We can prove this by transforming to a Lotka-Volterra equation. Since that
argument will also cover Example 7.2A, we will wait until then to give the details.
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Lemma 7.4. It is impossible to have a game with three stable edge fixed points and
have ONE or ZERO of them are invadable.

Proof. Suppose that 1 cannot invade the 2, 3 equilibrium and that 2 cannot invade the
1, 3 equilibrium. By making a projective transformation, see Theorem 7.1, we can sup-
pose the αi = 1. The failure of the two invadabilities implies that the numerators of ρ1

and ρ2 are negative:

β1β2 + 1 < β1

β2β3 + 1 < β2

Since the βi > 0 the second equation implies β2 > 1 and hence the first inequality is
impossible.

7.2.2 Two edge fixed points

Example 7.2. Two stable invadable edge fixed points. (Bomze #9) If we suppose
α2, β2 > 0, α1, β1 > 0 and 1 � 2 (α3 > 0 > β3) then there are two stable edge equilibria.
In words all entries are positive except for β3. Again, we assume that the two edge
equilibria can be invaded.
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By the reasoning in Example 7.1, if the 2’s can invade the 1, 3 equilibrium then the
numerator of ρ2 given in (7.2) is positive., and if 1’s can invade the 2, 3 equilibrium then
the numerator of ρ1 in (7.2) is positive. In the numerator of ρ3, α3α2 > 0 and −α3β3 > 0,
but β3β1 < 0. It does not seem to be possible to prove algebraically that

β3β1 + α3α2 − α3β3 > 0

In Section 8.3, we will show that in this class of examples there is a repelling function.
This will imply that trajectories cannot reach the boundary, so the existence of a fixed
point follows from Theorem 7.2 and the next result which is Theorem 5.2.1 in [7]. Here,
an ω-limit is a limit of u(tn) with tn →∞,

Theorem 7.5. If a Lotka-Volterra equation has an ω-limit in Γ = {(u1, . . . un) : ui >

0, u1 + · · ·+ un = 1} then it has a fixed point in that set.

Once we know that the fixed point exists it is easy to conclude that it is attracting.
As in Example 7.1 in the associated Lotka-Volterra equation b, f < 0 and the condition
bf − ec > 0 follows from the fact that ρ3 > 0.

Example 7.2A. If only ONE edge fixed point is invadable, then one numerator is pos-
itive and two are negative, so there is no interior equilibrium. Bomze #37 and #38
(which differ only in the dominance relation between 1 and 2) show that in this case the
replicator equation approaches the noninvadable edge fixed point.
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Proof. To prove the claim about the limit behavior of this system and of Example 7.1A,
we transform to a Lotka-Volterra system.
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In the picture the dots are the boundary equilibria. The sloping lines are the null clines
dx/dt = 0, and dy/dt = 0. The absence of an interior fixed point implies that they do
not cross. The invadability conditions and the behavior near (0, 0) imply that dx/dt = 0
lies below dy/dt = 0. Lemma 5.2 in [59] constructs a convex Lyapunov function which
proves convergence to the fixed point on the y axis. Unfortunately, when one pulls
this function back to be a Lyapunov function for the replicator equation, it is no longer
convex.

Example 7.2B. If NEITHER fixed point is invadable, see Bomze #10, there is an interior
saddle point separating the domains of attraction of the two edge equilibria. As we
mentioned in the overview, by analogy with results of Durrett and Levin [16], we expect
that the winner in the spatial game is dictated by the direction of movement of the
traveling wave connecting the two boundary fixed points, but we do not even know how
to prove that the traveling wave exists.
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7.2.3 One edge fixed point

There are several possibilities based on the orientation of the edges on the other two
sides. We begin with the one that leads to coexistence.

Example 7.3. One stable invadable edge fixed point. (Bomze #15). Suppose 3 � 2
(β1 > 0 > α1), 2 � 1 (β3 > 0 > α3), α2, β2 > 0, and 2’s can invade the 1, 3 equilibrium.
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In words, all entries are positive except for α1 and α3. As in the previous two exam-
ples, the fact that 2’s can invade the 1,3 equilibrium implies that the numerator of ρ2 in
(7.2) is positive. The numerator of ρ1 is positive since

β1β2 > 0, α1α3 > 0, −α1β1 > 0

In the numerator of ρ3

β3β1 > 0, α3α2 < 0, −α3β3 > 0

so again we have to resort to the existence of a repelling function proved in Section
8.3 and Theorem 7.5 to prove that this is positive. As in the previous two cases, the
game transforms into the Lotka-Volterra equation given in (7.14). It has b, f < 0, and
the positivity of bf − ce follows from that of the numerator of ρ3, so the fixed point is
globally attracting.

Example 7.3A. Suppose now we reverse the direction of the 2, 3 edge.
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If 2 can invade the 1, 3 equilibrium then 2’s take over the system (Bomze #40).

Proof. We will convert the system to Lotka-Volterra, so it is convenient to relabel things
so that the edge with the stable equilibrium is 1, 2. The behavior of the edges implies
that the sign pattern of the matrix

1 2 3
1 0 + −
2 + 0 −
3 + + 0
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When we convert to a Lotka-Volterra system, we subtract the last row of the matrix from
the other two, and the last column gives us the constants.

dx/dt = x(a+ bx+ cy)

dy/dt = y(d+ ex+ fy)

The sign pattern of the game matrix tells us that a, d, b, f < 0, while c and e can take
either sign. If c < 0 then x decreases to 0, and once it is small enough then y decreases
as well. A similar argument applies if e < 0, and in either case the limit is (0, 0).

� �•�
�
�
�
�
�
�
� dy/dt = 0

QQk?

?

•�
�
�
�
�
�
�
�
dx/dt = 0

J
Ĵ

�
�	

�
�	

Now suppose c, e > 0. Since 3 can invade the 1,2 equilibrium, the numerator of
ρ3 > 0, so referring back to the analysis of (7.14), we see that bf − ec > 0. Using
Theorem 7.3 we see that there cannot be an interior equilibrium or it would be globally
attracting, contradicting the fact that (0,0) is at least locally attracting. Since there is
no interior equilibrium, the null clines dx/dt = 0 and dy/dt = 0 cannot intersect. The
arrows in the diagram show the direction of movement in the three regions. From this
we see that the solution will eventually enter the central region which it cannot leave
and so must converge to (0, 0).

Since there are no boundary equilibria, dx/dt = 0 cannot intersect the x axis and
dy/dt = 0 cannot intersect the y axis, so the line dx/dt = 0 must lie above dy/dt = 0. A
little thought reveals that

in the region dx/dt dy/dt

A = above dx/dt = 0 > 0 < 0
B = below dy/dt = 0 < 0 > 0
C = in between < 0 < 0

Consulting the picture we see that if the trajectory starts in A or B then it will enter C,
and cannot re-enter A or B so it must converge to (0, 0).

Example 7.3B. At first glance it may seem that 2 � 1 and 2 � 3 imply that 2 can invade
the 1, 3 equilibrium. However, 2 � 3, 2 � 1, and the existence of a stable fixed point on
the 1, 3 edge implies only that α1, α3 < 0 while the other six entries are positive. The
example

1 2 3
1 0 −1 3
2 1 0 1
3 3 −1 0
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shows it is possible that 2 is not invadable (Bomze #14). Since 2 is always locally
attracting (look at the middle column of the matrix) there is an interior fixed point,
which is a saddle point. The system is bistable. See the discussion of Example 7.2B for
the conjectured behavior of the spatial game.
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Example 7.3C. If both edges point toward the 1, 3 edge, then the sign pattern in the
matrix is

1 2 3
1 0 + +
2 − 0 −
3 + + 0

Strategy 2 is dominated by each of the other two, so the 2’s die out (Bomze #42),
and the replicator equation will converge to the 1, 3 equilibrium. Let (p13, 0, q13) be the
boundary equilibrium. The proof of Lemma 8.4 will show that if ε is small enough

V (u) = u2 + ε[u1 − p13 log u1 + u3 − q13 log(u3)]

is a convex Lyapunov function, so using Theorem 1.4 in [56] we can show that any
equilibrium has frequencies close to the boundary equilibrium. It should be possible to
show that the 2’s die out, but as in [56] this is much harder than proving coexistence.
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Example 7.3D. Suppose now that 1, 3 cannot be invaded by 2’s. We have already con-
sidered this possibility in Examples 7.3B and 7.3C so we can suppose that the arrows
are in opposite directions. If we transform this example or the previous one to a Lotka-
Volterra system by dropping the third strategy, then we can use Lemma 5.2 in [59] to
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construct a convex Lyapunov function. As in the case of Example 7.3A, it is unfortunate
that (i) this does not pull back to be a convex function for the replicator equation, and
(ii) we cannot generalize the Lyapunov function from the previous example to cover.
Thus we leave it to some reader to show that in the spatial model 2’s will die out leaving
an equilibrium consisting of 1’s and 3’s.
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7.2.4 No edge fixed points

There are 23 = 8 possible orientations for the arrows on the three edges. Two lead to
an interesting situation.

