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Abstract We study the adaptive dynamics of predator prey systems modeled by a

dynamical system in which the characteristics are allowed to evolve by small mutations.

When only the prey are allowed to evolve, and the size of the mutational change tends

to 0, the system does not exhibit prey coexistence and the parameters of the resident

prey type converges to the solution of an ODE. When only the predators are allowed to

evolve, coexistence of predators occurs. In this case, depending on the parameters being

varied we see (i) the number of coexisting predators remains tight and the differences

of the parameters from a reference species converge in distribution to a limit, or (ii) the

number of coexisting predators tends to infinity, and we conjecture that the differences

converge to a deterministic limit.
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1 Introduction

We will consider predator-prey systems of the form
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where ui, 1 ≤ i ≤ m are the densities of the prey, and vj , 1 ≤ j ≤ n are the densities of

the predators. These equations have the form of the mean-field equations of a particle
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systems in which the prey species occupy a grid with at most one particle per site and

the predators roam the same grid with no limit on the number per site. If the number

of prey of type i at x at time t is ξi(x, t), with
P

i ξi(x, t) ≤ 1, and the number of

predators of type j is ζj(x, t) then

(i) prey of type i give birth onto vacant neighbors at rate βi/k where k is the number

of neighbors, die at rate ηi, and are eaten by predators ate rate
P

j αjζj(x, t)

(ii) predators of type j are born at rate
P

i ξi(t, x)αij and die at rate δj+γj(ζj(x, t)−1).

If we have fast stirring on the prey grid and the predators perform fast independent

random walks then in the limit the prey states are a product measure and the predators

are independent Poisson and we get the mean-field equation (1).

Interacting particle systems in which predators and prey share the same grid with

at most one individual per site have been studied by Durrett (1992, 2002), but here we

will be concerned with properties of the ODE. Our main interest is studying the effect

of small mutations in the resident species on the equilibrium behavior of (1). While the

co-evolutionary case in which both predator and prey are allowed to vary is certainly

of interest (see Dieckmann, Morrow, and Law (1995) and Dercole, Irisson, and Rinaldi

(2002)) and can lead to exotic behavior, we will here only consider the two cases of

fixed predator/evolving prey and evolving predator/ fixed prey. Such examples are also

of interest and have been studied in laboratory experiments (see, for example, Jones

and Ellner (2007)).

Following the usual approach in adaptive dynamics, we shall assume that such

mutations take place on a much slower time scale than the population dynamics reach

equilibrium. To be precise, suppose that we are considering predator evolution and at

time n we have k species of predator and one prey species coexisting in equilibrium.

Then we pick one predator at random, introduce a small amount of a new species with

a mutation in its traits, and let the densities evolve according to (1) until a possibly

new equilibrium is reached before introducing the next mutation. By traits, we mean

the parameters in (1) (birth, death, and consumption rates) that characterize each

species’ ability to survive and propagate. This approach has been considered before

(see Champagnat and Lambert (2007) and the references therein), but most often in

situations where evolution leads to a system in which the resident and mutant type

cannot coexist in equilibrium.

Here, we will encounter examples where evolution leads to equilibrial coexistence

of a growing number of species. This is somewhat different from the evolutionary

branching found by Geritz et al. (1997). In that paper, and indeed in much of the

evolutionary dynamics literature, the basic quantity is g(x, y) the growth rate of species

y when it is rare and type x is in equilibrium. This function has g(x, x) = 0 and the

behavior of its partial derivatives indicate when an x is an evolutionarily stable strategy

or when bifurcations can occur in the dynamics, see Geritz et al. (1997) for details. In

this paper our prey evolution falls within this framework, but in our predator model

we have g(x, x) > 0, i.e., due to our competition rules a copy of the resident can invade

the resident. The biological relevance of this may be suspect but the mathematical

consequences are interesting.

1.1 Prey Evolution

We begin with the case in which predator characteristics are held constant and the

prey are allowed to evolve. To reduce the number of parameters, we will assume that
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all prey have death rate 1 and consider mutations in birth rate β and the consumption

rate α. Suppose we have a single species of prey and single species of predator with

densities, u1 and v governed by

du1

dt
= u1 (β1(1 − u1) − 1− α1v)

dv

dt
= v1 (α1u1 − δ − γv)

Our process evolves in discrete time with (αε(k), βε(k)) being the characteristics,

(α1, β1), of the resident prey at time k. To move to time k +1, a small density of some

mutant predator with birth rate β2 and consumption rate α2 is introduced with (α2, β2)

chosen uniformly from Bε(αε(k), βε(k)), the ball of radius ε around (αε(k), βε(k)).

The densities (u1, u2, v) then evolve according to (1). If the densities of u1, u2, v re-

main bounded away from 0 for all time, we say that coexistence occurs. Otherwise,

one of the prey species will die out and we denote the “surviving” prey species by

(αε(k + 1), βε(k + 1)). Our first result says that coexistence of multiple prey species

is unlikely in this system and mutations lead to “monomorphic dynamics” in which

advantageous mutants replace residents while deleterious mutants die off.

Theorem 1 Suppose at time n, we introduce mutations uniformly over the ball of

radius ε around yε(n), Bε(yε(n)), where yε(n) = (αε(n), βε(n)), n < nε, is the sur-

viving species up to the first time nε that coexistence occurs. As ε → 0, εnε → ∞ and

yε([t/ε]) → y(t) where y is the unique solution to the ODE

dy(t)

dt
=

2

3π
N (y(t)) (2)

and N (·) is explicitly calculable, see (14).

We will prove Theorem 1 in Section 2. The constant on the right hand side is

EY + when (X, Y ) is chosen at random from the ball of radius 1 and appears due to

our choice of mutation distribution. (2) is essentially a special case of the “Canonical

Equation of Adaptive Dynamics,” see (6.2) in Dieckmann and Law (1996), or (1) in

Champagnat and Lambert (2007). Our algorithm corresponds to total mutation rate

Nµ = 1. We do not have an explicitly defined fitness, but the infinitesimal drift in the

traits is perpendicular to the region of values that cannot invade the resident, which is

the direction of the fitness gradient.

Figure 1 gives a simulation of the process with ε = 0.01. The smooth curve is the

boundary of the viable region β1 > α1/(α1 − 1) which is the set of (α1, β1) values of

predators that can coexist with the prey. The trajectory wanders outside of the viable

region because we do not run the dynamics in (1) but simply accept mutations that

land in the correct half of the ball Bε(αε(k), βε(k)). The limiting result in Theorem 1

is not biologically sensible because the prey birth rate increases without bound. This

could be remedied by restricting the permitted values of (α, β) to a curve, but we leave

the details to the reader.

