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Abstract

The problem of how often to disperse in a randomly fluctuating environ-
ment has long been investigated, primarily using patch models with uniform
dispersal. Here, we consider the problem of choice of seed size for plants in a
stable environment when there is a trade off between survivability and disper-
sal range. Ezoe (1998) and Levin and Muller-Landau (2000) approached this
problem using models that were essentially deterministic, and used calculus to
find optimal dispersal parameters. Here we follow Hiebeler (2004) and use a
stochastic spatial model to study the competition of different dispersal strate-
gies. Most work on such systems is done by simulation or nonrigorous methods
such as pair approximation. Here, we use machinery developed by Cox, Dur-
rett, and Perkins (2011) to rigorously and explicitly compute evolutionarily
stable strategies.

1 Introduction

“To disperse or not to disperse?,” that was the first question. There was much work on
this topic in the 1970s and early 1980s, see e.g., Hamilton and May (1977), who proved
the surprising result that no matter how costly dispersal is, the optimal strategy
involves some dispersal. Levin, Cohen, and Hastings (1984) began the development
of analytical results necessary to understand the results of numerical experiments.
They considered an environment made up of L distinct sites. Dispersing seeds are
lost with probability 1 − α with the survivors spread uniformly over patches, while
nondispersing seeds have a mortality 1 − v. As is now common in the analysis of

∗Dept. of Math, Duke U., Box 90320, Durham NC 27708-0320, Phone: (919) 660-6970, Fax:
(919) 660-2821, Email: rtd@math.duke.edu

†Dept. of Math, U. of Toronto, 40 St. George St., Toronto, Ontario CANADA M5S 2E4 and
Depto. de Ing. Matem., U de Chile, Av. Blanco Encalada 2120 Santiago, Chile

‡This work was done while the authors were at Cornell University and patially supported by NSF
grant DMS 0704996 from the probability program.

1



these questions they sought an evolutionarily stable strategy (ESS), i.e., one that
once established cannot be invaded.

Cohen and Levin (1991) followed up on this work by considering environments that
were temporally correlated and spatially heterogeneous. They found and computed
ESS’s in the case of nonnegative correlations of environmental quality, but found in
some cases with negative correlation that there was no ESS. Ludwig and Levin (1991)
solved this problem by showing that there were evolutionary stable combinations of
dispersal types that could not be invaded.

The last two paragraphs, which highlight some of the early work of our honoree,
do not begin to do justice to the vast literature on this topic. Our treatment of this
topic is brief because we will be concerned with the problem of optimal dispersal
range. Ezoe (1988) was the first to tackle this question. He considered the optimal
choice of seed size. Larger seeds are beneficial in the competition for safe sites, but
are likely to be dispersed a shorter distance and to suffer competition with siblings.
He supposed that dispersal followed a two dimensional normal distribution where the
variance and the average number of seeds dispersed are decreasing functions of the
seed size.

Levin and Muller-Landau (2000) followed up on this work and assumed that the
each genotype produces seeds of a single weight w. They let n(w) be the number of
seeds produced, let c(w) be their relative competitive advantage, and let δ(w, x) be
the probability a seed is dispersed x from its source. They noticed that the “potency”
P = c(w)n(w) and the function

F = P 2(w)

[
1−

∑
x

δ(w, x)2

]

were important. In particular, maxima of F were convergence stable strategies, that
is, ESS towards which selection will drive populations. See Levin, Muller-Landau,
Nathan, and Chave (2003) for a survey of this and subsequent developments.

Ezoe (1988) and Levin and Muller-Landau (2000) treat seeds as continuous quan-
tities that are spread according to a density function. Hiebeler (2004) investigated a
model with discrete patches at the points of the two-dimensional square lattice which
can be in one of three states: 0 = empty suitable habitat, 1 = empty unsuitable habi-
tat, and 2 = occupied suitable habitat. He studied the competition of near (nearest
neighbor) and far (global over the finite set being simulated) dispersal strategies using
simulation and the pair-approximation.

2 Model and Results

In this paper we also consider a spatial model on the two dimensional lattice. However
rather than considering a multi-type contact process as Hiebeler did, we will follow
Neuhauser and Pacala (1999) and study the much simpler system in which each site
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is always occupied by one of two competing species. We use 0 and 1 to indicate sites
occupied by two different types. This use of 0 and 1 is unfortunate because it may
make the reader think of vacant and occupied but it is notation used by both Cox,
Durrett, Perkins (2011) and Neuhauser and Pacala (1999) so we will stick to it.