Example 7.4. Rock Paper Scissors. That is, 1 � 2 � 3 � 1, (or 1 � 2 � 3 � 1).
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In the situation drawn we have βi > 0 > αi so the denominator of ρi

βiβj + αiαk − αiβi > 0

and there is an interior fixed point. Theorem 7.7.2 in Hofbauer and Sigmund [7] de-
scribes the asymptotic behavior of the game.

Theorem 7.6. Let ∆ = β1β2β3 +α1α2α3. If ∆ > 0 solutions converge to the fixed point.
If ∆ < 0 their distance from the boundary tends to 0. If ∆ = 0 there is a one-parameter
family of periodic orbits.

Bomze #17 is the case ∆ > 0, while #16 is the case ∆ = 0. He does not give an example
of ∆ < 0 because in his classification he does not distinguish a flow from its reversal.
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Proof. By using the projective transformation in Lemma 7.1 we can make the game
constant sum, i.e., βi +αi = γ. In the constant sum case, if ρi is the interior equilibrium,
V (u) =

∏
i u

ρi

i and u(t) is a solution of the replicator equation then

d

dt
V (u(t)) = V · (ρTGu− uTGu)

= −V · (u− ρ)TGu = −V · (u− ρ)TG(u− ρ)

since (Gρ)i does not depend on i and
∑
ui − ρi = 0. Let ξ = u − ρ. Since Gij +Gji = γ

the above

= −γV (ξ1ξ2 + ξ2ξ3 + ξ3ξ1)

= −γ
2
V
(
(ξ1 + ξ2 + ξ3)2 − (ξ21 + ξ22 + ξ23)

)
= −γ

2
V
∑

i

(ui − ρi)2

In the constant sum case, the sign of γ is the same as the sign of ∆. The gradient

∇V = V ·
(
ρ1

u1
,
ρ2

u2
,
ρ3

u3

)
V has a local maximum on {(u1, u2, u3) : u1 + u2 + u3 = 1}, where ∇V is perpendicular
to the constraint set, so on {(u1, u2, u3) : ui ≥ 0, u1 + u2 + u3 = 1} it is maximized when
ui = ρi.

Example 7.4A. The other six orientations lead to one strategy dominating the other
two (Bomze #43) and taking over the system. Consider now, without loss of generality
the case in which 1 � 2, 1 � 3, and 2 � 3.
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In this case the matrix has the form

2 3 1
2 0 −e −f
3 c 0 −d
1 a b 0

with a, b, c, d, e, f > 0. We have written the matrix this way so we can use Theorem 7.2
to transform into a Lotka-Volterra equation with

dx/dt = x(−f − ax− (e+ b)y)

dy/dt = y(−d+ (c− a)x− by)
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where x = u2/u1 and y = u3/u1. From the equation it is clear that x(t) ↓ 0. If a ≥ c,
y(t) ↓ 0. If a < c then when x < d/(c− a), y is decreasing and will converge to 0.

8 Spatial three strategy games

Recall that we are supposing the game is written in the form.

G =
0 α3 β2

β3 0 α1

α2 β1 0
(8.1)

Since the diagonal entries Gi,i = 0, the reaction terms for both updates have the form

p

φi
R(u) + θ

∑
j

uiuj(Gi,j −Gj,i)


where p = p1 and θ = p2/p1 for Birth-Death updating and for Death-Birth updating
p = p̄1 and

θ =
p̄2 − p(v1|v2)/κ

p̄1

Thus the perturbation matrix Aij = θ(Gi,j − Gj,i), and the limiting reaction-diffusion
equation of interest has the form

∂ui

∂t
=
σ2

2
∆ui + φH(u) (8.2)

where φH is the right-hand side of the replicator equation for the matrix

H =

 0 (1 + θ)α3 − θβ3 (1 + θ)β2 − θα2

(1 + θ)β3 − θα3 0 (1 + θ)α1 − θβ1

(1 + θ)α2 − θβ2 (1 + θ)β1 − θα1 0

 (8.3)

More compactly, the diagonal entries are 0. If i 6= j then Hi,j = (1 + θ)Gi,j − θGj,i.
Here we are interested in how the system behaves in general, so we will forget about

the transformation that turned G into H and assume that H has entries given in (8.1).
However, we will consistently use H for the game matrix to remind ourselves that we
are working with the transformed game, and the results we prove are for 1+ε2G where
G is the original game.

8.1 Repelling functions

The key to our study of spatial games is a result stated in the introduction of [59] as
Proposition 1. Given is an ODE

dui

dt
= fi(u)

A continuous function φ from Γ = {(u1, . . . un) : ui ≥ 0, u1 + · · ·+ un = 1} to [0,∞] is said
to be a repelling function if there are constants 0 ≤M,C <∞ so that

(i) ∂Γ = {u ∈ Γ : φ(u) = ∞},

(ii) for each δ > 0 there is a cδ > 0 so that dφ(u(t))/dt ≤ −cδ whenM + δ < φ <∞,

(iii) φ is convex,

(iv) φ(u) ≤ C
(
1 +

∑k
i=1 log− ui

)
.
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The complication of the cδ is only needed if M = 0, i.e., we are trying to prove conver-
gence to the fixed point of the ODE. IfM > 0 we just check that dφ(u(t))/dt ≤ −c0 when
M < φ <∞. This will be the case in most of our examples.

In addition, we have to assume that there are constants γi for the ODE so that

(v) fi(u) ≥ −γiui.

This always holds for replicator equations.
Consider now the PDE dui/dt = ∆ui + fi(u). From Propositions 1 and 2 of [59] we

get

Theorem 8.1. Suppose a repelling function exists, the initial condition u(0, x) is con-
tinuous and has ui(0, x) ≥ ηi > 0 when |x| ≤ δ. There are constants κ > 0 and t0 < ∞
which only depend on ηi, δ, and η so that φ(u(t, x)) ≤M + η when |x| ≤ κt, t ≥ t0.

Theorem 8.2. Suppose a repelling function exists for the replicator equation for the
modified game H. If ε < ε0(G) then there is a nontrivial stationary distribution for
the spatial game with matrix 1 + ε2G that concentrates on Ω0, the configurations with
infinitely many 1’s, 2’s, and 3’s.

These results were stated in [59] for systems with fast stirring. Perhaps the easiest
way to convince the reader that everything is OK is to use the methods of Durrett and
Neuhauser [63] as explained in Section 9 of Durrett’s St. Flour notes [58]. One begins
with the assumption on the limiting PDE

(?) There are constants Ai < ai < bi < Bi, l and T so that if ui(0, x) ∈ (Ai, Bi) when
x ∈ [−L,L]d then ui(x, T ) ∈ (ai, bi) when x ∈ [−3L, 3L]d.

Theorem 8.1 implies that if we take Ai = ηi small enough then we can find ai and bi < Bi

close to 1 so that (?) holds.
Combining this with the convergence of the rescaled system to the PDE, we can

define a block construction that guarantees that if (m,n) is wet, the density of type i is
≥ ai in 2mL + [−3L, 3L]d at time (n + 1)T . The block event has a probability that goes
to 1 as ε→ 0, and the result follows easily. For more details see Chapter 6 of [56].

8.2 Boundary lemmas

We will construct our repelling function as a sum of functions associated with the
corners and the edges. The results we need are developed in Sections 1 and 2 of [59].
Since that reference is not easily available we will give the details here. The first step
is create corner functions. In the case considered the corner u1 = 0, u2 = 0 is unstable:
u1 and u2 will each increase when they are small and positive.

Lemma 8.3. Suppose that β2, α1 > 0. Let u(t) be a positive solution of the replicator
equation. If η3 is small and g3(u1 + u2) = log−((u1 + u2)/η3) where x− = max{−x, 0}
then dg3(u(t))/dt ≤ −γ3 when 0 < u1 + u2 < η3.

Proof. To begin the calculation, we recall that the replicator equation is

dui

dt
= ui

∑
j

Hijuj − uTHu

 (8.4)

where

uTHu = u1u2(α3 + β3) + u1u3(α2 + β2) + u2u3(α1 + β1). (8.5)
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Calculus tells us that when 0 < u1 + u2 < η3

dg3
dt

=
−1

u1 + u2
·
(
du1

dt
+
du2

dt

)
Recalling that the game matrix is

H =

 0 α3 β2

β3 0 α1

α2 β1 0


The last quantity is

du1

dt
+
du2

dt
= u1(α3u2 + β2u3 − uTHu) + u2(β3u1 + α1u3 − uTHu)

As u1, u2 → 0, uTHu→ 0, so if η3 is small then when u1, u2 < η3 we have

du1

dt
+
du2

dt
≥ u1β2

2
+
u2α1

2

and the desired result follows.