1.2 Predator Evolution

Suppose now that we have a single prey with death rate η = 1, growth rate r = β − 1,

and density u and allow our predators to evolve. The first step is to develop a criteria
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for determining coexistence of multiple predators. The next result, which is proved in

Section 3, tells us that this can be done by checking a simple algebraic condition.

Theorem 2 Predators with traits x1, ..., xN ordered by increasing ratios `i = δi/αi

can coexist with the prey (and if they do, they will converge to equilibrium) if and only

N
X

j=1

α2
j(`N − `j) < r − β`N (3)

If (3) is not satisfied, we repeatedly drop the predator with largest ` until it is satisfied.

This will give a unique, globally attracting equilibrium for initial densities in Γ+
1,N :=

{(u, v1, ..., vN ) ∈ RN+1 : 0 < u ≤ 1, vi > 0}.

Suppose now that mutations of (αk, δk) lead to a new species with αnew = αk+εU1

and δnew = δkeεU2 where the Ui are uniform on [−1,1]. Simulations suggest that we

see a growing cloud of coexisting predators with some limiting shape and all predators

have consumption rates α going off to infinity and log(`) going to −∞ (see Figures

2 and 3). We have not been able to do a complete analysis of the full two parameter

predator evolution model, so we specialize to the two cases where only α or δ varies

and the other remains fixed.

1.3 Predator Evolution, I: Fixed δ

Our first result assumes δ = 1 remains fixed and α changes. We use the following

notation:

– Nn = number of coexisting predators at time n.

– αj(n) = jth largest α amongst all coexisting predators at time n with αmin(n) :=

αNn
(n) and αj(n) = αmin(n) if j > Nn.

– dj(n) = αj(n) − αmin(n) = differences between predator fitness levels.

– ∆n = (d1(n), d2(n), . . .)

In the case of fixed δ, writing N for Nn, the condition (3) simplifies to

N
X

j=1

αj

αN
(αj − αN ) < r −

β

αN
(4)

Since αj/αN > 1, this implies that all the differences αj − αN must be < r so we

define S := [0, r]N and let ‖ · ‖TV denote the total variation norm on M1(S) = space

of probability measure on S. We denote by Pα the law given an initial predator with

trait α.

Theorem 3 Suppose at time n, we choose predator j ≤ Nn at random and introduce

a mutation uniformly over (αj(n) − ε, αj(n) + ε) for some ε > 0. Let α > β/r be the

trait of the initial predator. Then the sequence Nn is tight and αmin(n) → ∞ a.s. as

n → ∞. In addition, there exists a measure πε on S and constant aε > 0 so that

‖Pα(∆n ∈ ·) − πε(·)‖TV → 0

and αmin(n)/n → aε > 0 as n → ∞.
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The proof is given in Section 4. The reason for the difference from Theorem 1 is

that a copy of the resident type can always invade (see Lemma 3) while in the case

of prey evolution, a copy of the resident type cannot invade. To explain this, think of

the resident predator as green and the invading predator as blue. The blue invaders

only suffer density dependent killing from the other blue predators, and therefore can

increase in number when rare. It is not clear that this choice is biologically reasonable

but, as we will see, it does lead to some interesting dynamics.

The key to the proof of Theorem 3 is the observation that as αN → ∞, the condition

(4) becomes
N
X

j=1

(αj − αN ) < r

and we can show that the differences ∆n are asymptotically a positive recurrent Harris

chain with stationary distribution πε. A coupling argument shows that the nonhomo-

geneous chain also converges to πε. The linear growth of αmin then follows from a

standard result on functionals of positive recurrent Markov chains.

Figure 4 illustrates the tightness of Nn and linear growth of αmin. Figure 5 suggests

that as the size of the perturbation ε → 0, the spacings between species is O(ε), and

the number of coexisting species is O(1/ε). We believe that if one converts the re-

scaled spacings ∆n/ε into a measure by assigning each one mass ε then as ε → 0, the

distribution of this measure under πε converges to a deterministic limit in which the

density of particles is roughly, but not exactly, exponential, see Figure 6.

1.4 Predator Evolution, II: Fixed α Case

If we instead fix α, but allow δ to vary, our condition for coexistence of δN > δN−1 >

· · · > δ1 becomes

δN

0

@β +
N
X

j=1

„

1 −
δj

δN

«

1

A < r. (5)

In order to ensure positive death rates, we suppose that when δj is chosen to mutate,

the new species has δ′j = δjeU where U is uniform on [−1, 1]. We could multiply U by

ε here, but since we study Xj = − log(δj), there is no loss of generality in taking ε = 1.

It is more convenient to study this model in continuous time, so we suppose that

each existing particle gives rise to mutants at rate 1. At time t, we have N(t) particles at

X1(t) > X2(t) > · · · > XN(t)(t) and particle j gives birth at rate one to a new particle

uniformly distributed over (Xj(t) − 1, Xj(t) + 1). Every time a new birth occurs, we

reorder the particles in increasing order and check

e−XN (t)

0

@β +
N
X

j=1

1− exp(−[Xj(t) − XN (t)])

1

A < r (6)

with N = N(t) + 1. If the sum is satisfied, we keep all particles. If not, we repeatedly

kill off the left-most particle until the condition is satisfied.

To get started in the analysis of this model, our first step in Section 5 is to prove

a simple result which already shows that the behavior is much different from the case

of fixed δ.
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Lemma 1 As t → ∞, Nt → ∞ a.s.

Let St be a random walk starting at 0 that takes jumps at rate 1 uniform on [−1, 1].

The theory of large deviations tells us that

Λ(x) = lim
t→∞

1

t
log P (St > xt)

exists and can be calculated in terms of E exp(θSt).

Theorem 4 Let Xmin(t) = XN(t)(t) and Xmax(t) = X1(t) be the positions of the

leftmost and rightmost particles at time t. Then Xmax(t)/t → a and Xmin(t)/t → b

a.s. as t → ∞ where a ≈ 0.9053 and b ≈ 0.5667 satisfy the equations

Λ(a) = −1, Λ(b) = −1 + b. (7)

Furthermore, we have lim inf(1/t) log Nt ≥ b a.s.

