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Abstract

This work is inspired by a 2013 paper from Arne Traulsen’s lab at the Max Plank
Institute for Evolutionary Biology [10]. They studied the small mutation limit of
evolutionary games. It has been shown that for 2×2 games the ranking of the strategies
does not change as strength of selection is increased [11]. The point of the 2013 paper
is that when there are three or more strategies the ordering can change as selection
is increased. Wu et al [10] did numerical computations for fixed N . Here, we will
instead let the strength of selection β = c/N and let N → ∞ to obtain formulas for
the invadability probabilities φij that determine the rankings. These formulas, which
are integrals on [0, 1], are intractable calculus problems but can be easily evaluated
numerically. Here, we concentrate on simple formulas for the ranking order when c is
small or c is large.

1 Introduction

Let aij be the payoff to a player who uses strategy i against an opponent who uses strategy
j. Let xj be the frequency of strategy j and define the fitness of strategy i to be

ψi =
∑

j

aijxj,

the payoff when a player with strategy i plays against a randomly chosen individual. We
will study how the frequencies behave under imitation dynamics. In this evolution a player
a chosen at random from the population compares her payoff to an opponent b chosen
at random and changes her opinion with probability g(β(ψi(b) − ψi(a))) where β indicates
the strength of selection and g : R → (0, 1) is a nondecreasing function, such as the Fermi
function g(x) = 1/(1+e−x). Thinking of biological competition and following in the footsteps
of [4], Wu et al [10] consider the situation in which the mutation rate is small enough so
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that at most times there is only one strategy i in the population. In this case a mutation
that introduces one j into a population that is all i will go to fixation with probability φij

that can be computed by analyzing a birth and death chain. We suppose that the model
rate from i to j µij ≡ µ. Having computed φij one can then analyze the Markov chain with
jumps from i to j at rate µφij to find the equilibrium frequencies πi(β) of the strategies.

The relative sizes of the πi(β) give an ordering of the strategies. It has been shown that
for 2×2 games the ranking of the strategies does not change as strength of fitness is increased
[11]. The point of [10] is that when there are three or more strategies the ordering can change
as β is increased, which the authors tout as a weakness of the “weak selection” viewpoint.
In the supplementary materials of [10] they give a complicated argument for the existence
of a game in which the strategy ordering can change. In the body of the paper they report
on simulations of games with randomly chosen entries that show ranking changes occur in
approximately 45% of games.

Here, we will let the strength of selection β = c/N and let N →∞ to obtain formulas for
the invadability probabilities φij that determine the rankings. The integrals that give these
probabilities, see (6), are difficult to evaluate in general, but they do allow us to compute
the ranking order when c is small or c is large. The dichotomy between small c and large c is
similar to that of wN and Nw limits introduced by Jeoeng et al [5] and recently studied by
Sample and Allen [8]. In the first case one lets the strength of selection w → 0 the number of
individuals N →∞. In the second the order of the limits is reversed. In our case w = c?N
so w → 0 and N →∞ simultaneously.

The paper is organized as follows: In Section 2 we develop formulas for the φij. In Section
3 we compute the stationary distribution for the Markov chain that gives the transition
between dominant strategies. In Sections 4 and 5 we give our results for small c and large
c respectively. Section 6 prepares for the study of examples by developing formulas for the
three different classes of 2×2 games. In Sections 7 – 11 we apply our results we have obtained
to five concrete examples. We summarize our results and discuss open problems in Section
12.