We will soon be drowning in constants. To make sure that the bad constants don’t
get worse when we try to improve the good ones, it is useful to define

CG =
∑

i

|αi|+ |βi| (8.6)

If ui ≥ 0 and u1 + u2 + u3 = 1 then each ui ≤ 1 so

|utHu| ≤ CG (8.7)

The next case to consider is an edge with an attracting fixed point. This is the worst
situation. The function we will construct fails to be decreasing near the end points, but
this can be taken care of using corner functions from Lemma 8.3 or a function from
Lemma 8.5.










J
J
J
J

1 3• �-


 JJ

Lemma 8.4. Suppose that (p13, q13) is an attracting fixed point on the side u2 = 0 and
that the 2’s can invade this equilibrium. Let ψi(u) = (δ2 − ui)+2, i.e., the square of the
positive part. Let u(t) be a positive solution of the replicator equation and let

h2(u) = u1 − p13 log(u1 + u2ψ1(u)) + u3 − q13 log(u3 + u2ψ3(u))− ε log(u2)

If δ2 < 1/4 is chosen small enough then there are positive constants ε2, γ2 so that then
when u2 < δ2, ε ≤ ε2

dh2(u(t))
dt

≤


−γ2 u1, u3 > δ2

4CG u1 ≤ δ2

4CG u3 ≤ δ2

• The 1/4 here is to guarantee that the two diamond shaped bad regions do not
intersect. We only use one constant to keep the geometry of our regions simple.
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• To explain the definition of h2, first consider

h0
2(u) = u1 − p13 log(u1) + u3 − q13 log(u3)− ε log(u2)

To explain the first four terms we note that

(u− p13 log u+ 1− u− q13 log(1− u))′ =
−p13

u
+

q13
1− u

has a minimum when u = p13, so it will be decreasing along solutions of the ODE
on the boundary. The logarithmic divergence of the function near u = 0 and u = 1
keeps dh2/dt bounded away from 0 when |u1−p1,3|, |u3−q1,3| ≥ η > 0. The ε in front
of log(u2) implies that the impact of this term will be felt only near the boundary
fixed point, where the invadability condition will imply h2(u(t)) is decreasing.

• Unfortunately h0
2 is ∞ on the sides u1 = 0 and u3 = 0. To have h2 infinite only

when u2 = 0 we add the terms u2ψi(u) inside the logarithms. For i = 1, 3, since
ψi(u) = 0 when ui ≥ δ2 and we have squared the positive part to make it go to 0
smoothly, the derivative are only changed when ui < δ2.

Proof. We begin by computing dh0
2/dt. From (8.4) and (8.5), it follows that

dh0
2

dt
= (u1 − p13)(α3u2 + β2u3 − uTHu)

+ (u3 − q13)(α2u1 + β1u2 − uTHu)

− ε(β3u1 + α1u3 − uTHu)

The terms that do not have u2 are

= (u1 − p13)[β2u3 − u1u3(α2 + β2)]

+ (u3 − q13)[α2u1 − u1u3(α2 + β2)]

− ε[β3u1 + α1u3 − u1u3(α2 + β2)]

Using the fact that p13 = β2/(α2 + β2) and q13 = α2/(α2 + β2) we can write the above as

=− (α2 + β2)(u1 − p13)2u3 − (α2 + β2)(u3 − q13)2u1

− ε[β3u1 + α1u3 − u1u3(α2 + β2)] (8.8)

The sum of the first two terms is bounded away from 0, when |u1 − p13|, |u3 − q13| ≥ η2,
and u2 ≤ 1/2. When u1 = p13 and u3 = q13 the term in square brackets is > 0 by the
invadability condition (7.10):

β3
β2

α2 + β2
+ α1

α2

α2 + β2
>

β2α2

α2 + β2
= u1u3(α2 + β2)

From this we see that if we choose η2 small then the term in square brackets will be
> 0 when |u1 − p13|, |u3 − q13| ≤ η2. Hence if ε2 is small and ε ≤ ε2 then the expression
in (8.8) is bounded away from 0 when u2 ≤ 1/2.

The terms that have u2 are

u2[(u1 − p13)α3 + (u3 − q13)β1]

− {(u1 − p13) + (u3 − q13)− ε}(u1u2(α3 + β3) + u2u3(α1 + β1))

The absolute value of the last expression is ≤ C2u2, so we have shown that if δ2 is small
then dh0

2 ≤ −γ2 when u2 < δ2.
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This proves the first of our three conclusions. To prove the other two, it is enough
to show

d

dt
|log(u1)− log(u1 + u2ψ1(u))| ≤ 2CG

To do this we note that if 0 < u1 < δ2 the derivative is[
1− u1

u1 + u2ψ1(u)
· (1− 2u2(δ2 − u1))

]
(α3u2 + β2u3 − uTHu)

− u2ψ1(u)
u1 + u2ψ1(u)

·(β3u1 + α1u3 − uTHu)

The two fractions with denominator u1 +u2ψ1(u) lie in (0, 1), so term in square brackets
lies in [−2u2δ2, 1] and the desired result follows from (8.6) and (8.7).

The next case to consider is an edge where one strategy dominates the other (in
their 2× 2 subgame). In the first situation there is no bad region:
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�α2 > 0
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JJ] β1 > 0

Lemma 8.5. Suppose 2 � 1 (α3 < 0 < β3), and α2, β1 > 0. Let u(t) be a positive
solution of the replicator equation and let h3(u) = u1 − ε log(u3). If ε3, δ3, and γ3 are
chosen small enough then dh3(u(t))/dt ≤ −γ3 when u3 < δ3, and ε ≤ ε3.

Proof. Using (8.4) we have

dh3

dt
= u1(α3u2 + β2u3 − uTHu)− ε(α2u1 + β1u2 − uTHu)

Consulting (8.5), we see that the terms that do not involve u3 are:

α3u1u2 − u2
1u2(α3 + β3)− ε(α2u1 + β1u2) + εu1u2(α3 + β3)

= u1u2[α3(1− u1 + ε)− β3(u1 − ε)]− ε(α2u1 + β1u2) (8.9)

If ε is chosen small enough then (here we use α3 < 0 < β3)

(1− u1 + ε)α3 − β3(u1 − ε) = (1− u1)α3 − β3u1 + ε(α3 + β3) ≤ −η1 < 0

for u1 ∈ [0, 1]. In (8.9) this term is multiplied by u1u2 which vanishes when u1 or u2 is
zero Using α2, β1 > 0, the terms that do not involve u3 are

≤ −η1u1u2 − ε(α2u1 + β1u2) ≤ −η2 < 0 (8.10)

when u3 ≤ 1/2. The terms that involve u3 are

u3{u1β2 − (u1 − ε)[u1(α3 + β3) + u2(α1 + β1)]}

The absolute value of the last expression is ≤ CGu3 where CG is defined in (8.6), and
the desired result follows.

In the next result we reverse the condition α2 > 0.

EJP 0 (2012), paper 0.
Page 42/66

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Spatial evolutionary games










J
J
J
J

1 2-





�

α2 ≤ 0
J
JJ] β1 > 0





In this case h2(u(t)) fails to be decreasing near u1 = 1, but this can be counteracted
by using a function from Lemma 8.5 or Lemma 8.6.

Lemma 8.6. Suppose 2 � 1 (α3 > 0 > β3), β1 > 0, and α2 ≤ 0. Let u(t) be a positive
solution of the replicator equation and let h3(u) = u1 − ε log(u3). Given δ2 > 0, we can
pick δ3, ε2, γ3 positive so that if ε ≤ ε2 and u3 ≤ δ3, then

dh3(u(t))
dt

≤

{
−γ3 when u2 ≥ δ2

2CGδ3 when u2 ≤ δ2

where CG is the constant given in (8.6).

Proof. As in Lemma 8.5, the terms with u3 are ≤ CGδ3 while from (8.9) the terms that
do not involve u3 are:

= u1u2[α3(1− u1 + ε)− β3(u1 − ε)]− ε(α2u1 + β1u2)

To bound the first term we note that

α3(1− u1 + ε)− β3(u1 − ε) ≤ (1− u1)α3 − β3u1 + CGε ≤ −η3 < 0

if ε is small. This implies, as in the previous proof, that the terms that do not involve u3

are
≤ −η1u1u2 − ε(α2u1 + β1u2) (8.11)

but this time α2 < 0. Dropping the negative term −εβ1u2 the above

≤ u1(−η1u2 − εα2).

By making ε smaller and then choosing δ3 small there is a constant γ3 > 0 so that

u1(−η1u2 − εα2) + CGδ3 ≤ −γ3

when u2 ≥ δ2. For u2 ≤ δ2 we note that the quantity in (8.11) is ≤ −εα2. If ε ≤ δ3 then

−α2ε+ CGδ3 ≤ 2CGδ3

and we have the desired result.