We will prove Theorem 4 in Section 5. To explain why it is true, let Zt be the

branching random walk in which particles give birth at rate 1 and their offspring are

displaced by an amount uniform on [−1, 1]. A result of Biggins (1977) implies that the

position of right-most particle in the branching random walk rt/t → a and

1

t
log Zt([xt,∞)) → 1 + Λ(x)

for 0 ≤ x < a so (1/t) log Zt([bt,∞)) → b. Since we can construct Zt in such a way

that all the particles in X(t) are in Zt, we must have limsup Xmax(t)/t ≤ a a.s. The

definition of b and an argument by contradiction using (6) gives the upper bound

lim supt→∞ Xmin(t)/t ≤ b for the speed of the left-most particle.

To bound lim inft→∞ Xmax(t)/t, we consider the following “toy” model: at any

time t, we have M particles with positions Y M
1 (t) > · · · > Y M

M (t), all giving birth at

rate one. Whenever a new particle is born, we reorder and delete the leftmost particle.

Using techniques from Section 4, we could show that Y M
1 (t)/t → aM , but instead we

complete the proof of the first result by showing

lim
M→∞

lim inf
t→∞

Y M
1 (t)/t = a. (8)

Nina Gantert has pointed out to us that Berard and Gouere (2008) have recently proved

a − aM ∼ C(log(M))2

for a related discrete time model in which all M particle split into two and then you

take the right-most M . This confirms a slow rate of convergence, which was predicted

much earlier by Brunet and Derrida (1997), and which we observed in our numerical

attempts to verify the limit in (8), see Figure 7.

To bound lim inft→∞ Xmin(t)/t, we study the branching random walk with killing

at −K + γt. Our result given in Lemma 12 is a cousin of a result of Kesten (1978) for

branching Brownian motion on [0,∞) where during its lifetime, each particle moves

according to Brownian Motion with drift µ < 0 and variance σ2, all particles die at rate

c and give birth to a mean m number of offspring upon death with particles killed when

they hit 0. Kesten’s result states that the system has positive probability of survival

when µ < µ0 = (2σ2c(m − 1))1/2 (Theorem 1.1, (1.6)), and in this supercritical case,
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if we start with one particle at x, then for every interval I , Zt(I)/ExZt(I) → W a.s

for some finite random variables W (Theorem 1.1 (1.5)). However, Kesten’s efforts are

concentrated on the exotic behavior in the critical case µ = µ0, and he says “so far

we have only an ugly and complicated proof of the growth results in the supercritical

case, and we shall therefore not prove Theorem 1.1.” In section 5, we show that using

ideas of Biggins (1977) it is easy to prove results for (1/t) log Zt([ct,∞)).

The result lim supt→∞ Xmin(t)/t ≤ b implies that if T is large and we start the

branching random walk with one particle at Xmax(T ) at time T then all of the particles

in the branching random walk with killing at (b+ε)t are present in the Xi(t). If Xmin(t)

is too far to the left then we would contradict (6). The last part of the proof suggests

that most particles are near Xmin(t). Simulations (see Figure 8) further suggest that:

Conjecture. If we put mass exp(−Xmin(t)) at Xi(t) − Xmin(t) then this measure

converges to a deterministic limit, which again is roughly but not exactly exponential.

However, proving this seems to be a difficult problem.

The final conclusion lim inft→∞(log Nt)/t ≥ b follows from the result for Xmin(t)

and the proof of Lemma 1. Since the result comes from replacing (6) by e−XN (t)(β +

N) < r, it seems unlikely that b is the right constant, but finding the right constant

would require proving the conjecture.

The proof of lim inft→∞ Xmin(t)/t ≤ a leads to the following

Corollary. If we run the predator evolution model with fixed δ in continuous time and

let a∗ε = limt→∞ αmin(t)/t, then limε→0 a∗ε = a.

2 Prey Evolution

In this section we will prove Theorem 1, which assumes ηi = 1 in (1). The first step is

to consider the case of one predator and one prey. The densities u1, v of the prey and

predator, respectively are governed by

du1

dt
= u1 (β1(1 − u1) − 1 − α1v)

dv

dt
= v (α1u1 − δ − γv) .

To determine when the predator and prey can coexist, we note that if β1 > 1 then

in the absence of predators the prey reach an equilibrium density

u∗
1 = (β1 − 1)/β1. (9)

If the prey are in equilibrium then the predators can increase when v is small if

α1u
∗
1 − δ > 0. (10)

Using the formula for u∗
1, we see that this holds if and only if α1 > δ and

β1 >
α1

α1 − δ
> 1. (11)

We call this set of (α1, β1) the viable region for prey. See Figure 9.
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A little algebra shows that when (11) occurs, there is a predator-prey equilibrium

with

u∗∗
1 =

(β1 − 1)γ + α1

β1γ + α2
1

v∗∗ =
(β1 − 1)α1 − β1

β1γ + α2
1

. (12)

To see when a second species of prey can coexist, we note that a prey species with

parameters (α2, β2) can invade the first prey and the predator in equilibrium when

0 < β2(1− u∗∗
1 ) − 1− α2v

∗∗

= β2
γ + α2

1 − α1

β1γ + α2
1

− 1 − α2
(β1 − 1)α1 − β1

β1γ + α2
1

. (13)

By interchanging the subscripts 1 and 2 we get the condition for the first prey to invade

the second prey and predator in equilibrium. If both prey species are viable and the

two invadability conditions hold, then Durrett (2002) showed (see Section 7.1) there is

coexistence in the ODE, i.e., the three densities stay bounded away from 0.

Following Durrett (2002), we use the notation � for “invades” (species j can invade

species 1, ..., j − 1 in equilibrium if its density will increase whenever 1, ..., j − 1 are

in equilibrium and a small initial density of j’s is introduced). To make it easy to use

this notation, our predator will be referred to as species 3. Using the new notation and

defining

F (y1, y2) = β2(1 − u∗∗
1 (y1)) − 1 − α2v∗∗(y1),

where yi = (αi, βi), i = 1, 2, we have 2 � 1, 3 if and only if

y2 ∈ {y : F (y1, y) > 0} =: Ly1

and 1 � 2, 3 if and only if

y2 ∈ {y : F (y, y1) > 0} =: Uy1
.