As in Ezoe’s (1988) paper, we suppose that each of the two types produce seeds
of a single weight w, and that the birth rate β(w) and dispersal distribution are
functions of w. In this context if we were to consider the competition of two types
with fixed characteristics, it would be impossible to obtain quantitative results. Here
we will circumvent that difficulty by instead considering the probability that a type
w can be invaded by w + ε and let ε → 0. This approach will allow us to use the
machinery of Cox, Durrett, and Perkins (2011) to obtain explicit results, which we
will illustrate with an example in which dispersal follows a two-dimensional geometric
distribution.

A two dimensional lattice is most natural for studying the evolution of dispersal,
but since the problem is mathematically simpler in dimensions d ≥ 3, we will consider
dimensions d ≥ 2 here. To define the model we introduce two birth rates β0, βε > 0
and two dispersal distributions p0, pε in Zd which we suppose satisfy for 0 ≤ ε < ε0

pε is symmetric, irreducible, and has pε(x) ≤ Ce−κ|x|. (1)

where κ > 0 is a constant. We think of p0 and β0 as being fixed, and pε and βε as
perturbations, with βε → β0 and pε(x) → p0(x) as ε → 0 in a sense we will make
precise later.

To formulate the transition rates of the process ξε
t , we let

f ε
i (x) =

∑
y∈Zd

pε(y − x)1{ξ(y)=i}

be the fraction of neighbors of x that are in state i, when sites are weighted according
to the dispersal distribution pε. At x ∈ Zd

• 0 → 1 at rate βεf
ε
1 (x)

• 1 → 0 at rate β0f
0
0 (x)

To explain the first rate: a 1 at y gives birth at rate βε and sends its offspring to
replace the 0 at x with probability pε(x − y) = pε(y − x). The explanation of the
second rate is similar. When ε is small, this is a perturbation of the voter model in
which 1 → 0 at rate β0f

0
1 (x) and 0 → 1 at rate β0f

0
0 (x).

The voter model is easy to study because it is dual to a collection of coalescing
random walks, a system in which particles move according to random walks that
jump at rate β0 with steps distributed according to p0 and move independently until
they hit, at which time they coalesce into one particle. If we let ζt be the set of sites
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occupied by 1’s in the voter model, and ζ̂t be the coalescing random walk then the
formal definition of the dual is

P (ζA
t ∩B 6= ∅) = P (A ∩ ζ̂B

t 6= ∅) (2)

where the superscripts indicate the starting configurations, i.e., ζA
0 = A and ζ̂B

0 = B.
Intuitively ζ̂t describes the genealogy of the opinions in the voter model. To be formal,
for each t we can define a dual ζ̂

(x,t)
s , which gives the site which x traces its opinion

back to at time t−s, and the overall dual comes from combining these: ζ̂B
s , 0 ≤ s ≤ t

has the same distribution as ∪x∈B ζ̂
(x,t)
s , 0 ≤ s ≤ t. The coalescence in the dual comes

from the fact that if two sites trace their lineage back to the same site at the same
time then the rest of their genealogies will be the same.

Duality is the key to the study of properties of the voter model. For example,
under our assumption of symmetry and exponential tails, two random walks will
eventually hit in two dimensions, see e.g., Spitzer (1976), so (2) implies that the voter
model converges to complete consensus, i.e., for any finite set B the probability that
there are two different opinions in B is ≤ P (|ζ̂B

t | ≥ 2) → 0, where we have written |A|
for the number of points in A. In d ≥ 3, (2) allows us to conclude that if we start with
product measure with density p, i.e., sites are independently 1 or 0 with probabilities
p and 1− p, then as t →∞ there is convergence to a nontrivial translation invariant
stationary distribution νp in which the fraction of sites in state 1 is equal to p. For
a more detailed explanation of the results in the last two paragraphs see the original
paper by Holley and Liggett (1975).

To put our model in the framework of voter model perturbations of Cox, Durrett,
and Perkins (2011), we will make the following assumption: there is a function Λ such
that

βεpε(x)− β0p0(x) = ε2Λ(x) + o(ε2). (3)

When we need to be more precise we will define

Λε(x) = ε−2[βεpε(x)− p0(x)] (4)

Here βεpε(x) is the total rate at which an individual at site y sends offspring to y +x,
so Λε(x) can be thought of as the rate of change of this total rate as ε → 0.