8.3 Results for three classes of examples

Example 7.1. Three stable invadable boundary fixed points.
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Given k, let i, j = {1, 2, 3} − {k}. Using Lemma 8.3 we can defined corner functions gk

for each corner, which dgk/dt ≤ −γk when ui+uj < ηk. Once this is done we use Lemma
8.4 to construct functions hi for each edge with associated constants δi, which we all
chose all to be equal to δ, and so that 2δ < ηk for each k. This guarantees that the bad
regions for the functions hi which are the small diamonds in the corners are inside the
good regions for some gj . Now pick Mi large enough so that {hi > Mi} ⊂ {ui < δ} and
let h̄i = max{hi,Mi}. If πi are chosen small enough then∑

i

gi +
∑

j

πj h̄j

is a repelling function.

Example 7.2. Two stable invadable boundary fixed points
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We can use Lemma 8.3 on the corner u3 = 1 to produce g3 and Lemma 8.5 to the
side u3 = 0 to get h3. PickM3 so that {h3 > M3} ⊂ {u3 < δ3}. We now apply Lemma 8.4
to the sides u1 = 0 and u2 = 0 with the associated constants δ1 and δ2 chosen so that
the bad regions for these functions are inside the regions where g3 and h3 are strictly
decreasing. Now pickMi, i = 1, 2 large enough so that {hi > Mi} ⊂ {ui < δi}. If π1 and
π2 are chosen small enough then

g3 + h̄3 + π1h̄1 + π2h̄2

is a repelling function.

Example 7.3. One stable invadable fixed point.
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Apply Lemma 8.5 to the side u3 = 0 to get h3. PickM3 so that {h3 > M3} ⊂ {u3 < δ3}.
Use Lemma 8.6 on the side u1 = 0 to get h1 and choose δ1 small enough so that the
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bad region for h1 is inside the region where h3 is strictly decreasing. Pick M1 so that
{h1 > M1} ⊂ {u1 < δ1}. Now apply Lemma 8.4 to the side u2 = 0 and pick δ2 so
that the bad regions for h2 are inside good regions for h1 and h3. Pick M2 so that
{h2 > M2} ⊂ {u2 < δ2}. If we choose π1 small and then choose π2 small then

h̄3 + π1h̄1 + π2h̄2

is a repelling function.

Unfortunately we are not able to prove a result for the rock-paper-scissors case.

8.4 Almost constant sum games

The results in the previous section prove the existence of a stationary distribution
but does not provide much information about the frequencies of the three strategies. If
we can find a Lyapunov function that is strictly decreasing over the whole domain then
we can conclude that when ε is small the frequencies of strategies in the spatial game
are almost the same as those of the equilibrium in the modified replicator equation.
Generalizing the calculation from the proof of Theorem 7.6 we can prove:

Theorem 8.7. Suppose that the three strategy game H has (i) zeros on the diagonal,
(ii) an interior equilibrium ρ, and that H is almost constant sum: Hij +Hji = γ+ηij with
γ > 0 and maxi,j |ηi,j | < γ/2. Then V (u) =

∑
i ui − ρi log ui is a repelling function with

M = 0, i.e., it is always decreasing not just near the boundary. This implies that there
is coexistence and that for any δ > 0 if ε < ε0(δ) and µ is any stationary distribution
concentrating on configurations with infinitely many 1’s, 2’s and 3’s we have

sup
x
|µ(ξ(x) = i)− ρi| < δ

Note that due to the formula for the perturbation (8.3) G is almost constant sum if and
only if H is.

Proof. If u(t) evolves according to replicator equation for H then

dV (u)
dt

=
∑

i

(ui − ρi)

∑
j

Hijuj −
∑
k,j

ukHkjuj


Since

∑
i(ui − ρi) = 0 and

∑
j Hijρj is constant in i,

dV (u)
dt

=
∑
i,j

(ui − ρi)Hi,juj

=
∑
i,j

(ui − ρi)Hi,j(uj − ρj) =
∑
i<j

(ui − ρi)[Hi,j +Hj,i](uj − ρj)

Since 0 = (
∑

i[ui − ρi])2 we have∑
i<j

(ui − ρi)γ(uj − ρj) = −γ
2

∑
i

(ui − ρi)2

To bound the remaining piece we note that |ab| ≤ (a2 + b2)/2 so∑
i<j

|ηij | · |ui − ρi| · |uj − ρj | ≤ max
ij

|ηij |
∑

i

(ui − ρi)2

EJP 0 (2012), paper 0.
Page 45/66

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Spatial evolutionary games

so if maxij |ηij | < γ/2 then V is a convex Lyapunov function. It is not hard to checking
that the other conditions to be a repelling function are satisfied.

Coexistence now follows from Theorem 8.2 for the reasons indicated just after its
statement, but now we must take ai = ρi − δ and bi = ρi + δ, and work a little harder
as in Chapter 6 of [56] to make sure the regions controlled by the block construction
cover most of the space.

8.5 Tarnita’s formula

Tarnita, Wage and Nowak [36] have generalized Theorem 6.2 to games with n > 2
strategies. Theorem 6.2 shows that for two strategy games, their formula for games in
a finite population with weak selection agrees with our analysis of games on the infinite
lattice with small selection. The aim of this section is to show that in the special case of
almost constant sum games the two conditions are different. Their formula is linear in
the coefficients of the game matrix while ours is quadratic.

In [36] a strategy is said to be favored by selection if, in the presence of weak
selection, its frequency is > 1/n. Their main result is that strategy k is favored by
selection if

(σ1ak,k + āk,∗ − ā∗,k − σ1ā∗,∗) + σ2(āk,∗ − ā) > 0 (8.12)

The parameters σ1 and σ2 depend on the population structure, the update rule and the
mutation rate, but they do not depend on the number of strategies or on the entries aij

of the payoff matrix. The coefficients are

ā∗,∗ = (1/n)
n∑

m=1

am,m ā∗,k = (1/n)
n∑

m=1

am,k

āk,∗ = (1/n)
n∑

m=1

ak,m ā = (1/n2)
n∑

`=1

n∑
m=1

a`,m

so the condition in (8.12) is linear in the coefficients.

Remark. A paper that is in preparation will show that for Birth-Death and Death-Birth
updating, strategy k is favored by selection if φk(1/n, . . . , 1/n) > 0.

The almost constant sum games in the previous section are an open set of games
for which we can show that in the small selection limit, the equilibrium frequencies
of the spatial game converges to those of the equilibrium frequencies of the replicator
equation for the modified game. In this situation strategy 1 will be favored by selection
if when we use (7.2) on the modified game

2ρ1 > ρ2 + ρ3 (8.13)

This quantity involves our structural coefficient θ which p2/p1 for Birth-Death updating
and

θ̄ =
p̄2 − p(v1|v2)/κ

p̄1

for Death-Birth updating but due to the formulas for the ρi (7.2) the condition (8.13) is
quadratic in the entries in the game matrix (once we multiply each side of the equation
by the denominator D.

9 Analysis of three strategy cancer games

9.1 Multiple myeloma

We begin with this example since the analysis of the original game is fairly sim-
ple and space can allow coexistence, which is not possible in the replicator equation

EJP 0 (2012), paper 0.
Page 46/66

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Spatial evolutionary games

for the original game. As explained in Example 1.7, the players are osteoclasts (OC),
osteoblasts (OB), and multiple myeloma (MM ) cells, and the payoff matrix is

OC OB MM

OC 0 a b

OB e 0 −d
MM c 0 0

To study the properties of the game we begin with the two strategy games it con-
tains.

1. OC vs. OB. (a/(a+ e), e/(a+ e)) is a mixed strategy equilibrium. Since a, e > 0 it is
attracting (on the OC −OB edge).

2. OC vs. MM. (b/(b + c), c/(b + c)) is a mixed strategy equilibrium. Since b, c are
positive it is attracting (on the OC −OM edge).

3. OB vs. MM.MM dominates OB.

Invadability. As in Section 7, to determine the behavior of the three strategy game, we
will see when the third strategy can invade the other two in equilibrium. Here and what
follows it will be convenient to also refer to strategies by number: 1 = OC, 2 = OB,
3 = MM .

In the OC,OB equilibrium, F1 = F2 = ae/(a + e) while F3 = ca/(a + e) so MM can
invade if β = c/e > 1.

In theOC,MM equilibrium, the fitnesses F1 = F3 = bc/(b+c), while F2 = (eb−dc)/(b+c),
so OB can invade if eb− dc > bc. Letting δ = dc/be, we can write this as

1− dc

be
>
c

e
or β + δ < 1

Since δ > 0, these two conditions β > 1 and β + δ < 1 cannot be satisfied at the same
time. Let

x1 = (a/(a+ e), e/(a+ e), 0) x2 = (b/(b+ c), 0, c/(b+ c))

Thus we have three cases

Case 1. β > 1, x1 can be invaded, while x2 cannot. This is Example 7.2A, so the
replicator equation converges to x1.