2 Formulas for φij

In what follows we will use a theorem-proof style of exposition to highlight the main results
and to allow the reader to skip the details of the derivations. For simplicity, we will ignore
the fact that you can’t play the game against yourself to write the payoffs from playing
strategies i and j when k individuals are using strategy j as

ψi(k) = aii(N − k)/N + aijk/N

ψj(k) = aji(N − k)/N + ajjk/N

Here, i is the wild type, j is the mutant. The payoff difference ∆ji(k) = ψj(k)− ψi(k) is

=
(aji − aii)(N − k) + (ajj − aij)k

N

= (aji − aii) + (aii − aji − aij + ajj)
k

N
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Note that if we add ck to the entries in the kth column, the payoff difference is not changed
so we can without loss of generality suppose that the diagonal entries are 0. If we do this
then the payoff difference simplifies to

∆ji(k) = aji − (aji + aij)
k

N
(1)

We assume that each individual updates her strategy at rate 1, so the jump rates

p(k, k + 1) = (N − k) · k
N
g(β∆ji(k))

p(k, k − 1) = k · N − k

N
g(−β∆ji(k))

Our first step is to compute the fixation probability. The next result is the same as (4)
in the supplementary materials of [10]. In the context of evolutionary games this formula
was derived by Taylor et al [9]. However it was first discovered by Karlin and McGregor in
the late 1950s [6].

Theorem 1. If Tk = min{t : Xt = k} then we have

P1(TN < T0) =
1∑N

k=1

∏k−1
`=1

p(`,`−1)
p(`,`+1)

(2)

Proof. The first step is to define a function that has h(0) = 0, h(1) = 1, and

h(k) = p(k, k + 1)h(k + 1) + p(k, k − 1)h(k − 1). (3)

The last equation implies that if we let Xt be the number of the invading type at time t,
then Exh(Xt) remains constant so

P1(TN < T0) =
1

h(N)
(4)

To find h we note that (3) implies

h(k + 1)− h(k) =
p(k, k − 1)

p(k, k + 1)
(h(k)− h(k − 1))

Iterating and using h(1)− h(0) = 1 it follows that

h(k)− h(k − 1) =
k−1∏
`=1

p(`, `− 1)

p(`, `+ 1)

and hence

h(m) =
m∑

k=1

k−1∏
`=1

p(`, `− 1)

p(`, `+ 1)
(5)

so using (4) gives (2).
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Theorem 2. If we let γ = g′(0)/g(0) and suppose Nβ → c then φij ≈ 1/NIij where

Iij =
1

N
∫ 1

0
exp (−2γc[ajix− (aji + aij)x2/2]) dx

(6)

Note that the answer only depends on 2γc so we can without loss of generality suppose
γ = 1/2.

Proof. To begin to understand (2) we look at the ratio

p(`, `− 1)

p(`, `+ 1)
=
g(−β∆ji(k))

g(β∆ji(`))
≈ g(0)− g′(0)β∆ji(k)

g(0) + g′(0)β∆ji(`)

≈ 1− 2γβ∆ji(`) = 1− 2γβ[aji − (aji + aij)(`/N)]

Note that γ is the only aspect of g relevant to the value of φij. For the Fermi function
g(x) = 1/(1 + e−x), g′(x) = e−x/(1 + e−x)2 so γ = 1/4.

k−1∏
`=1

p(`, `− 1)

p(`, `+ 1)
≈

k−1∏
`=1

1− 2γβ∆ji(`)

Taking log and using log(1− x) ≈ −x we have

log
k−1∏
`=1

p(`, `− 1)

p(`, `+ 1)
≈ −

k−1∑
`=1

2γβ[aji − (aji + aij)(`/N)]

≈ −2γβ[ajik − (aji + aij)(k
2/2N)]

so we have
k−1∏
`=1

p(`, `− 1)

p(`, `+ 1)
≈ exp

(
−2γβ[ajik − (aji + aij)(k

2/2N)]
)

and it follows that if βN → c

1

N

N∑
k=1

k−1∏
`=1

p(`, `+ 1)

p(`, `− 1)
≈

∫ 1

0

exp
(
−2γβN [ajix− (aji + aij)x

2/2]
)
dx

→
∫ 1

0

exp
(
−2γc[ajix− (aji + aij)x

2/2]
)
dx (7)

which proves the desired result.