This describes a splitting of R2 into regions describing the outcome of the competition

between the mutant and resident types, namely, if we restrict ourselves to values of

y1, y2 in the viable region with β1, β2 > 1, then coexistence will occur if and only if

y2 ∈ Ly1
∩ Uy1

. We call the boundary curves Ly1
= {y : F (y1, y) = 0} and Uy1

= {y :

F (y, y1) = 0} the invadability curves. The situation is depicted in Figure 9.

Calculus shows that the curve Uy1
is tangent to the curve Ly1

at y1. Let N (y1)

denote the corresponding unit normal vector:

N (y1) = c(−(1− u∗∗
1 (y1)), v∗∗(y1)) (14)

With this notation in hand, we can complete the:

Proof of Theorem 1. If we introduce mutations that are chosen uniformly over the ball

of radius ε around the current type (α, β) then the tangency of the invadability curves

implies that the probability of coexistence is of order ε2 and hence if nε is the first

time coexistence occurs, εnε → ∞ in probability. Ignoring coexistence, mutations to

points below the line Uyε(n) will not invade, while those to points above Uyε(n) will

displace the current species yε(n).

We claim that the infinitesimal mean

E((α(1), β(1)) − (α(0), β(0)) = ε
2

3π
N (α(0), β(0)). (15)
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To verify this, note that if we choose a point at random from the upper half of the ball

of radius 1 in the (α, β) plane, then the β component has density (4/π)
p

1 − β2 and

hence mean
4

π

Z 1

0
β
p

1 − β2 dy =
4

3π
.

(15) then follows by noting that choices from the half of the ball above Uyε(n) occur

with probability 1/2.

It is clear from scaling that the entries in cov [(α(1), β(1)) − (α(0), β(0))] are of

order ε2. From this and the previous result we see that the infinitesimal mean and

covariance of y([t/ε]) converge to b(y) = (2/3π)N (y(0)) and a(y) = 0 respectively. To

conclude weak convergence using Theorem 4.1 in Chapter 7 of Ethier and Kurtz (1986)

now, we only have to show that the martingale problem for (a, b) is well posed. To do

this we note that (i) b is Lipschitz continuous and (ii) on the boundary of the viable

region, β = α/(α − δ) so the slope of Ly1
at y1 is

β1(α1 − δ) − α1

γ + α1(α1 − δ)
= 0

implying the drift points straight up, and it is impossible for the ODE to leave the

viable region. �

3 ODE facts

To begin the study of predator evolution, we need to examine the limiting behavior of

one prey/ multiple predator systems in which dynamics evolve according to (1). The

goal of this section is the derivation of Propositions 1, 2, and 3, which together imply

Theorem 2.

Continuing with earlier notation, we let vj , j = 1, ...,N be the densities of N

different predator species competing for a single prey with density u. For simplicity,

we assume that η = 1 and all γj = 1, so our equation becomes:

du

dt
= u

0

@β(1− u) − 1 −
X

j

αjvj

1

A

dvj

dt
= vj

`

αju − δj − vj

´

on ΓN = {(u, v1, ..., vN ) : 0 ≤ u ≤ 1, vj ≥ 0,∀ 1 ≤ j ≤ N}.

We suppose that β > 1 so that the prey have equilibrium density σ0 = (β − 1)/β

in the absence of any predators, and let r = β − 1 be the intrinsic growth rate of the

prey. Each predator is characterized by a vector of traits xj = (αj , δj). If n ≤ N then

on the face

Γn = {v ∈ ΓN : vn+1 = · · · vN = 0}

we can solve the equations αju − δj − vj = 0 for vj , j = 1, ..., n to get

σn
j = αjσ

n
0 − δj (16)

and substitute these expressions into the equation r−βu−
Pn

j=1 αjvj = 0 to conclude

r − βσn
0 =

n
X

j=1

α2
jσn

0 −
n
X

j=1

αjδj
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Letting Tn =
Pn

i=1 αiδi and Sn =
Pn

i=1 α2
i , we have

σn
0 =

r + Tn

β + Sn
(17)

From these expressions, we can see that σn
0 > 0. If σn

j > 0 for 1 ≤ j ≤ n, then

predators x1, ..., xn can coexist with equilibrium density σn on Rn+1. Durrett (2002)

derives conditions for coexistence in terms of invadability conditions. The next result

shows that in our system, only the top level conditions are needed

Lemma 2 Predators x1, ..., xn can coexist if and only if

xj � x1, ..., xj−1, xj+1, ..., xn, ∀ j = 1, ..., n

i.e., predator xj can invade the prey and the other n− 1 predators in their equilibrium.

Proof Using (17) and indicating the dependence on the predator parameters in the

notation we have

αjσ
n
0 (x1, . . . , xn) =

αjr + α2
j δj + αj

P

i 6=j αiδi

β + Sn

Adding δj − δj(β + Sn)/(β + Sn), the above

= δj +
αjr − βδj +

P

i 6=j(αjαiδi − α2
i δj)

β + Sn

= δj +
(β +

P

i 6=j α2
i )(αjσ

n−1
0 (x1, ..., xj−1, xj+1, ..., xn) − δj)

β + Sn

since (β +
P

i 6=j α2
i )σ

n−1
0 = r +

P

i 6=j αiδi. From this it follws that σn
j will be positive

if and only if

αjσ
n−1
0 (x1, ..., xj−1, xj+1, ..., xn) > δj

which is the invadability condition.

Let `j = δj/αj . Dividing by αj in the calculation in the previous lemma, and taking

j = n

Lemma 3 If xn � x1, ..., xn−1, then σn
0 (x1, ..., xn) > `n.

This implies that if xn can invade then there is no limit to the number of copies of

this species that can invade. The next result shows that `j is a good measure of the

competitive ability of the predator.

Lemma 4 Suppose that species x1, ..., xn coexist and let xn+1 be some other species.

If `n+1 < `j for some j = 1, ..., n, then xn+1 � x1, ..., xn.

Proof Without loss of generality, assume `n+1 < `n. Suppose that xn+1 cannot invade.

Then since x1, ..., xn coexist, xn � x1, ..., xn−1, and therefore, by the definition of

invadability and Lemma 3, we have

`n+1 > σn
0 (x1, ..., xn) > `n

a contradiction.
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The next result greatly simplifies the process of determining which predators coexist

in equilibrium.

Proposition 1 Given any set x1, ..., xn of predators and any k ≤ n, there is at most

one set of k predators that can coexist and not be invaded by any other xj, j = k +

1, ..., n. Furthermore, if we assume that the xi’s are labeled with increasing `i, this set

is x1, ..., xk.