Case 2. β < 1, β + δ > 1: Neither x1 nor x2 can be invaded. This is Example 7.2B,
so there is an interior fixed point that is a saddle point, and the replicator equation
exhibits bistability. We leave it to the reader to verify that the interior equilibrium is:

ρ1 =
δ

D
ρ2 =

β(δ + β − 1)
D

ρ3 =
1− β

D

where D is the sum of the numerators.

Case 3. β + δ < 1, x1 cannot be invaded but x2 can. This is Example 7.2A, so the
replicator equation converges to x2.

The modified game has entries

OC OB MM

OC 0 (1 + θ)a− θe (1 + θ)b− θc

OB (1 + θ)e− θa 0 −(1 + θ)d
MM (1 + θ)c− θb θd 0
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The modification of the game does not change the sign of G2,3 but it puts a positive
entry in G3,2. It may also change the signs of one or two of the other four non-zero
entries. Noting that

G12 < 0 if e > (1 + θ)a/θ while G21 < 0 if e < θa/(1 + θ)

If one of these two entries is negative the other one is positive. The same holds for G13

and G31 To simplify formulas, we let

OC OB MM

OC 0 A B

OB E 0 −D
MM C F 0

We always have D,F > 0. Suppose to begin that A,B,C,E > 0. The condition for OB
to invade the OC,MM equilibrium, when written in the new notation, is unchanged

EB −DC > BC

In the OC,OB equilibrium, F1 = F2 = AE/(A+E) while F3 = CA/(A+E)+FE/(A+E)
soMM can invade if

(C − E)A
A+ E

+
FE

A+ E
> 0

i.e., (C − E)A+ FE > 0 or C/E + FE > 1, which is no longer inconsistent with C/E <

1−DC/BE, so we have a new possibility.

Case 4. Both xi can be invaded if

1− DC

BE
>
C

E
> 1− F

A

We are in the situation of Example 7.2 so by results for that example there is coexistence
in the spatial game.
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The next thing to consider is what happens if one of the entries A,B,C,E < 0. Recall
that A < 0 implies E > 0, E < 0 implies A > 0, B < 0 implies C > 0, and C < 0 implies
B > 0.

Case 5A. If A < 0 (so OB � OC) and x2 can be invaded, then we are in the situation of
Example 7.3 and there is coexistence in the spatial game.

Case 5B. If E < 0 then OC � OB. This is Example 7.3C so the OB’s die out and x2 is
the limit for the replicator equation.
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Case 6A. If C < 0 (so OC � MM ) and x1 can be invaded, then we are in the situation
of Example 7.3 and there is coexistence in the spatial game.

Case 6B. If B < 0 then MM � OC, and MM � OB. If MM can invade the OC,OB
equilibrium thenMM takes over (Example 7.3A.) If not then there is an interior saddle
point and bistability. (Example 7.3B.) However, we cannot prove the conclusion in either
case.

One can also change the signs of two entries. To avoid case 6B, where nothing
changes if A or E is negative, we have to suppose that C < 0.

Case 7A. If C < 0 and A < 0, we get a rock-paper scissors game, as in Example 7.4. Let

∆ = β1β2β3 + α1α2α3 = −DCA+ FEB

If ∆ > 0 then solutions of the replicator equation will spiral into a fixed point, so we
expect to have coexistence in the spatial game. However since we have no result for
Example 7.4, we cannot prove this.

Case 7B. If C < 0 and E < 0 then OC � MM,OB. Again we are in the situation of
Example 7.4A, so OC takes over in the replicator equation, but we cannot prove this
occurs in the spatial model.

9.2 Three species chemical competition

As explained in Example 1.4, the payoff matrix is

P R S

P z − e− f + g z − e z − e+ g

R z − h z − h z − h

S z − f z z

Here P’s produce a toxin, R’s are resistant to it, S’s are sensitive wild-type cells, and
we have supposed g > e i.e., the benefit of producing the toxin outweighs the cost.
Subtracting a constant from each column to make the diagonal entries 0.

P R S

P 0 h− e g − e

R e+ f − g − h 0 −h
S e− g h 0

To simplify the algebra we will consider a more general game

P R S

P 0 a c

R b 0 −d
S −c d 0

thinking primarily about the special case

a = (1 + θ)(h− e)− θ(e− h+ f − g) c = (1 + 2θ)(g − e)
b = (1 + θ)(e− h+ f − g)− θ(h− e) d = (1 + 2θ)h

Here c, d > 0 since g > e and h > 0, but a and b can have either sign.
To investigate the game we begin by considering the two strategy subgames it con-

tains.

R vs. S. d > 0 so S dominates R.
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P vs. S. c > 0, so P dominates S.

P vs. R. All four cases can occur. We now consider them one at a time.

Case 1. If a > 0 and b < 0 then P dominates R. Since P also dominates S, this is
Example 7.4A. P ’s take over in the replicator equation. We conjecture but do not know
how to prove that this happens in the spatial model.

Case 2. If a < 0 and b > 0, then R dominates P and we have a cyclic relationship
between the competitors. We are in the situation of Example 7.4. Let

∆ = β1β2β3 + α1α2α3 = dcb− (−d)(−c)a = dc(b− a)

If ∆ > 0 solutions of the replicator equation will spiral into a fixed point, so we expect
(but cannot prove) coexistence in the spatial game.

Case 1.
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If neither of the two strategies P and R dominates the other, we will have a mixed
strategy equilibrium with

p12 =
a

a+ b
q12 =

b

a+ b

Here and in what follows pij and qij denote the equilibrium frequencies of the first and
second strategies in the i, j subgame. Using the facts about 2× 2 games recalled right
after (7.7):

Case 3. If a > 0 and b > 0 then (p12, q12) is attracting on the P,R edge.

Case 4. a < 0 and b < 0 then (p12, q12) is repelling on the P,R edge.

Let x1 = (a/a+ b, b/(a+ b), 0). Each of the two cases breaks into subcases depending on
whether x1 can be invaded (subcase A) or B not (subcase B).

Case 3A. The interior equilibrium will attracting and we are in the situation of Example
7.3, and there will be coexistence in the spatial game.

Case 3B. The fixed point on the R,P edge will attracting, and we are in the situation
of Example 7.3D. The S’s should die out in the spatial game and we should have an
equilibrium consisting only of R’s and P ’s but we do not know how to prove that.
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Case 3A.





















J
J
J
J
J
J
J
J
JJ

P

R S

•





�





�

J
J
JJ]

-

•
Q
Qs

•

Case 3B.
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Interior fixed point. Our theoretical results tell us that there will be attracting
interior fixed points in Cases 2 and 3A. The show that one does not exist in Case 3B, we
use (7.2) to compute

ρ1 = (dc− ad+ d2)/D = d(−a+ c+ d)/D

ρ2 = (cb+ cd+ c2)/D = c(b+ c+ d)/D (9.1)

ρ3 = (bd− ac− ab)/D

If S cannot invade the P,R equilibrium then

ab

a+ b
> (−c) a

a+ b
+ d

b

a+ b
(9.2)

so the numerator of ρ3 is negative. If all three numerators were negative then there
would be an equilibrium but the numerator of ρ2 > 0, so there is not.

As a check of our computation of the fixed point ρ, we note that when a = h − e,
b = f − g + e− h, c = g − e, and d = h we have

ρ1 =
hg

D
ρ2 =

(g − e)f
D

ρ3 =
ef − hg

D

so D = gf and the interior fixed point is

ρ1 =
h

f
ρ2 = 1− e

g
ρ3 =

e

g
− h

f
(9.3)

in agreement with page 1496 of [48].

In Case 4A, S can invade the P,R equilibrium, so looking at (9.2), we see that the
numerator of ρ3 is negative. The numerator of ρ1 is positive so there can be no equilib-
rium.

In Case 4B, S cannot invade so the numerator of ρ3 is positive. Since a < 0 and c, d > 0
the numerator of ρ1 is positive. In general we might have b+ c+d < 0 but in our special
case

b+ c+ d = (1 + 2θ)g + (1 + θ)(f − g) = θg + (1 + θ)f

In this case, there is an interior equilibrium, but it is unstable. Since P is locally at-
tracting, we should have convergence to P in the spatial game but cannot prove it.
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Case 4A.
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9.3 Glycolytic phenotype

As indicated in Example 1.5, the three strategies are AG = autonomous growth,
INV = invasive, and GLY = glycolytic phenotype, while the payoff matrix is:

AG INV GLY

AG 1
2 1 1

2 − n

INV 1− c 1− c
2 1− c

GLY 1
2 + n− k 1− k 1

2 − k

As noted earlier, if we subtract a constant from each column to make the diagonal zero,
this will not change the properties of the replicator equation.

AG INV GLY

AG 0 c
2 k − n

INV 1
2 − c 0 1

2 − c+ k

GLY n− k c
2 − k 0

Again we simplify by generalizing

AG INV GLY

AG 0 a d

INV b 0 e

GLY −d f 0

where the constants are given by

a = (1 + θ)(c/2)− θ(1/2− c) e = (1 + θ)(1/2− c+ k)− θ(c/2− k)
b = (1 + θ)(1/2− c)− θ(c/2) f = (1 + θ)(c/2− k)− θ(1/2− c+ k)

d = (1 + 2θ)(k − n)

We will suppose c < 1/2 so a, b, e are positive when θ = 0. Note that

f < 0 if c/2− k < 0 or c/2− k > 0 and 1/2− c+ k >
1 + θ

θ
(c/2− k)

so f < 0 implies e > 0.