3 Equilibrium distribution

If µ is the mutation rate from i to j 6= i the transition rate matrix is−µ(φ12 + φ13) µφ12 µφ13

µφ21 −µ(φ21 + φ23) µφ23

µφ31 µφ32 −µ(φ31 + φ32)


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To find the stationary distribution, we need to solve

(
π1 π2 π3

) −µ(φ12 + φ13) µφ12 1
µφ21 −µ(φ21 + φ23) 1
µφ31 µφ32 1

 =
(
0 0 1

)
(8)

The solution is straightforward, but somewhat tedious, so we just give the answer:

π1 = (φ31φ21 + φ32φ21 + φ23φ31)/D

π2 = (φ12φ32 + φ13φ32 + φ31φ12)/D (9)

π3 = (φ23φ13 + φ21φ13 + φ12φ23)/D

where D is the sum of the three numerators. The three formulas can be collapsed into one
by writing

πi = (φjiφki + φjkφki + φkjφji)/D

where j = i− 1 and k = i+ 1 and the arithmetic is done in Z mod 3 = {1, 2, 3}.

4 Small c

The main result of this section is (11) which allows us to compute the strategy ranking for
small c. The reader who gets bored with the details can skip to that point. If c is small

Ii,j ≡
∫ 1

0

exp
(
−c[ajix− (aji + aij)x

2/2]
)
dx

≈
∫ 1

0

1− c[ajix− (aji + aij)x
2/2] dx = 1− c[aji/2− (aji + a1j)/6]

so using (6)

φij ≈
1

N
(1 + cψij) where ψij =

aji

2
− aji + aij

6

If we (i) cancel the 1/N ’s and then drop terms of order c2 then the numerators ni of the πi

are

n1 = 3 + c[ψ31 + ψ21 + ψ23 + ψ31 + ψ32 + ψ21]

n2 = 3 + c[ψ32 + ψ12 + ψ31 + ψ12 + ψ13 + ψ32]

n3 = 3 + c[ψ13 + ψ23 + ψ21 + ψ13 + ψ12 + ψ23]

Note that

in are missing appear twice
n1 1,2 and 1,3 3,1 and 2,1
n2 2,1 and 2,3 3,2 and 1,2
n3 3,2 and 3,1 1,3 and 2,3
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If we let Γ = 3 + c[ψ12 + ψ13 + ψ21 + ψ23 + ψ31 + ψ32] then

n1 = Γ− c[ψ12 − ψ21 + ψ13 − ψ31]

n2 = Γ− c[ψ21 − ψ12 + ψ23 − ψ32]

n3 = Γ− c[ψ32 − ψ23 + ψ31 − ψ13]

To check the arithmetic, note that the terms that are missing must be positive inside the
square brackets while those that appear twice must be negative.

The relative sizes of the ni gives the strategy ordering for small c. To further simplify we
note that ψij − ψji = (aji − aij)/2. so if we let

dij = (aji − aij)/2 (10)

and note that dji = −dij then we have

n1 = Γ− c[d12 − d31]

n2 = Γ− c[d23 − d12] (11)

n3 = Γ− c[d31 − d23]

We have used d31 instead of d13 so we have the general formula

ni = Γ− c[di,i+1 − di−1,i]

where the arithmetic is done modulo 3. It is not easy to write a formula for the ranking in
terms of the entries of the game matrix. However, as the reader will see when we consider
examples, it is easy to compute the rankings for a given example.