Proof Without loss of generality, suppose that the xi’s are ordered by increasing `i and

consider any set of k predators that is not predators x1, ..., xk. If this set of k predators

happens to coexist, then by Lemma 4, whichever of x1, ..., xk is not in the set, can

invade the coexisting equilibrium.

Finally, we can prove convergence to equilibrium.

Proposition 2 Suppose we have a collection of predators x1, ..., xN ordered by in-

creasing `’s and let n ≥ 0 be the largest number of predators that can coexist on Γ in

such a way that xj � x1, ..., xn for j = n + 1, ...,N . Then σn = (σn
0 , σn

1 , . . . , σn
n) is a

globally attracting fixed point on ΓN with Lyapunov function

V (u, v1, ..., vN ) = u − σn
0 log u +

n
X

i=1

(vi − σn
i log vi) +

N
X

i=n+1

vi.

Proof Differentiating V yields

dV

dt
= (u − σn

0 )(r − βu −
n
X

i=1

αivi −
N
X

i=n+1

αivi)

+

n
X

i=1

(vi − σn
i )(−δi − vi + αiu) +

N
X

i=n+1

vi(−δi − vi + αiu)

= −β(u − σn
0 )2 −

n
X

i=1

(vi − σn
i )2 −

N
X

i=n+1

vi(δi − αiσ
n
0 )) −

N
X

i=n+1

v2
i .

All terms except the second to last are obviously negative and this term is too since

xj � x1, ..., xn is by definition δj > αjσn
0 .

To complete the proof of Theorem 2, we need to show that the algebraic condition

(3) is equivalent the n invadability conditions given in Lemma 2. This is done in the

following proposition.

Proposition 3 Suppose we have x1, ..., xN ordered by increasing `i . Then x1, ..., xN

can coexist if and only if

β`N +
N
X

j=1

α2
j(`N − `j) < r. (18)
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Proof We will show that condition (18) is equivalent to the condition xN � x1, ..., xN−1

and implies the other n − 1 invadability conditions necessary for coexistence. By defi-

nition, xN � x1, ..., xN−1 is true if and only if

`N < σN−1
0 (x1, ..., xN−1) =

r +
PN−1

j=1 α2
j`j

β +
PN−1

j=1 α2
j

(19)

where we have used `j = δj/αj on the right. Multiplying both sides by the denomi-

nator of the right and then rearranging terms, we obtain (18) (since `N − `N = 0).

Furthermore, since `N > `k, for all k = 1, ...,N − 1, (18) implies that same equation

holds if we replace `N by `k, k < N on the left and reversing the algebra used to derive

(18) from (19) shows that this is equivalent to xk � x1, ..., xk−1, xk+1, ..., xN , proving

the result.

4 Proof of Theorem 3

In this section, we assume that all predators have δj = 1, and we use a mutation

distribution Fε(α) as uniform on [α − ε, α + ε]. In this case, our rule for coexistence

(18) can be rewritten as:

N
X

j=1

αj

αN
(αj − αN ) < r −

β

αN
. (20)

We recall the following definitions from the introduction:

– Nn is the number of coexisting species at time n.

– αj(n) is the jth largest α amongst all coexisting species at time n with αj(n) =

αNn
(n), j ≥ Nn.

– ∆n = (dn
1 , ..., dn

j , ....) with dj(n) = αj(n) − αNn
(n) ∈ [0, r].

We also set αmin(n) = αNn
(n) and Yn = (αmin(n), ∆n). Clearly, Yn is a Markov

Chain. Our first step is to show

Lemma 5 The sequence Nn is tight.

Proof Define the sets Am = [0, r]m × {0}N, for m ∈ N. Then ∆n ∈ Am if and only if

Nn ≤ m. Let M = M(r, ε) = d4r
ε e be the smallest integer > 4r/ε and suppose that

Yn = y ∈ R+ × S. From (20), at most M of the αj(n)’s can be ≥ αmin(n) + ε/4.

With probability at least 1/4M , the next M mutants will be inserted to the right of

αmin(n) + ε/2. But then none of the predators to the left αmin(n) + ε/4 can be in the

coexisting set at time n + m because otherwise, Proposition 1 would imply that any

predator with α > αmin(n) + ε/2 would also be in the set, and since there are at least

M such predators,
∞
X

j=1

dj(n + M) > M(ε/2 − ε/4) > r

contradicting (20). Therefore, we have the uniform lower bound

P (∆n+M ∈ A2M |Yn = y) ≥ 4−M (21)

which holds for all y ∈ R+ × S. Since this bound is uniform in y, tightness follows.
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Lemma 6 As n → ∞, the marginal transition probabilities for ∆n:

p(αmin(n), ∆, ·) := P (∆n+1 ∈ ·|Yn = (αmin(n), ∆))

converge in total variation to the transition probabilities for a time homogeneous Markov

Chain Xn, in which (22) is used in place of (20) in the evolution algorithm of Theorem

2.

Proof Lemma 8 will show that αNn
(n) → ∞ a.s. as n → ∞. (The proofs of Lemmas 7

and 8 do not use the result of this lemma.) Combining αNn
(n) → ∞ a.s. with the fact

that 0 ≤ αj(n) − αNn
(n) ≤ r for all n ≥ 1, j ≤ Nn, we can see that (20) simplifies to

Nn
X

j=1

dj(n) < r (22)

as n → ∞. This implies that, in the limit, the differences evolve according to the

following algorithm: pick a species 1 ≤ k ≤ Nn at random, insert a random mutation

in (dk(n) − ε, dk(n) + ε), and then modify the algorithm in Theorem 2 to use (22)

instead of (20) with the rule that we shift the differences before calculating the sum if

the new insertion is left of 0.

Before proving the required fact that αmin(n) → ∞ a.s., we examine the limiting

behavior of Xn.

Lemma 7 Xn is a positive recurrent, Harris Chain and hence, has a unique stationary

distribution π.

Proof Following the arguments in Athreya and Ney (1978), it suffices to show that

there exists a “regenerative” set A ⊂ S satisfying:

(C1) Px(τA < ∞) = 1 for all x ∈ S where τA is hitting time of A.

(C2) There exists a probability measure ρ on A, λ > 0, and κ ∈ N so that pκ(x, B) ≥

λρ(B) for all x ∈ A, B ⊂ A.