1. AG vs INV. If a, b > 0 there is a mixed strategy equilibrium

p12 =
b

a+ b
q12 =

a

a+ b
.
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which is attracting on the AG, INV edge.

2. INV vs GLY. Suppose for the moment that e > 0. If f < 0 then INV dominates GLY.
If f > 0 then there is a fixed point

p23 =
e

e+ f
q23 =

f

e+ f
.

which is attracting on the INV,GLY edge.

3. AG vs GLY. If d > 0 then AG� GLY ; if d < 0 then GLY � AG.

In the last two examples we examined all of the possible cases. In this one and
the next, we will only consider games that lead to attracting interior equilibria In the
original game there are two possibilities. In both we need GLY to be able to invade the
AG, INV equilibrium.

Case 1. f > 0 so there is an INV,GLY equilibrium, which we suppose can be invaded
by AG. The AG,GLY edge is blank because it does not matter which one dominates
the other. This corresponds to Example 7.2 so there is coexistence in the spatial game.

Case 2. f < 0. In this case we need d < 0 so GLY � AG. This corresponds to Example
7.2 so there is coexistence in the spatial game.

Case 1.
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Case 2.
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There are other possibilities for coexistence in the spatial game.

Case 3A. If a < 0 (and hence b > 0) the INV � AG. In this case if d < 0, AG dominates
GLY and we are in the case of Example 7.3.

Case 3B. If b < 0 (and hence a > 0) then AG � INV . In this case if d > 0, GLY
dominates AG and we are in the case of Example 7.3.

Case 4. If f < 0 (and hence e > 0) then INV � GLY , if b < 0 (and hence a > 0) then
AG � INV . If d > 0 then GLY � AG. So under these choices of sign, we have a
rock-paper scissors relationship, as in Example 7.4. Let

∆ = β1β2β3 + α1α2α3 = fdb− e(−d)a = d(fb+ ea)

If ∆ > 0, which is always true under these choices of sign, solutions of the replicator
equation will spiral into a fixed point, so we will have coexistence in the spatial game.
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9.4 Tumor-stroma interactions

As explained in Example 1.6 there are three strategies S = stromal cells, I = cells
that have become independent of the micro-environment, and D = cells that remain
dependent on the microenviornmnet. The payoff matrix is:

S D I

S 0 α 0
D 1 + α− β 1− 2β 1− β + ρ

I 1− γ 1− γ 1− γ

Recall that we assume β < 1, γ < 1. Subtracting a constant from the second and third
columns to make the diagonals 0 the game becomes

S D I

S 0 α+ 2β − 1 γ − 1
D 1 + α− β 0 γ + ρ− β

I 1− γ 2β − γ 0

Generalizing we have

S D I

S 0 a −c
D b 0 d

I c e 0

where the constants are

a = (1 + θ)(α+ 2β − 1)− θ(1 + α− β) d = (1 + θ)(γ + ρ− β)− θ(2β − γ)
b = (1 + θ)(1 + α− β)− θ)(α+ 2β − 1) e = (1 + θ)(2β − γ)− θ(γ + ρ+ β)

c = (1 + 2θ)(1− γ)

We assume β < 1 so a, b > 0 when θ = 0, and there will an attracting fixed point (a.f.p.)
on the S,D edge for any θ ≥ 0, c > 0. We assume γ < 1 so I � S. Almost anything is
possible for the signs of d and e. When θ = 0 we have

d < 0, e > 0 γ < β − ρ I � S

d > 0, e > 0 β − ρ < γ < 2β I, S a.f.p.
d > 0, e < 0 γ > 2β S � I

There are a large number of possible cases, so we only consider the ones that lead to
coexistence.

Case 1. If the S,D and D, I fixed points exist and can be invaded then we are in the
situation of Example 7.2 and there will be coexistence in the spatial model.

Case 2. If D � I and I can invade the S,D fixed point, then we are in the situation of
Example 7.3 and there will be coexistence in the spatial model.
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Case 1.
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Case 3. If θ > 0 we can have S � D. If the D, I equilibrium exists and can be invaded
then we are in the situation of Example 7.3 and there will be coexistence in the spatial
model.

10 Voter model duality: details

In the degenerate case of an evolutionary game in which Gi,j ≡ 1, the system re-
duces to the voter model which was introduced in the mid 1970s independently by
Clifford and Sudbury [55] and Holley and Liggett [73] on the d-dimensional integer lat-
tice. It is a very simple model for the spread of an opinion and has been investigated
in great detail, see Liggett [76] for a survey. To define the model we let p(y) be an
irreducible probability kernel p on Zd that is finite range, symmetric p(y) = p(−y), and
has covariance matrix σ2I.

In the voter model, each site x has an opinion ξt(x) and at the times of a rate 1 Pois-
son process decides to change its opinion, imitating the voter at x + y with probability
p(y). To study the voter model, it is useful to give an explicit construction called the
graphical representation, see Harris [71] and Griffeath [70]. For each x ∈ Zd and y

with p(y) > 0 let T x,y
n , n ≥ 1 be the arrival times of a Poisson process with rate p(y).

At the times T x,y
n , n ≥ 1, x decides to change its opinion to match the one at x + y. To

indicate this, we draw an arrow from (x, T x,y
n ) to (x+ y, T x,y

n ).

0 0 0 1 0 1 0

1 1 1 1 1 1 0

0

t

<

<

<

<

>

>

>

>
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To define the dual process ζx,t
s , which we think of as the motion of a particle, we

start with ζx,t
0 = x. To define the dynamics we start at x at time t and work down

the graphical representation. The process stays at x until the first time t − r that it
encounters the tail of an arrow x. At this time, the particle jumps to the site x+ y at the
head of the arrow, i.e., ζx,t

r = x+y. The particle stays at x+y until the next time the tail
of an arrow is encountered and then jumps to the head of the arrow etc. The definition
of the dual guarantees that if ξt(x) is the opinion of x at time t in the voter model then
we have the result called (4.1) in the introduction

ξt(x) = ξt−s(ζx,t
s )

For fixed x and t, ζx,t
s is a random walk that jumps at rate 1 and by an amount with

distribution p(y). It should be clear from the definition that if ζx,t
s = ζy,t

s for some s then
the two random walks will stay together at later times. For these reasons the ζx,t

s are
called coalescing random walks.

Having a dual random walk starting from x for each t is useful for the derivation
of (4.1). However for some computations it is more convenient to have a single set
valued dual process ζB

t that starts with a particle at each point of B, particles move as
independent random walks until they hit, at which time they coalesce to 1. Extending
the reasoning that lead to (4.1)

P (ξt(x) = 1 for all x ∈ B) = P (ξ0(y) = 1 for all y ∈ ζB
t ) (10.1)

Holley and Liggett (1975) have shown

Theorem 10.1. In d ≤ 2 the voter model approaches complete consensus, i.e., P (ξt(x) =
ξt(y)) → 1. In d ≥ 3 if we start from product measure with density u (i.e., we assign
opinions 1 and 0 independently to sites with probabilities u and 1 − u) then as t → ∞,
ξu
t converges in distribution to ξu

∞, a stationary distribution, νu, in which a fraction u of
the sites have opinion 1.

Proof. We will give the proof here since it is short and we think it will be instructive for
readers not familiar with duality. Our assumptions imply that p(y) has mean 0 and finite
variance. Well known results for random walk imply that in d ≤ 2 the associated random
walk is recurrent. This implies that two independent random walks will eventually meet
and hence the probability of disagreement between two sites in the voter model

P (ξt(x) 6= ξt(y)) ≤ P (ζx,t
t 6= ζy,t

t ) → 0

To prove the second result it suffices to show that ξu
t converges in distribution to a limit

ξu
∞, for then standard results for Markov processes will imply that the distribution of
ξu
∞ is stationary. To do this, we use (10.1) to conclude

P (ξu
t (x) = 1 for all x ∈ B) = E

(
u|ζ

B
t |
)

t → |ζB
t | is decreasing, and u|ζ

B
t | ≤ 1, so P (ξt(x) = 1 for all x ∈ B) converges to a limit

φ(B) for all finite sets B. Since the probabilities φ(B) determine the distribution of ξu
∞,

the proof is complete.

11 Proofs of the coalescence identities

Let v1, v2, v3 be independent and have distribution p. In this section we prove the
coalescence identities stated in Section 4

Lemma 11.1. p(0|v1 + v2) = p(0|v1) = p(v1|v2)
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Proof. Let Sn be the discrete time random walk with jumps distributed according to p
and let

h(x) = Px(Sn 6= 0 for all n ≥ 0)

be the probability the walk never returns to 0 starting from x. By considering what
happens on the first step h(v1) = h(v1+v2). Since v1 and −v1 have the same distribution
h(v1 + v2) = h(v2 − v1). The two results follow since p(x|y) = h(y − x).