5 Large c

The main result of the section is given in the table at the end. The reader who gets bored
by the calculus can skip to that point. We are interested in estimating the size of

Iij =

∫ 1

0

exp
(
−c[ajix− (aji + aij)x

2/2]
)
dx

when c is large. This will be determined by the largest value of the integrand on [0, 1]. To
simplify notation we let α = −aji, let β = aji + aij, and Artie

I =

∫ 1

0

exp(ch(x)) dx where h(x) = αx+ βx2/2

We begin with the case β = 0. If α < 0

I ≈
∫ ε

0

exp(cαx) dx ≈ 1/(−αc) (12)

If α > 0 we change variables x = 1− y

I ≈
∫ ε

0

exp(cα(1− y)) dx ≈ exp(αc)/(αc) (13)

Suppose now β 6= 0. Taking the derivative h′(x) = α + βx so h′(x) = 0 at x∗ = −α/β.
There are several cases for the location of the maximum of the integrand
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β > 0 β < 0
x∗ ≤ 0 1 0
x∗ ≥ 1 0 1

0 < x∗ ≤ 1/2 1 x∗

1/2 ≤ x∗ < 1 0 x∗

If the maximum occurs at 0 then h′(0) = α < 0 and

I ≈
∫ ε

0

exp(cαx) dx ≈ 1/(−cα). (14)

If the maximum occurs at 1 then we change variables x = 1− y to get

I ≈
∫ ε

0

exp(c[α(1− y) + β(1− y)2/2]) dy

≈ exp(c(α+ β/2))

∫ ε

0

exp(−c[(α+ β)y]) dy

≈ exp(c(α+ β/2)) · 1

c(α+ β)
(15)

Note that if the maximum occurs at 1 then α + β > 0. If β < 0 then α + β/2 > α + β > 0.
If β > 0 then we are only in this case when x∗ = −α/β ≤ 1/2 so α+ β/2 ≥ 0.

If the maximum occurs at x∗ = −α/β ∈ (0, 1) then from the table we see that β < 0 and
0 < α < −β. We change variables y = x− x∗

I ≈
∫ ε

−ε

exp(c[α(y + x∗) + β(y + x∗)2/2]) dy

≈
∫ ε

−ε

exp

(
c

[
αy − α2/β +

β

2

(
y2/2− 2yα/β + (−α/β)2

)])
dy

= exp(−cα2/2β)

∫ ε

−ε

exp(cβy2/2) dy

The second and fifth terms in the second line combine to produce the one out front in the
third line. The first and fourth cancel. Recalling that normal(0,σ2) density is

(2πσ2)−1/2 exp(−y2/2σ2)

and taking σ2 = 1/(−cβ) we see that

I ≈ (2π/(−cβ))1/2 exp(−cα2/2β) (16)

Combining the table that gives the location of the maxima with the last five calculations.

6 Three types of edges

To prepare for using the large c formulas on examples, we note that Iij and Iji only depend
on the payoffs in the 2× 2 subgame with strategies i and j. In this game only three things
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case condition max I
I β > 0, x∗ ≥ 1/2 or β < 0, x∗ ≤ 0 0 1/(−cα)
II β > 0, x∗ ≤ 1/2 or β < 0, x∗ ≥ 1 1 exp(c(α+ β/2))/c(α+ β)
III β < 0, 0 < x∗ < 1, x∗ = −α/β exp(−cα2/2β) · (2π/(−cβ))1/2

IV β = 0, α < 0 0 1/(−cα)
V β = 0, α > 0 1 exp(cα)/(cα)

Table 1: Formulas for large c

can happen i� j, there is a stable mixed strategy equilibrium, or there is an unstable mixed
strategy equilibrium

Case 1. i dominates j. Since we have 0’s on the diagonal aij > 0 and aij < 0. We can
have β = aij + aji positive or negative.

β > 0 Iij α = −aji > 0 x∗ij = −α/β < 0 II
Iji α = −aij < 0 x∗ji = −α/β > 1 I

β < 0 Iij α = −aji > 0 x∗ij = −α/β > 1 II
Iji α = −aij < 0 x∗ij = −α/β < 0 I

Thus in either case Iij = exp(c(α+ β/2))/c(α+ β) and Iji = 1/(−cα).