The same calculation that led to (21) shows that A2M satisfies the condition in

(C1), but (C2) may not hold for this set. We therefore define a set G (for good) that

will be reached from A2M with probability 1 and satisfies (C2). To this end, let

κ = 1 + sup

8

<

:

k :

k
X

j=1

j =
k(k + 1)

2
< 2r/ε

9

=

;

and choose η small enough so that

kκ
X

j=1

j(ε/2 + η) < r. (23)

Let G = {di − di+1 ∈ (ε/2, ε/2 + η) for i < κ and di = 0 for i ≥ κ}. In other words,

d ∈ G corresponds to κ species coexisting with their α’s with spacings between ε/2

and ε/2 + η units apart.

The first step in showing that (C1) and (C2) hold for A = G is to show that if

Xn = x ∈ A2M , then we can get to A in κ steps by the following path: first, we
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choose d1 (the predator with the largest values of α) as our mutating predator at stage

n + 1 (which happens with probability at least (2M)−1) and then mutate it to g1 in

(d1 + ε/2, d1 + ε/2 + η) (which happens with probability η/(2ε)). The next step, we

mutate g1 (which happens with probability at least (2M + 1)−1) and then mutate to

g2 ∈ (g1 + ε/2, g1 + ε/2 + η). If we continue for κ steps, then each gj , 1 ≤ j ≤ κ will

be at least as big as d1 + jε/2 so that by (22), no member of the coexisting set at time

n will remain at time n + κ. Furthermore, by (23), the shifted set d′j = gκ−j+1 − g1,

1 ≤ j ≤ κ will satisfy (22) and therefore, Xn+κ ∈ G. It is clear from the construction

that we have

pκ(x, G) ≥

„

η

2ε(2M + κ)

«κ

(24)

To prove (C2) holds, let B = {di − di+1 ∈ Bi ⊂ (ε/2, ε/2 + η) for i < κ and di = 0

for i ≥ κ}. Then if x ∈ G, taking the same path that led to (24) leads to

pκ(x,B) ≥
|B1| · · · |Bκ−1|

(2ε)κ−1
(25)

which gives us (C2) by taking ρ to be the normalized, Lebesgue measure on the con-

figurations in G.

To check positive recurrence, we let τA be the first hitting time of our regenerative

set G. (21) and (24) tell us that there is a positive constant η = η(r, ε) so that

p2M+κ(x, G) ≥ 2η > 0

for any x ∈ S. Therefore, we have Ex(τA) ≤ (2M + κ)/2η < ∞, completing the proof.

Lemma 8 αmin(n) → ∞ a.s. as n → ∞.

Proof We can modify the construction in the previous Lemma to show that there exist

constants K,J ≥ 1, ρ > 0 so that

P (α1((n + 1)K) − α1(nK) ≥ Jε/2|YnK = y) ≥ ρ

for any y ∈ R+ ×S and n ≥ 0. Therefore, α1(n) → ∞ a.s. by the law of large numbers

and the result follows since α1(n) − αmin(n) < r.

Theorem 5 As n → ∞, ‖Pα(∆n ∈ ·) − π(·)‖TV → 0 for any initial α ∈ R+.

Proof It suffices to prove the result for the subsequences n = mκ + j for 0 ≤ j < κ,

but then by using the Markov property at time j, it is enough to prove the result for

n = mκ and a general initial distribution. To prepare for the proof, recall that one

can modify the state space of a Harris recurrent Markov chain to have a point ζ that

corresponds to being distributed on the set A according to ρ with the exact position

being independent of the past.

To prove the result, we will construct a process (X̃n, ∆̃n) on S × S so that the

marginal law of ∆̃n is the law of ∆nk, the marginal distribution of X̃n is π for all n,

and P(X̃n 6= ∆̃n) → 0 as n → ∞. Let U1, U2, . . . and V1, V2, . . . be independent and

uniform on [0, 1]. To begin, let q = pκ and define Jn : S × [0, 1] → S by

P (Jn(x, Un) ∈ B) = q(αmin(nκ), x, B).
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Suppose that X̃n has distribution π. Define Zn+1 = Jn(X̃n, Un) and

µn = P (Zn ∈ A|αmin(nκ)) =

Z

q(αmin(nκ), x, A)π(dx)

Now conditional on the value of αmin(nκ) we construct X̃n+1 so that (X̃n+1, Zn+1)

has measure

µn ∧ π :=
1

2
(µn + π − |µn − π|)

on the diagonal and X̃n+1 has marginal distribution π. It follows that

ηn+1 ≡ P(X̃n+1 6= Zn+1) = ‖µn − π‖TV

=

‚

‚

‚

‚

Z

q(αmin(nκ), x, ·)π(dx) −

Z

q(x, ·)π(dx)

‚

‚

‚

‚

TV

→ 0

as n → ∞ by Lemma 6.

When {∆̃n = X̃n}, we set ∆̃n+1 = Jn(X̃n, Un) = Zn+1 so that

P (X̃n+1 6= ∆̃n+1, X̃n = ∆̃n) ≤ ηn+1

On {X̃n 6= ∆̃n}, we take ∆̃n+1 = Jn(X̃n, Vn). (25) implies that q(x, ζ) ≥ λ, so it

follows from Lemma 6 that if αmin(nκ) ≥ α0 then q(αmin(nκ), x, ζ) ≥ λ/2, and we

have

P (X̃n+1 = ∆̃n+1|X̃n 6= ∆̃n) > λ/2

so that if ζn = P (X̃n 6= ∆̃n), then

ζn+1 ≤ (1− λ/2)ζn + ηn+1.

Iterating, yields the inequality

ζn+1 ≤
n+1
X

i=1

(1 − λ/2)n+1−iηi → 0

Since ‖P (∆nκ ∈ ·) − π(·)‖TV ≤ P (X̃n 6= Ỹn), this proves the result.