In terms of the original motivation we are comparing seeds with weight w to those
with weight w + ε2. This parameterization in terms of ε2 may seem unusual, but as
we will now see it is convenient. If we speed up time at rate ε−2 and scale space by
ε, so that we are considering the process on a fine lattice εZd, then the coalescing
random walks ζ̂x

t of the voter model converge to Brownian motions, and in addition
changes in the state at each site due to the perturbation occur at a rate that is O(1).

To motivate the next step, we recall the work of Durrett and Neuhauser (1994),
who considered particle systems that were modified so that stirring (changing the
values at adjacent sites) occurred at rate ε−2 and the lattice was scaled to εZd. In
the fast stirring situation and in the voter model perturbations, we can define a
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dual process where particles move according to Brownian motions, and at rate O(1)
branchings occur to include the new sites that we need know the states of in order to
figure out the state of the process at x at time t. The dual is somewhat complicated,
so we refer to Cox, Durrett, and Perkins (2011) for a detailed description. However,
the existence of this complicated object is the key to the proof of Theorem 1.

In the case of fast stirring things are simple because lineages do not coalesce.
In our situation, particles in the dual branch into two at a constant rate to take
into account situations for example where only a 1 at y would change a 0 at x to
1. If the two lineages generated later coalesce then x and y had the same state and
nothing happened. In d ≥ 3, there is positive probability that two random walks
never coalesce, so we can use the same scaling of time (ε−2) and space (ε). In d = 2
the probability two random walks do not coalesce by time t is O(1/ log t), so we need
to further speed up time to τε = ε−2 log(1/ε) so that the perturbation will have an
effect. Having done this, we need to scale the lattice by 1/

√
τε to have the genealogies

converge to Brownian motion. Let

κε =

{
ε d ≥ 3

ε/(log(1/ε))1/2 d = 2

We will scale space to κεZd and assume the following technical conditions hold for
some ε0:

lim
ε→0

ε2κ−2
ε

∑
y∈Zd

|Λε(y)− Λ(y)| = 0 (5)

∑
y∈Zd

sup
ε∈(0,ε0/2]

|Λε(y)| < ∞ (6)

Λ(x) + ε−2
0 p0(x) > 0 for all x such that Λ(x) 6= 0 (7)

The first two conditions are necessary to provide control over the convergence of the
infinitely many sequences pε(x) → p0(x). The last is needed to be able to rewrite the
perturbation Λε(x) as a nonnegative function that can be interpreted as the flip rates
of a Markov chain.

With these assumptions, methods from Cox, Durrett, and Perkins (2011) can be
extended to give the following result. That paper is more than 100 pages long, and
the details are even more complicated in d = 2 so we content ourselves here to state
the results and apply them to a concrete example. The mathematical details are still
being worked out by Durrett and Remenik (2011).

For this and our next theorem we assume (1), (5), (6) and (7).

Theorem 1. As ε → 0 the particle system on the fine lattice εZd becomes determin-
istic and the density of occupied sites converges to the solution of

∂u

∂t
= β0

σ2
0

2
∆u + β0m

∗u(1− u), u(0, x) = v(x) (8)
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where σ2
0 is the variance of the distribution p0, and

m∗ =

{
πσ2

0

∑
y Λ(y)a(y) if d = 2∑

y P(τy = ∞) Λ(y) if d ≥ 3,

where τy = inf{t ≥ 0 : ζ̂y(t) = ζ̂0
t } and a(x) is the recurrent potential kernel for the

random walk:

a(x) =

∫ ∞

0

P (ζ̂0
t = 0)− P (ζ̂x

t = 0) dt.

The interpretation of m∗ is that when ε is small and the species with characteristics
βε and pε is rare its local density increases at rate m∗ε2.