Case 2. Stable mixed strategy equilibrium. aij > 0 and aji > 0. Suppose without loss
of generality that ρi = aij/(aij + aji) < 1/2

Iij α = −aji < 0 x∗ = −α/β = 1− ρi > 1/2 I
Iji α = −aij < 0 x∗ = −α/β = ρi < 1/2 II

Note that when i has ρi < 1/2, Iji is large.

Case 3. Unstable mixed strategy. aij < 0 and aji < 0. In either case

Iij = (2π/(−cβ))1/2 exp(−cα2/2β)

7 Example 1. Rock-paper-scissors

The game matrix is
1 2 3

1 0 1 −2
2 −3 0 2
3 4 −1 0

Writing i � j for strategy i dominates strategy j in the (i, j) subgame this example has
1 � 2 � 3 � 1, which is the same as strategy relationship in the rock-paper-scissors game.
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Figure 1: Left: The integrands of I12 and I21 when a21 = 4 and a12 = 2 (case 2, left) and
when a21 = −4 and a12 = −2 (case 3, right).

Small c. Using (10) and (11)

d12 = (a21 − a12)/2 = −2

d23 = (a32 − a23)/2 = −1.5

d31 = (a13 − a31)/2 = −3

so we have d12 − d31 = 1, d23 − d12 = 0.5, d31 − d23 = −1.5 and it follows that

n1 = Γ− c n2 = Γ− c/2 n3 = Γ + 1.5c

Noting that n3 > n2 > n1, we see that for small c, 3 >� 2 � 1.

Large c. To use the formulas derived in Sections 5 and 6 we compute α = −aji, β =
(aji + aij), and x∗ = −α/β.

i, j α β x∗ case Ii,j
12 3 −2 1.5 II exp(2c)/c
21 −1 −2 −0.5 I 1/c
13 −4 2 2 I 1/4c
31 2 2 −1 II exp(3c)/4c
23 1 1 −1 II exp(3c/2)/2c
32 −2 1 2 I 1/2c

If we recall that (6) implies φij ≈ 1/NIij, i.e., a large Iij means that it is very difficult for
j to invade i, then we see that the answers consistent with the ordering 1 � 2 � 3 � 1:
φ12, φ23, and φ31 are exponentially small. When we use (9) the N ’s cancel out. Marking the
small terms with *’s

Dπ1 = φ∗31φ21 + φ32φ21 + φ∗23φ
∗
31 ≈ 2c2

Dπ2 = φ∗12φ32 + φ13φ32 + φ∗31φ
∗
12 ≈ 8c2

Dπ3 = φ∗23φ13 + φ21φ13 + φ∗12φ
∗
23 ≈ 4c2
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Figure 2: Strategy rankings for Example 1. The ranking changes from 3 � 2 � 1 to 2 � 3 � 1
when c ≈ 2.

so for large c we have 2 � 3 � 1, a change from the small c ranking of 3 � 2 � 1.
Generalizing from the concrete example we see that if 1 � 2 � 3 � 1 then all the di,i+1

are negative. If d31 is the smallest then

d31 − d23 < 0 < d12 − d31

but d23 − d12 could be smallest, largest, or in the middle. If i � j then Nφji ≈ aijc so we
have

Dπ1 = a23a12c
2 Dπ2 = a31a23c

2 Dπ3 = a12a31c
2 (17)

Since the small c rankings are based on a linear function of the matrix entries and the large
c formulas are quadratic, it is not surprising that they can be different.

The asymptotic formula in (17) implies

D ∼ [a23a12 + a31a23 + a12a31]c
2

In the concrete example this implies

π1 → 1/7, π2 → 4/7, π3 → 2/7,

which agrees with Figure 2.

8 Example 2. One stable edge fixed point

The game matrix is
1 2 3

1 0 2 −1
2 4 0 3
3 2 −2 0
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The 1,2 subgame has a mixed strategy equilibrium (1/3, 2/3) in which each strategy has
fitness 4/3. When played against this equilibrium 3 has fitness 2/3 − 4/3 = −2/3 so it
cannot invade. In the other 2× 2 subgames 3 � 1 and 2 � 3.