It remains to prove the result on the linear growth of αmin(n). Since αj −αmin ≤ r,

it suffices to establish this for αmax. To do this, we look at the chain Zn = (∆n, Un, Vn)

with Un uniform on [0, 1] giving the index k = dNnUne of the value to be mutated, and

Vn independent uniform on [−ε, ε] giving the change in the value due to mutation. If

∆n follows the dynamics of the limiting chain, then it is clear that the distribution of

Zn will converge in distribution to π̃ = π×uniform[0, 1]×uniform[−ε, ε]. Let f(Zn) =

αmax(n)−αmax(n− 1) be the amount shifted at the nth step. Then f is non-negative

and bounded above by ε so the strong law for functionals of Markov chains implies

αmax(n) − αmax(0)

n
=

1

n

n
X

m=1

f(Zm) →

Z

f(x)π̃(dx) = ᾱ

To conclude that ᾱ > 0 we note that f > 0 with positive probability. The last result

was for the time homogeneous limiting chain, but can be extended to the real chain

using the coupling in the proof of Theorem 5. This completes the proof of Theorem 3.
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5 Proof of Theorem 4

Recall that the condition for coexistence is

δN

0

@β +

N
X

j=1

„

1 −
δj

δN

«

1

A < r. (26)

Proof of Lemma 1. Let Xi(t) = − log(δi(t)) and X1(t) > · · · > XM(t) be the rightmost

M particles at this time. It should be clear from (26) that if

e−XM (T )(β + M) < r (27)

then we will have Nt ≥ M for t ≥ T . Let y = − log(r/(β + M)). The right most

particle is increasing in t. Since the number of particles changes by ≤ 1 each time and
P∞

m=1 1/m = ∞ the right-most particle gives birth to the right of its current position

plus 1/2 infinitely many times. Thusd at some time T , we will have M points ≥ y and

(27) will hold. �

5.1 Asymptotics for Xmax

By Lemma 1, we know there exists some time T so that Nt ≥ M for t ≥ T . By the

proof of the last lemma we can take T to be the first time e−XM (T )(β +M) < r, which

is a stopping time, so the future behavior of the process is not affected.

Lemma 9 If we start the toy model at time T with positions equal to the rightmost M

particles at this time X1(T ) > · · · > XM(T ), then the Xi(t) and Y M
i (t) can be defined

on the same space so that Xi(t) ≥ Y M
i (t) for all 1 ≤ i ≤ M and t ≥ T .

Proof Couple the birth times of Xi(t) and Y M
i (t) and the displacements of their off-

spring. Births of particles from Xk(t) for k > M may cause the X ’s to get ahead of the

Y ’s, but coupled births for i ≤ M cause the vectors of X ’s and Y ’s to move in parallel.

For our next comparison consider the branching random walk started with one

particle at Y M
1 (0). Let Tk be the time of the kth birth, with T0 = 0, and for t ∈

[Tk−1, Tk) let ζk
1 (t) > ζk

2 (t) > · · · > ζk
k (t) be the locations of the particles present.

Lemma 10 We can couple the branching random walk and the toy model so that for

t ∈ [Tk−1, Tk), Y M
j (t) ≥ ζk

j (t) for 1 ≤ j ≤ k and k < M .

Proof Couple the birth times of ζk
j (t) and Y M

j (t) for j ≤ k and t ∈ (Tk−1, Tk ], i.e.,

there will be no births in (Tk−1, Tk) and the same particle will give birth at time Tk .

Births of particles from Yj(t) for j > k may cause the Y ’s to get ahead of the ζ’s, but

coupled births for j ≤ k cause the vectors of ζ’s and Y ’s to move in parallel.

Let Zt be a branching random walk started from one particle at 0, in which particles

give birth at rate 1 and displacements are uniform on [−1,1]. It is well known that the

mean measure

EZt(A) = etP (St ∈ A) (28)



17

where St is a continuous time random walk that jumps at rate one and takes step

uniform on [−1,1]. If we let φ(θ) = (eθ − e−θ)/2θ be the moment generating function

for the displacements, then

EeθSt =
∞
X

n=0

e−t tn

n!
φn(θ) = exp(t(φ(θ) − 1))

Chebyshev’s inequality implies that if θ > 0

P (St > xt) ≤ exp(−t(θx − φ(θ) + 1)) (29)

and standard large deviations results imply that for x ≥ 0,

1

t
log P (St > xt) → Λ(x) = −

„

sup
θ>0

{θx − φ(θ)}+ 1

«

(30)

where Λ(0) = 0 and Λ is strictly decreasing on [0,∞).

Biggins (1977), Theorem 2 shows that the right-most particle in the branching

random walk Zmax(t)/t → a a.s. where a, defined in (7), is the smallest x > 0 such

that Λ(x) ≤ −1.

Lemma 11 Let BM be the time of the M th birth in the branching random walk.

lim inf
t→∞

Y M
1 (t)

t
≥

EZmax(BM )

EBM
→ a as M → ∞

Proof Repeatedly applying the comparison in Lemma 10 to the right-most particle in

the toy model, gives the first result. Biggins’ result implies

Zmax(BM )/BM → a almost surely.

Since BM = ξ1 + · · · + ξM where the ξi are independent exponentials with mean 1/i,

it is easy to see that BM/EBM → 1, so

Zmax(BM)/EBM → a almost surely.

Therefore, the result will follow from the dominated convergence theorem if we can

show that

E

„

sup
Zmax(BM )

EBM

«

< ∞.

By Cauchy Schwartz, it suffices to show

E

 

sup
t≥1

Zmax(t)

t

!2

< ∞ (31)

and

E

„

sup
BM

EBM

«2

< ∞. (32)

To prove (31), we note that (28) and (29) imply that

P (Zmax(t) > xt) ≤ et(1+Λ(x))
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and since Λ is concave with Λ(0) = 0 and Λ(a) = −1 with a < 1, it follows that for

x ≥ 1

P (Zmax(t) > xt) ≤ et(1−x)

Now if Zmax(t)/t > 2x for some t, then since Zmax(t) is non-decreasing, we must have

Zmax(s)/s > x for some s ∈ [t, t + 1] and therefore, integrating t from 1 to ∞, we see

that if x > 2

P

 

sup
t≥1

Zmax(t)/t > 2x

!

≤ e1−x

which proves (31). To prove (32), we note that EBM =
PM

i=1 1/i and

E exp(θBM ) =
M
Y

i=1

1

1 − θ/i

for 0 < θ < 1, so using Chebyshev

P (BM > yEBM ) ≤ exp

 

−θy
M
X

i=1

1

i
−

M
X

i=1

log(1− θ/i)

!

Taking θ = 1/2 and choosing c so that log(1 − x) ≥ −x − cx2 when 0 < x < 1/2, we

have

P (BM > yEBM ) ≤ exp

 

M
X

i=1

1

2i
(1 − y) +

c

4i2

!

≤ C exp

„

1 − y

2
log(M + 1)

«

= C(M + 1)(1−y)/2

Therefore if y > 3,

∞
X

M=2

(M + 1)(1−y)/2 ≤

Z ∞

2
x(1−y)/2 dy =

2(3−y)/2

(y − 3)/2

which yields (32), completing the proof.