Theorem 1 is one of many results in the probability literature that are “hydrody-
namic limits,” see e.g., Kipnis and Landim (1999). The intuition behind this result
is that since the voter dynamics occur at a fast rate then in d ≥ 3 when the density
near x at time t is u(t, x), the configuration near x looks like the voter stationary
distribution νu(t, x), and the reaction term is obtained by taking the expected value
of the rate of change under this equilibrium. This is the same intuition as in the result
of Durrett and Neuhauser (1994) but there product measure is the equilibrium for
fast stirring so the reaction term reduces to the mean-field differential equation. In
d = 2 there is no stationary distribution, but we have an estimate on the probability
that the duals from x and y chosen with probability p0(y − x) have not coalesced,
and when they have not, the values at x and y at time t are equal to 1 and 0 with
probability ≈ u(t, x)(1 − u(t, y)) which is ≈ u(t, x)(1 − u(t, x)), since y is close to x
on κεZ2.

The next thing to explain is what we mean by “the particle system on the fine
lattice εZd becomes deterministic and the density of occupied sites converges to the
solution of the PDE.” To define the density of the particle system, we divide space in
cubes of size εa where a is small and demand that for any K < ∞, with probability
tending to 1, the fraction of occupied sites is close to u(t, z) for each cube with lower
left corner z ∈ εaZd ∩ [−K, K]d. Of course to achieve convergence of the particle
system to the solution of the PDE, we have to assume that the initial condition of
the particle system converges to v(x) in this sense.

The reason for interest in Theorem 1 is that it allows us to prove:

Theorem 2. There is a ε1 > 0 such that for every ε ∈ (0, ε1) the process ξε
t satisfies

the following:

1. If m∗ > 0 then the 1’s take over, i.e., starting from any initial configuration
with infinitely many 1’s, the system converges to all 1’s.

2. If m∗ < 0 then the 0’s take over.
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When m∗ > 0, (8) is called Fisher’s (1937) equation for the advance of an advan-
tageous gene, or the KPP equation, after Kolmogoroff, Petrovsky, and Piscounov
(1937). A result of Aronson and Weinberger (1975) implies that there is a c > 0 so
that starting from any initial condition v 6≡ 0

inf
|x|≤ct

|1− u(t, x)| → 0

As in Durrett and Neuhauser (1994) this provides input for a “block construction”
to prove Theorem 2. Cox, Durrett, and Perkins (2011) generalizes the argument,
which was initially given for a contact process with sexual reproduction, and fills
some lacunae in the original proof.

3 Application

We will discuss now how Theorem 2 can be used to study the tradeoff between
dispersal range and seed size in a concrete example. We begin by defining the dispersal
distributions:

p0(x) = (K0)
d

d∏
i=1

([
r0

r0 + 1

]|xi|

+ 1{xi=0}

)

pε(x) = (Kε)
d

d∏
i=1

([
rε

rε + 1

]|xi|

+ 1{xi=0}

)
where K0 and Kε are normalizing constants given by

K0 =
1

2(r0 + 1)
and Kε =

1

2(rε + 1)
.

This choice for the dispersal distribution corresponds to choosing each of the d co-
ordinates according to a (modified) two-sided geometric distribution, where we have
doubled the mass at the origin to simplify calculations. We observe that the mean
dispersal ranges of p0 and pε (computed with respect to the norm |x| = |x1|+. . .+|xd|)
are dr0 and drε

1, respectively. We also have

σ2
0 = r0(2r0 + 1).

Since the parameter r is a decreasing function of seed size w, we can use r as
our variable instead of w. To each r > 0 we associate a birth rate β(r), so that
individuals with dispersal range r will give birth at rate β(r). We will assume that
β(r) is decreasing and has two continuous derivatives.

To have an explicit example we will suppose that

rε = r0(1 + ελ) for some λ > 2.
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Using Taylor’s Theorem on the function x 7→ β(r0(1 + x)) and then setting x = ελ

we deduce that

βε
1 = β0(1− c(r0)ε

λ) + O(ε2λ) with c(r0) = −r0
β′(r0)

β(r0)
> 0.

With this parametrization we can determine the behavior of ξε
t for given dispersal

distributions and given choices of r0, β0, c, and ε.
The problem here is to look for evolutionary stable strategies (ESS), which cor-

respond to choices of r for which a resident population with this dispersal distance
cannot be invaded by a mutant with a slightly different one. In our case, if we com-
pute the relative growth rate m∗ as a function of r0 then the only ESS are those where
m∗(r0) = 0 and m∗ is decreasing at r0. To see this, suppose that we have a resident
population characterized by some type r = r̄ and we introduce small mutations at a
slow rate. If the mutant has a larger r then with our parametrization the resident
has type r0 = r̄ and the mutant has type rε ≥ r0, and thus if m∗ is positive at r̄ the
mutant will take over. Conversely, if the mutant has a smaller r then we need to set
r0 to be the mutant type and rε = r̄, and thus if m∗ is negative to the left of r̄, the
mutant will take over.