Small c. Using (10) and (11)

d12 = (a21 − a12)/2 = (4− 2)/2 = 1

d23 = (a32 − a23)/2 = (−2− 3)/2 = −2.5

d31 = (a13 − a31)/2 = (−1− 2)/2 = −1.5

so we have d12 − d3,1 = 2.5, d23 − d12 = −3.5 and d31 − d23 = 1 and it follows that

n1 = Γ− 2.5c n2 = Γ + 3.5c n3 = Γ− c

Noting that n2 > n3 > n1, we see that for small c, 2 � 3 � 1.

Large c. Again we need to compute α = −aji, β = (aji + aij), and x∗ = −α/β.

i, j α β x∗ case Iij
12 −4 6 2/3 I 1/4c
21 −2 6 1/3 II exp(c)/4c
13 −2 1 2 I 1/2c
31 1 1 −1 II exp(3c/2)/2c
23 2 1 −2 II exp(5c/2)/3c
32 −3 1 3 I 1/3c

Again (6) implies φij = 1/NIij, so φ21, φ31 and φ23 are exponentially small. Consulting the
formula for the stationary distribution and marking the small terms with *

Dπ1 = φ∗31φ
∗
21 + φ32φ

∗
21 + φ∗23φ

∗
31

Dπ2 = φ12φ32 + φ13φ32 + φ∗31φ12

Dπ3 = φ∗23φ13 + φ∗21φ13 + φ12φ
∗
23

From this we see that Dπ2 ≈ 3c · 4c + 0 + 2c · 3c = 18c2 while π1 and π3 are exponentially
small. To compare π1 and π3 we need to compute the exact order of the three terms.

Dπ1 1.5 1 0 1 2.5 1.5
Dπ3 2.5 0 1 0 0 2.5

so we have Dπ1 ≈ 12c2 exp(−c) and Dπ3 ≈ 8c2 exp(−c). Thus for large c we have 2 � 1 � 3.
π1 and π3 are both exponentially small so π2 → 1.

9 Example 3. Two stable edge fixed points

The game matrix is
1 2 3

1 0 1 −1
2 2 0 3
3 2 1 0
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Figure 3: Strategy rankings for Example 2 as a function of c. Frequencies are plotted on a
log scale so that we can see π1 and π3 have the same exponential decay rate but π1 has a
larger constant.

The 1,2 subgame has a mixed strategy equilibrium (1/3, 2/3) in which each strategy has
fitness 2/3. When played against this equilibrium, strategy 3 has fitness 2/3 + 2/3 = 4/3
so it can invade. The 2,3 subgame has a mixed strategy equilibrium (3/4, 1/4) in which
each strategy has fitness 3/4. When played against this equilibrium, strategy 1 has fitness
3/4− 1/4 = 1/2 so 1 cannot invade. In the 1,3 subgame 3 � 1

Small c. Using (10) and (11)

d12 = (a21 − a12)/2 = (2− 1)/2 = 0.5

d23 = (a32 − a23)/2 = (1− 3)/2 = −1

d31 = (a13 − a31)/2 = (−1− 2)/2 = −1.5

so we have

d12 − d3,1 = 0.5− (−1.5) = 2

d23 − d12 = −1− 0.5 = −1.5

d31 − d23 = −1.5− (−1) = −0.5

and it follows from (11) that

n1 = Γ− 2c n2 = Γ + 3c/2 n3 = Γ + c/2

Noting that n2 > n3 > n1, we see that for small c, 2 � 3 � 1.

Large c. Again, α = −aji, β = (aji + aij), and x∗ = −α/β.
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i, j α β x∗ case I
12 −2 3 2/3 I 1/2c
21 −1 3 1/3 II exp(c/2)/2c
13 −2 1 2 I 1/2c
31 1 1 −1 II exp(3c/2)/2c
23 −1 4 1/4 II exp(c)/3c
32 −3 4 3/4 I 1/3c

Figure 4: Strategy rankings in Example 3 as a function of c. Again the exponential decay
rates are the same in π1 and π3.