Since the particles Xi(t) in our evolution model are a subset of those in the branch-

ing random walk, we have

lim sup
t→∞

X1(t)/t ≤ a

which proves Xmax(t)/t → a.

Proof of Corollary. If ε is small εM(M − 1)/2 < r. Using the coupling in Lemma 10

we can use the particles ζk
j , j ≤ k ≤ M , from the branching random walk started

at Xmax to get a lower bound on the right-most k ≤ M particles in the predator

evolution with fixed δ. An induction argument shows that the spacings between the

corresponding particles in the predator evolution are ≤ ε at all times. Since we have

assumed ε
PM−1

j=1 j < r the right-most k ≤ M particles are never killed. The remainder

of the proof is the same as before. �
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5.2 Asymptotics for Xmin

In order to get the speed of the leftmost particle, we will need the following result

on a branching random walk with killing which is an adaptation of Biggins (1977),

Theorems 1 and 2, which proves this result without killing.

Lemma 12 Let Zt(γ, A) denote the number of particles in A under a branching ran-

dom walk with birth rate one, displacements uniform on [−1, 1], killing to the left of

−K + γt, and started with one particle at 0. Then for any c > γ on the set of nonex-

tinction

lim
1

t
log Zt(γ, [ct,∞)) = I(c) (33)

where I(c) = 1 + Λ(c), and the probability of extinction tends to 0 as K → ∞.

Proof Theorem 2 in Biggins along with (28) and (30) yields (33) in the case of no

killing and since Zt(γ, [ct,∞)) ⊂ Zt([ct,∞)), we get the upper bound in (33). To get

the lower bound, we recall that to prove the corresponding lower bound for the process

without killing, Biggins lets Zk
m+1 be the points at time (m + 1)k that are at least kc

units to the right of their ancestor in Zk
m at time mk. |Zk

m| is a branching process with

offspring distribution |Zk
1 | so (|Zk

m|)1/m → E|Zk
1 | on the nonextinction set. Combining

(28) and (30) implies (1/k) log E|Zk
1 | → I(c) which yields the desired lower bound.

To extend this construction to the process with killing, let Z̄k
m+1 be the points at

time (m + 1)k that are at least kc units to the right of their ancestor in Z̄k
m at time

mk and are not killed by going to the left of −K + γt of mk ≤ t ≤ (m + 1)k. |Z̄k
m| is a

nonhomogeneous branching process, but for large m the killing has little effect so, on

the set of nonextinction,
1

m
log |Z̄k

m| → log E|Zk
1 |

Using (28) and (30) again gives the desired lower bound.

With this result in hand, we can do the:

Proof of Xmin(t)/t → b. When Xmin(t) increases we must have

Nte
−Xmin(t) ≥ r.

Since the particles in X are a subset of the particles in the branching random walk, it

follows that if Xmin(t) ≥ (b + ε)t,

Nte
−Xmin(t) ≤ Zt([(b + ε)t,∞))e−(b+ε)t → 0

as t → ∞ since I(c) < c for all c > b. Therefore, lim sup Xmin(t)/t ≤ b a.s.

To prove that lim inf Xmin(t)/t ≥ b a.s., let c ∈ (b, a) and ε > 0. Choose K large

enough so that the probability of extinction in the branching random walk with killing

at −k+ bt is less than ε for all k ≥ K and then take T large enough so that X1(t) ≥ ct,

for all t ≥ T (which is possible since limX1(t)/t = a) and so that bT > K . Suppose

that Xmin(t) ≤ (b− ρ)t for some ρ > 0. Then by comparing with a branching random

walk with killing at −X1(T ) + bt, we have

F (t) := e−Xmin(t)
Nt
X

j=1

(1− e−Xj(t)/Xmin(t)) (34)

≥ e−(b−ε)t(1 − e−(c−b+ε)t)Zt(b, [ct,∞)).
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But on the non-extinction set (which has probability at least 1 − ε), we have

lim
1

t
log[e−(b−ε)t(1− e−(c−b+ε)t)Zt(γ, [ct,∞))] = I(c) − b + ρ → ρ > 0

as c ↓ b and therefore, we must have Xmin(t) > (b − ρ)t eventually or there would

exist a sequence of points ti → ∞ for which F (ti) → ∞, contradicting (6). Therefore,

P (lim inf Xmin(t)/t < b) < ε and since ε is arbitrary, this proves the result.

To conclude that lim inft→∞(log Nt)/t ≥ b a.s., note that if ε > 0 then for large

times there are at least exp((I(c)− ε)t) points of X to the left of ct. Picking c close to

b and ε small gives the desired result. �
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Fig. 1 Simulation of prey evolution with ε = 0.01 when α = 4, β = 2, and δ = γ = 1.
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Fig. 2 Plots of points in two parameter predator evolution. The five clusters, from upper
left to lower right, are the characteristics of the coexisting predators at times n = 104,1.25 ×

104,1.5 × 104,1.75 × 104 and 2 × 104. x-axis is the α values and y-axis is the corresponding
values of log(δ/α). Parameters: r = 1, α(0) = 3, δ(0) = .45, ε = .01.
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Fig. 3 Plot of Nn = number of species at time n in two parameter predator evolution model
from Figure 2.
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Fig. 4 Fixed death rate predator evolution model with ε = .01 and r = 1 starting with one
predator at α(0) = 3,
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Fig. 5 Fixed death rate predator evolution model with r = 1, α(0) = 3 and varying values
of ε. Results are averages over last 25,000 iterations. Top panel shows the average number of
species; the bottom panel the maximum distance between α’s.
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Fig. 6 Fixed death rate predator evolution model with ε = .001 and r = 1. Solid line shows
dj/ε vs. ε(Nn − j) at time n = 50,000 when Nn = 17626. Dashed line gives an exponential
approximation.
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Fig. 7 Graph of speeds aM versus logM showing slow convergence to limit.
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Fig. 8 Continuous time, fixed consumption rate predator evolution model with r = 1. Solid
line shows Xj(t) − Xmin(t) vs. e−Xmin(t)(Nt − j), for j = 1, ...,Nt = 25467 at time t ≈ 20.25
(after n = 50,000 insertions). Dashed line gives an exponential approximation.
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Fig. 9 Plot of invadability curves for (α1, β1) = (2,4). For the predator, we set δ = γ = 1.
The dashed line gives the boundary of the viable region.