In order to compute Λ(x), write fx(ε
λ) = β0(1 − c(r0)ε

λ)pε
1(x) for x ∈ Zd and

observe that ε2Λε(x) = βε
1p

ε
1(x) − β0p0(x) = fx(ε

λ) − fx(0). After some tedious
calculations one gets

f ′x(0) =

[
−c(r0)− d

r0

r0 + 1
+

|x|
r0 + 1

]
β0p0(x),

so letting α(r0) = (r0 + 1)c(r0) + dr0 we get that

fx(ε
λ)− fx(0) = ελ β0

r0 + 1
p0(x)

[
|x| − α(r0)

]
+

ε2λ

2
f ′′x (h) (9)

for some h between 0 and ελ. Therefore

Λ(x) =
β0

r0 + 1
p0(x)

[
|x| − α(r0)

]
and Λε(x) = Λ(x) + O(ε2(λ−1)).

Moreover, the O(ε2(λ−1)) term above equals ε2(λ−1)f ′′x (h)/2 and it is clear that
∑

x f ′′x (h)
is bounded uniformly away from infinity for small h, whence we deduce that (5) and
(6) hold. Checking that (7) holds is straightforward.

Now we need to compute m∗, and we will do this only in the biologically interesting
case d = 2. By (3) in page 122 of Spitzer (1976) we have

a(x) =
1

(2π)2

∫
[−π,π]2

1− e−ix·θ

1− φ(θ)
dθ =

1

(2π)2

∫
[−π,π]2

1− cos(x · θ)
1− φ(θ)

dθ,
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where φ is the characteristic function of p0 and we used the fact that a(x) is real.
More tedious but simple calculations give

φ(θ) =
1

4

[
1

r0 + 1− r0eiθ1
+

1

r0 + 1− r0e−iθ1

] [
1

r0 + 1− r0eiθ2
+

1

r0 + 1− r0e−iθ2

]
=

[
r0 + 1− r0 cos(θ1)

(r0 + 1)2 − 2r0(r0 + 1) cos(θ1) + r2
0

] [
r0 + 1− r0 cos(θ2)

(r0 + 1)2 − 2r0(r0 + 1) cos(θ2) + r2
0

]
.

This can be used in the above formula to obtain a(x) by numerical integration, and
then use the formula for Λ to compute m∗, see Figure 1.
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diffusion avec croissance de la quantité de matière et son application a un problème
biologique. Bull. Univ. Etat Moscou, Ser. Int. Set: A. 1, 1–25

Levin, S.A., Cohen, D., and Hastings, A. (1984) Dispersal strategies in patchy envi-
ronments. Theor. Pop. Biol. 26, 165–191

Levin, S.A. and Muller-Landau, H.C. (2000) The evolution of dispersal and seed size
in plant communities. Evol. Ecol. Res. 2, 409–435

Levin, S.A., Muller-Landau, H.C., Nathan, R., and Chave, J. (2003) The ecology and
evolution of seed dispersal: A theoretical perscpective. Annu. Rev. Ecol. Syst. 34,
575–604

Ludwig, D., and Levin, S.A. (1991) Evolutionary stability of plant communities and
maintenance of multiple dispersal types. Theor. Pop. Biol. 40, 285–307

Neuhauser, C., and Pacala, S.W. (1999) An explicitly spatial version of the Lotka-
Volterra model with interspecific competition. Ann. Appl. Probab. 9, 1226–1259.

Spitzer, F. (1976) Principles of random walks, Second edition. Graduate Texts in
Mathematics, Vol. 34, Springer-Verlag, New York

10



Figure 1: Numerical computation of the constant m∗(r0) in Theorem 1.2 for Example
1.5 with β0 = 1 and c(r0) = 1.8 + 0.2r0. The function has two zeros, the first one
(barely visible on the graph at r0 = 0.468 and the second one at r0 = 9.1. The
function is increasing at the first zero and decreasing at the second which is the ESS.
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