Using (6), φij = 1/NIij we see that again φ21, φ31 and φ23 are exponentially small, so marking
the small terms with *’s, we have the same pattern as in the previous example.

Dπ1 = φ∗31φ
∗
21 + φ32φ

∗
21 + φ∗23φ

∗
31

Dπ2 = φ12φ32 + φ13φ32 + φ∗31φ12

Dπ3 = φ∗23φ13 + φ∗21φ13 + φ12φ
∗
23

From this we see that
Dπ2 ≈ 2c · 3c+ 2c · 3c = 12c2.

while π1 and π3 are exponentially small. To compare π1 and π3 we need to compute the
exact order of the three terms.

Dπ1 1.5 0.5 0 0.5 1 1.5
Dπ3 1 0 0.5 0 0 1

so we have Dπ1 ≈ 6c2 exp(−c/2) and Dπ3 ≈ 4c2 exp(−c/2). Thus for large c we have
2 � 1 >� 3. π1 and π3 are both exponentially small so π2 → 1.
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10 Example 4. One stable, one unstable

The game matrix is
1 2 3

1 0 2 −1
2 4 0 −3
3 2 −1 0

The 1,2 subgame has a mixed strategy equilibrium (1/3, 2/3) in which each strategy has
fitness 4/3. When played against this equilibrium 3 has fitness 2/3 − 2/3 = 0 so it cannot
invade. The 2,3 subgame has an unstable mixed strategy equilibrium (3/4, 1/4) which can
be invaded by 1. In the 1,3 subgame 3 � 1.

Small c. Using (10) and (11)

d12 = (a21 − a12)/2 = (4− 2)/2 = 1

d23 = (a32 − a23)/2 = (−1− (−3))/2 = 1

d31 = (a13 − a31)/2 = (−1− 2)/2 = −1.5

so we have

d12 − d3,1 = 1− (−1.5) = 2.5

d23 − d12 = 1− 1 = 0

d31 − d23 = −1.5− 1 = −2.5

and it follows that
n1 = Γ− 5c/2 n2 = Γ n3 = Γ + 5c/2

Noting that n3 > n2 > n1, we see that for small c, 3 � 2 � 1.

Large c. Again, α = −aji, β = (aji + aij), and x∗ = −α/β. We have an instance of case III
here. In this case Iij = exp(−α2c/(2β))/Ac1/2) where A = (−β/2π)1/2 = 0.7979

i, j α β x∗ case I
12 −4 6 2/3 I 1/4c
21 −2 6 1/3 II exp(c)/4c
13 −2 1 2 I 1/2c
31 1 1 −1 II exp(3c/2)/2c

23 1 −4 1/4 III exp(c/8)/Ac1/2

32 3 −4 3/4 III exp(9c/8)/Ac1/2

Using (6), φij = 1/NIij we see that again φ21, φ31, φ23, and φ3,2 are exponentially small, so
marking the small terms with *’s, we have

Dπ1 = φ∗31φ
∗
21 + φ∗32φ

∗
21 + φ∗23φ

∗
31

Dπ2 = φ12φ
∗
32 + φ13φ

∗
32 + φ∗31φ12

Dπ3 = φ∗23φ13 + φ∗21φ13 + φ12φ
∗
23

This time all three terms are exponentially small. The exponential orders of the terms are
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Figure 5: In Example 4 the strategy ranking 3 � 2 � 1 does not change. As c→∞, π3 → 1
exponentially fast. In contrast to the two previous examples the exponential decay rates for
π1 and π2 are different.