Lemma 11.2. p(v1|v2 + v3) = (1 + 1/κ)p(0|v1)

Proof. Starting at S0 = −v1, S1 = v2−v1 and S2 = v2+v3−v1. Since P−v1(S1 = 0) = 1/κ.

h(v2 + v3 − v1)− h(v1) = P−v1(S1 = 0, Sn 6= 0 for n ≥ 2)

= (1/κ)P0(Sn 6= 0 for n ≥ 1) = (1/κ)h(v3) = (1/κ)p(0|v1)

which proves the desired result

From the two particle identities we easily get some for three particles. The starting
point is to note that considering the possibilities for y when x and z don’t coalesce we
have a result we earlier called (4.4)

p(x|z) = p(x|y|z) + p(x, y|z) + p(x|y, z)

Combining this identity with one for another pair that shares a site in common leads to
identities that relate the three ways three particles can coalesce to give two.

Lemma 11.3. p(0, v1|v1 + v2) = p(0, v1 + v2|v1) = p(v1, v1 + v2|0) and hence

p(0|v1) = 2p(x, y|z) + p(0|v1|v1 + v2)

where x, y, z is any ordering of 0, v1, v1 + v2.

Proof. Using (4.4)

p(0|v1) = p(0|v1|v1 + v2) + p(v1, v1 + v2|0) + p(0, v1 + v2|v1)
p(0|v1 + v2) = p(0|v1|v1 + v2) + p(v1, v1 + v2|0) + p(0, v1|v1 + v2)

p(v1|v1 + v2) = p(0|v1|v1 + v2) + p(0, v1 + v2|v1) + p(0, v1|v1 + v2)

Since p(0|v1 +v2) = p(0|v1) by Lemma 4.2 the first result follows. Translation invariance
implies p(0|v1) = p(0|v2) = p(v1|v1 + v2) so comparing the first and third lines gives the
second result. The displayed identity follows from the first two and first and third in the
proof.

Lemma 11.4. p(v1, v2|v2 + v3) = p(v2, v2 + v3|v1) = p(v1, v2 + v3|v2) + (1/κ)p(0|v1) and
hence

p(v1|v2)(1 + 1/κ) = 2p(v2, v2 + v3|v1) + p(v1|v2|v2 + v3)

= 2p(v1, v2|v2 + v3) + p(v1|v2|v2 + v3)

p(v1|v2)(1− 1/κ) = 2p(v1, v2 + v3|v2) + p(v1|v2|v2 + v3)

Proof. Using (4.4)

p(v1|v2) = p(v1|v2|v2 + v3) + p(v1, v2 + v3|v2) + p(v2, v2 + v3|v1)
p(v2|v2 + v3) = p(v1|v2|v2 + v3) + p(v1, v2 + v3|v2) + p(v1, v2|v2 + v3)

p(v1|v2 + v3) = p(v1|v2|v2 + v3) + p(v2, v2 + v3|v1) + p(v1, v2|v2 + v3)
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Since p(v2|v2+v3) = p(v1|v2) by Lemma 11.1, the first result follows. Noting that Lemma
11.2 implies p(v1|v2 + v3) = p(0|v1)(1 + 1/κ) and subtracting the second equation in the
proof from the third gives

(1/κ)p(0|v1) = p(v2, v2 + v3|v1)− p(v1, v2 + v3|v2)

and the second result follows. To get the first displayed equation in the lemma, substi-
tute p(v1, v2 + v3|v2) = p(v2, v2 + v3|v1) − (1/κ)p(0|v1) in the first equation in the proof.
Since p(v1, v2|v2 + v3) = p(v2, v2 + v3|v1) the second follows. For the third one, use
p(v2, v2 + v3|v1) = p(v1, v2 + v3|v2) + (1/κ)p(0|v1) in the first equation in the proof.

12 Derivation of the limiting PDE

In this section we will compute the functions φi
B(u) and φi

D(u) that appear in the
limiting PDE. To do this it is useful to note that since

∑
j ui = 1 we can write the

replicator equation (5.1) as

dui

dt
=
∑
j 6=i

∑
k

uiujuk(Gi,k −Gj,k) (12.1)

where the restriction to j 6= i comes from noting that the when i = j the G’s cancel.

12.1 Birth-Death dynamics

By (3.4) the perturbation is

hi,j(0, ξ) =
∑

k

f
(2)
j,k (0, ξ)Gj,k

where f (2) was defined in Section 3.1. In the multi-strategy case the rate of change of
the frequency of strategy i in the voter model equilibrium is

φi
B(u) =

〈∑
j 6=i

−1(ξ(0) = i)hi,j(0, ξ) + 1(ξ(0) = j)hj,i(0, ξ)

〉
u

=
∑
j 6=i

∑
k

−q(i, j, k)Gj,k + q(j, i, k)Gi,k (12.2)

where q(a, b, c) = P (ξ(0) = a, ξ(v1) = b, ξ(v1+v2) = c) and v1, v2 are independent random
choices from N . If a 6= b then

q(a, b, c) = p(0|v1|v1 + v2)uaubuc (12.3)

+ 1(c=a)p(0, v1 + v2|v1)uaub + 1(c=b)p(0|v1, v1 + v2)uaub

Combining the last two equations, and comparing with (12.1) we see that

φi
B(u) = φi

R(u)p(0|v1|v1 + v2) +
∑
j 6=i

p(0, v1 + v2|v1)uiuj(−Gj,i +Gi,j)

+
∑
j 6=i

p(0|v1, v1 + v2)uiuj(−Gj,j +Gi,i)

Formula (4.5) implies that p(0, v1 + v2|v1) = p(0|v1, v1 + v2) so the last two terms can be
combined into one.

φi
B(u) = φi

R(u)p(0|v1|v1 + v2) +
∑
j 6=i

p(0|v1, v1 + v2)uiuj(Gi,i −Gj,i +Gi,j −Gj,j) (12.4)

which is the formula given in (5.2)
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12.2 Death-Birth dynamics

In this case (3.6) implies that the perturbation is

h̄ε
i,j(0, ξ) = hi,j(0, ξ)− fj

∑
k

hi,k(0, ξ) +O(ε2)

From this we see that φi
D = φi

B + ψi
D where

ψi
D =

〈∑
j 6=i

1(ξ(0) = i)fj(0, ξ)
∑

k

hi,k(0, ξ)−
∑
j 6=i

1(ξ(0) = j)fi(0, ξ)
∑

k

hj,k(0, ξ)

〉
u

.

Let v1, v2 and v3 be independent random picks from N and let

q(a, b, c, d) = P (ξ(v1) = a, ξ(0) = b, ξ(v2) = c, ξ(v2 + v3) = d)

we can write the new term in φi
D as

ψi
D =

∑
j 6=i

∑
k,`

[q(j, i, k, `)− q(i, j, k, `)]Gk,` (12.5)

Adding and subtracting q(i, i, k, `) we can do the sum over j to get

ψi
D =

∑
k,`

[q(i, k, `)− q(i, ·, k, `)]Gk,` (12.6)

where q(a, b, c) is as defined above and

q(a, ·, b, c) = P (ξ(v1) = a, ξ(v2) = b, ξ(v2 + v3) = c)

If we let q(b, c) = P (ξ(v2) = b, ξ(v2 + v3) = c) and write the sum in (12.6) as
∑

k 6=i

∑
`

plus ∑
`

[q(i, i, `)− q(i, ·, i, `)]G(i, `) = [q(i, `)− q(i, `)]Gi,`

+
∑
k 6=i

∑
`

[−q(k, i, `) + q(k, ·, i, `)]Gi,`

To see this move the second sum on the right to the left.
Putting things together we have

ψi
D =

∑
k 6=i

∑
`

[q(i, k, `)− q(i, ·, k, `)]Gk,` +
∑
k 6=i

∑
`

[−q(k, i, `) + q(k, ·, i, `)]Gk,`

One half of the sum is ∑
k,`

q(i, k, `)Gk,` − q(i, k, `)Gk,` = −φi
B

Since φi
D = φi

B + ψi
D we have

φi
D =

∑
k,`

−q(i, ·, k, `)G(k, `) + q(i, ·, k, `)Gk,` (12.7)

Note the similarity to (12.2). If a 6= b then

q(a, ·, b, c) = p(v1|v2|v2 + v3)uaubuc (12.8)

+ 1(c=a)p(v1, v2 + v3|v2)uaub + 1(c=b)p(v1|v2, v2 + v3)uaub
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As in the Birth-Death case it follows that

φi
D(u) = φi

R(u)p(v1|v2|v2 + v3) +
∑
j 6=i

p(v1, v2 + v3|v2)uiuj(−Gj,i +Gi,j)