Dπ1 1.5 1 1.125 1 0.125 1.5
Dπ2 0 1.125 0 1.125 1.5 0
Dπ3 0.125 0 1 0 0 0.125

so we have

Dπ1 ≈ 2Ac3/2e−1.625 Dπ2 ≈ 6Ac3/2e−1.1.25 Dπ3 ≈ 6Ac3/2e−0.125

This the ranking remains the same for large c: 3 � 2 � 1.

11 Example 5. Two ranking changes

In the previous four examples there has been a most one ranking change. We now give an
example with two changes. The game matrix is

1 2 3
1 0 3.2 3.1
2 −1.2 0 2.4
3 5.7 −4.8 0

The 1,3 subgame has a mixed strategy equilibrium (3.1/8.8,5.7/8.8) in which each strat-
egy has fitness (5.7)(3.1/8.8) = 2.008. When played against this equilibrium 2 has fitness
[(−1.2)(3.1) + (2.4)(5.7)]/8.8 = 1.13, so 2 cannot invade. In the other two 2 × 2 subgames
1 � 2 and 2 � 3.

15



Small c. Using (10) and (11)

d12 = (a21 − a12)/2 = −2.2

d23 = (a32 − a23)/2 = −3.6

d31 = (a13 − a31)/2 = −1.3

so we have

d12 − d31 = −2.2− (−1.3) = −0.9

d23 − d12 = −3.6− (−2.2) = −1.4

d31 − d23 = −1.3− (−3.6) = 2.3

and it follows that

n1 = Γ + 0.9c n2 = Γ + 1.4c n3 = Γ− 2.3c

Noting that n2 > n1 > n3, we see that for small c, 2 � 1 � 3.

Large c. Again, α = −aji, β = (aji + aij), and x∗ = −α/β.

i, j α β x∗ case I
12 1.2 2 −0.6 II exp(2.2c)/(3.2c)
21 −3.2 2 1.6 I 1/3.2c
13 −5.7 8.8 0.6477 I 1/5.7c
31 −3.1 8.8 0.3523 II exp(1.3c)/5.7c
23 4.8 −2.4 2 II exp(3.6c)/2.4c
32 −2.4 −2.4 −1 I 1/2.4c

Using (9), φij = 1/NIij we see that φ21, φ31, and φ32 are exponentially small, so marking
the small terms with *’s, we have the same pattern as in the previous example.

Dπ1 = φ∗31φ21 + φ32φ21 + φ∗23φ
∗
31 ≈ 2.4(3.2)c2

Dπ2 = φ∗12φ32 + φ13φ32 + φ∗31φ
∗
12 ≈ 5.7(2.4)c2

Dπ3 = φ∗23φ13 + φ21φ13 + φ∗12φ
∗
23 ≈ 3.2(5.7)c2

so for large c we have 3 � 2 � 1. Comparing this with the small c ranking of 2 � 1 � 3 we
can see that there must be two ranking changes to bring strategy 3 from last to first.

12 Discussion

In this paper we have developed methods for computing strategy rankings in evolutionary
games when mutation rates are small, the strength of selection is c/N , and the population
size N → ∞. For any c the limiting rankings can be computed by numerically evaluating
an integrals on [0, 1]. We have simple explicit results when c is small or c is large that allow
us to infer that ranking changes have occurred.
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Figure 6: Plot of rankings versus log(c) in Example 5.

Simulations of games with 3 ≤ n ≤ 9 strategies show (see Figure 4 in [10]) that a positive
fraction of n strategy games have ≥ n− 1 ranking changes, while Figure 3 gives a 3 strategy
example that has 4 strategy changes. One can, of course, investigate ranking changes in
games numerically, but it would be nice to develop mathematical methods to determine the
number of changes for intermediate c.

The formulas we have for rankings for small c and large c are simple. They allow us to
obtain insights into conditions under which strategy rankings change in rock-paper-scissors
examples. However, at this point it does not seem possible to give meaningful results iden-
tifying the class of games that have no strategy changes. Perhaps there is no simple answer,
but it would be interesting if one could be found.
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