+
∑
j 6=i

p(v1|v2, v2 + v3)uiuj(−Gj,j +Gi,i)

By (4.6) p(v1, v2 + v3|v2) = p(v1|v2, v2 + v3)− (1/κ)p(v1|v2), so we can rewrite this as

φi
D(u) = φi

R(u)p(v1|v2|v2 + v3) +
∑
j 6=i

p(v1|v2, v2 + v3)uiuj(Gi,i −Gj,i +Gi,j −Gj,j)

− (1/κ)p(v1|v2)
∑
j 6=i

uiuj(−Gj,i +Gi,j) (12.9)

13 Two strategy games with Death-Birth updating

13.1 Computation of the phase diagram given in Figure 3

We give the details behind the conclusions drawn in Figure 2. In the Death-Birth
case

θ =
p̄2

p̄1
(R+ S − T + P )− p(v1|v2)

κp̄1
(S − T )

To find the boundaries between the four cases using (6.5), we let µ = p̄2/p̄1 ∈ (0, 1) and
ν = p(v1|v2)/κp̄1. We have α = γ when

R− T = −θ = −µ(R+ S − T − P ) + ν(S − T )

= −(µ− ν)(R+ S − T − P )− ν(R− P )

Clearly ν > 0. The fact that µ− ν > 0 follows from (4.13). Rearranging gives

(µ− ν)(S − P ) + ν(R− P ) = (1 + µ− ν)(T −R)

and hence

T −R =
µ− ν

1 + µ− ν
(S − P ) +

ν

1 + µ− ν
(R− P ) (13.1)

Repeating the last calculation shows that β = δ when

S − P = −θ = −(µ− ν)(R+ S − T − P )− ν(R− P ) < 0

Rearranging gives (1 + µ− ν)(S − P ) + ν(R− P ) = (µ− ν)(T −R), and we have

T −R =
1 + µ− ν

µ− ν
(S − P ) +

ν

µ− ν
(R− P ) (13.2)

To find the intersections of the lines in (13.1) and (13.2), we set

µ− ν

1 + µ− ν
(S − P ) +

ν

1 + µ− ν
(R− P ) =

1 + µ− ν

µ− ν
(S − P ) +

ν

µ− ν
(R− P )

which holds if

(µ− ν)2(S − P ) + ν(µ− ν)(R− P ) = (1 + µ− ν)2(S − P ) + ν(1 + µ− ν)(R− P )

Solving gives

S − P =
−ν(R− P )
1 + 2(µ− ν)

< 0
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Using (13.2) we see that at this value of S

T −R = −ν(R− P )
µ− ν

[
1 + µ− ν

1 + 2(µ− ν)
− 1
]

=
ν(R− P )

1 + 2(µ− ν)
> 0

To simplify the formulas for (13.1) and (13.2) let

P ∗ = P − ν(R− P )
1 + 2(µ− ν)

R∗ = R+
ν(R− P )

1 + 2(µ− ν)
(13.3)

From this and (13.1) we see that

T −R∗ = T −R− ν(R− P )
1 + 2(µ− ν)

=
µ− ν

1 + µ− ν
(S − P ) +

ν

1 + µ− ν
(R− P )− ν(R− P )

1 + 2(µ− ν)

=
µ− ν

1 + µ− ν
(S − P )− µ− ν

1 + µ− ν
· ν(R− P )
1 + 2(µ− ν)

=
µ− ν

1 + µ− ν
(S − P ∗)

A similar calculation using (13.2) shows that

T −R∗ = T −R− ν(R− P )
1 + 2(µ− ν)

=
1 + µ− ν

µ− ν
(S − P ) +

ν

µ− ν
(R− P )− ν(R− P )

1 + 2(µ− ν)

=
1 + µ− ν

µ− ν
(S − P ) +

1 + µ− ν

µ− ν
· ν(R− P )
1 + 2(µ− ν)

=
1 + µ− ν

µ− ν
(S − P ∗)

so the two lines can be written as

T −R∗ =
µ− ν

1 + µ− ν
(S − P ∗) T −R∗ =

1 + µ− ν

µ− ν
(S − P ∗)

This leads to the four regions drawn in Figure 2. In the lower left region where there is
bistability, 1’s win if ū > 1/2 or what is the same if strategy 1 is better than strategy 2
when u = 1/2 or

R+ S − T − P > −2θ

Plugging in the value of θ this becomes

(1 + 2(µ− ν))(R+ S − T − P ) > −2ν(R− P ) (13.4)

Dividing each side by 1 + 2(µ − ν) and recalling (13.3) this can be written as R∗ − T >

P ∗ − S. For the proof of Theorem 6.2 it is useful to write this as

1 + 2µ
1 + 2(µ− ν)

R+ S > T +
1 + 2µ

1 + 2(µ− ν)
(13.5)

In the coexistence region, the equilibrium is

ū =
S − P + θ

S − P + T −R
(13.6)

Plugging in the value of θ, we see that ū is constant on lines through (S, T ) = (R∗, P ∗).
Again for the proof of Theorem 6.2 a less compact form is more desirable. Recalling the
definition of θ we see that ū > 1/2 when

2(S − P ) + 2µ(R+ S − T − P )− 2ν(S − T ) > S − P + T −R
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which rearranges to become

(1 + 2µ)R+ [1 + 2(µ− ν)]S > [1 + 2(µ− ν)]T + (1 + 2µ)P

Dividing by 1 + 2(µ− ν) this becomes (13.5). To prove Theorem 6.2 now, we note that

1 + 2µ =
p̄1 + 2p̄2

p̄1
= (1 + 1/κ)

p(v1|v2)
p̄1

1 + 2(µ− ν) = (1 + 1/κ)
p(v1|v2)
p̄1

− 2
p(v1|v2)
κp̄1

so we have
1 + 2µ

1 + 2(µ− ν)
=
κ+ 1
κ− 1

13.2 Proof of Tarnita’s formula

Lemma 13.1. Suppose the φ in the limiting PDE is cubic. The limiting frequency of 1’s
in the PDE is > 1/2 (and hence also in the particle system with small ε) if and only if
φ(1/2) > 0.

Proof. As explained in the proof of Theorem 6.1 given in [56] the behavior of the PDE
is related to the shape of φ in the following way.

φ′(0) > 0, φ′(1) > 0. There is an interior fixed point ū, which is the limiting frequency. If
φ(1/2) > 0 then ū > 1/2.

φ′(0) > 0, φ′(1) < 0. φ > 0 on (0, 1) so the system converges to 1.

φ′(0) < 0, φ′(1) > 0. φ < 0 on (0, 1) so the system converges to 0.

φ′(0) < 0, φ′(1) < 0. There is an unstable fixed point ū. If ū < 1/2 which in this case is
equivalent to φ(1/2) > 0 the system converges to 1, otherwise it converges to 0.

Combining our observations proves the desired result.

Death-Birth updating. In this case, we have φ(1/2) > 0 if

a+ b+ θ > c+ d− θ

where θ = (p2/p1)(a+b−c−d)−p(v1|v2)/κp1. Rearranging we see that the last inequality
holds if

κ(p̄1 + 2p̄2)(a+ b− c− d)− 2p(v1|v2)(b− c)

Using (4.9) p̄1 + 2p̄2 = p(v1|v2)(1 + 1/κ) this becomes

p(v1|v2)[(κ+ 1)(a− d) + (κ− 1)(b− c)

which is the condition in Tarnita’s formula with σ = (κ+ 1)/(κ− 1).

14 Equilibria for three strategy games

Recall that we can write the game matrix as 0 α3 β2

β3 0 α1

α2 β1 0


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In equilibrium all three strategies must have the same payoff so an interior equilibrium
(x, y, 1− x− y) must satisfy

α3y + β2(1− x− y) = β3x+ α1(1− x− y) = α2x+ β1y

Equating the first to the third, the second to the third and rearranging we obtain

(α2 + β2)x+ (β1 + β2 − α3)y = β2

(α1 + α2 − β3)x+ (α1 + β1)y = α1

From this we see that [to find x look at (α1 + β1)E1 − (β1 − β2 − α3)E2]

x =
β2(α1 + β1)− α1(β1 + β2 − α3)

(α1 + β1)(α2 + β2)− (α1 + α2 − β3)(β1 + β2 − α3)

y =
α1(α2 + β2)− β2(α1 + α2 − β3)−

(α1 + β1)(α2 + β2)− (α1 + α2 − β3)(β1 + β2 − α3)

The 13 terms in the denominator reduce to nine:

D = α1α2 + α1α3 + α2α3 + β1β2 + β1β3 + β2β3 − α1β1 − α2β2 − α3β3

The numerators for x and y reduce to 3 terms each, so the equilibrium must be:

ū1 =
α1α3 + β1β2 − α1β1

D

ū2 =
α2α1 + β2β3 − α2β2

D

ū3 =
α3α2 + β3β1 − α3β3

D
.

which is the formula given in (7.2).
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