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Abstract

We consider an idealized model in which individuals’ changing opinions and their social network

coevolve, with disagreements between neighbors in the network resolved either through one imitat-

ing the opinion of the other or by reassignment of the discordant edge. Specifically, an interaction

between x and one of its neighbors y leads to x imitating y with probability (1−α) and otherwise

(i.e., with probability α) x cutting its tie to y in order to instead connect to a randomly chosen

individual. Building on previous work about the two-opinion case, we study the multiple-opinion

situation, finding that the model has infinitely many phase transitions. Moreover, the formulas

describing the end states of these processes are remarkably simple when expressed as a function of

β = α/(1 − α).
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I. INTRODUCTION

In the last decade, there have been a number of studies of systems in which the states of

individuals and the connections between them coevolve, see [1, 2]. The systems considered

include evolutionary games [3]–[7] and epidemics [8]–[12], but here we will concentrate on the

spread of opinions [13]–[18]. A natural question to ask is that whether individuals develop

opinions based on the opinions of their neighbors, or whether they form connections because

they share similar opinions. Holme and Newman [19] proposed a simple physical model

(referred to as the ‘coevolving voter model’) combining these two processes. Different from

the models of cascades [20]–[22] which are also widely used in the study of opinion spread,

the coevolving voter model allows an agent to switch between different opinions and the

network topology to change accordingly, yet we assume that agents impose equal influence

over each other in contrast to multi-state complex contagions [23]–[25]. This model provides

building blocks to quantitatively study collective behaviors in various social systems, e.g.,

segregation of a population into two or more communities with different political opinions,

religious beliefs, cultural traits, etc.

Our goal in the present work is to further explore the remarkably complex behavior

present in linear voter model systems, generalizing the model proposed by Holme and New-

man [19]. In their model there is a network of N vertices and M edges. The individual at

vertex v has an opinion ξ(v) from a set of G possible opinions and the number of people per

opinion γN = N/G stays bounded as N gets large. On each step of the process, a vertex

x is picked at random. If its degree d(x) equals 0, nothing happens. If d(x) > 0, (i) then

with probability 1 − α a random neighbor y of x is selected and we set ξ(x) = ξ(y); (ii)

otherwise (i.e., with probability α) an edge attached to vertex x is selected and the other

end of that edge is moved to a vertex chosen at random from those with opinion ξ(x). This

process continues until the ‘freezing time’ τ , at which there are no longer any discordant

edges—that is, there are no edges connecting individuals with different opinions.

For α = 1, only rewiring steps occur, so once all of the M edges have been touched, the

graph has been disconnected into G components, each consisting of individuals who share

the same opinion. Since none of the opinions have changed, the components of the final

graph are all small (i.e., their sizes are Poisson with mean γN). By classical results for the

coupon collector’s problem, this requires ∼ M logM updates, see e.g., page 57 in [26]. In
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the case of sparse graphs we consider here M ∼ cN (i.e., M/N → c) so the number of steps

is O(N logN), i.e., when N is large it will be ≈ CN logN .

In contrast, for α = 0 this system reduces to the voter model on a static graph. If we

suppose that the initial graph is an Erdős-Rényi random graph in which each vertex has

average degree λ > 1, then (see e.g., Chapter 2 of [27]) there is a “giant component” that

contains a positive fraction, µ, of the vertices and the second largest component is small

having only O(logN) vertices. The voter model on the giant component will reach consensus

in O(N2) steps (see, e.g., Section 6.9 of [27]), so the end result is that one opinion has µN

followers while all of the other groups are small.

Using simulation and finite size scaling, Holme and Newman showed that there is a critical

value αc so that for α > αc all of the opinions have a small number of followers at the end of

the process, while for α < αc “a giant community of like-minded individuals forms.” When

the average degree λ = 2M/N = 4 and the number of individuals per opinion γN → 10, this

transition occurs at αc ≈ 0.46. See [28]–[31] for recent work on this model.

In [32], we studied a two-opinion version of this model in which on each step an edge

is chosen at random and is given a random orientation, (x, y). If the individuals at the

two ends have the same opinion nothing happens. If they differ, then (i) with probability

1 − α we set ξ(x) = ξ(y); (ii) otherwise (i.e., with probability α) x breaks its edge to y

and reconnects to (a) a vertex chosen at random from those with opinion ξ(x), a process

we label ‘rewire-to-same’, or (b) at random from the graph, a process we label ‘rewire-to-

random’. Here, we will concentrate on the second rewiring option, rewire-to-random. While

this process may be less intuitive than the rewire-to-same version, it has a more interesting

phrase-transition, as documented in [32].

The remainder of this paper is organized as follows. In Section II, we recall the main re-

sults from [32] that provide context for our observations of the multiple-opinion case, which

we begin to explore in Section III. We then continue in Section IV with further quantita-

tive details about the phase transitions and their underlying quasi-stationary distributions,

before concluding comments in Section V.
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II. TWO-OPINION MODEL

Suppose, for concreteness, that the initial social network is an Erdős-Rényi random graph

in which each individual has average degree λ > 1, and that vertices are assigned opinions

1 and 0 independently with probabilities u and 1− u. Simulations suggest that the system

has the following

Phase transition. For each initial density u ≤ 1/2 there is a critical value αc(u) so that

for α > αc(u), freezing occurs after O(N logN) updates and the fraction of voters with the

minority opinion at the end is ρ(α, u) ≈ u. For α < αc(u) freezing is slow, requiring O(N2)

updates, and ρ(α, u) ≈ ρ(α, 0.5).

To help understand the last statement, the reader should consult the picture in Figure

1. If the initial fraction of 1’s u = 1/2 then as α decreases from 1, the ending density

ρ(α, 1/2) stays constant at 1/2 until α = αc(1/2) and then decreases to a value close to 0

at α = 0. For convenience, we call the graph of ρ(α, 1/2) for α < αc
.
= 0.74, the universal

curve. If the initial density is u < 1/2, then the ending density ρ(α, u) stays constant at u

until the flat line (α, u) hits the universal curve and then ρ(α, u) ≈ ρ(α, 0.5) for α < αc(u).

Figure 2 shows the average freezing time (i.e., number of updates needed to reach the

frozen configuration) at each α. Below the critical α freezing takes almost O(N2) updates

while it only requires O(N logN) updates above criticality, and where the transition occurs

agrees with critical α’s in Figure 1. The main aim of [32] was to use simulations, heuristic

arguments, and approximate models to explain the presence and properties of this universal

curve describing the freezing states that result from the slow-freezing process. To make it

easier to compare the results here with the previous paper, we rescale time so that times

between updating steps are exponential with rate M , where M is the total number of edges.

Let ξt(x) be the opinion of the voter at x at time t. Analogues to the voter model on a

static finite torus, for the two-opinion coevolving voter model we find the following (see [32]

for details)

Quasi-stationary distributions. Let v(α) = ρ(α, 0.5). If α < αc(1/2) and v(α) < u ≤
1/2 then starting from product measure with density u of 1’s (i.e., ξ0(x) are independent

and equal to 1 with probability u), ξt(x) converges rapidly to a quasi-stationary distribution

να,u. At time tM the coevolving voter model looks locally like να,θ(t) where the density θ(t)
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FIG. 1. Fraction of the minority opinion at the end as the rewiring probability α varies, starting

from Erdős-Rényi graphs with N=100,000 nodes and average degree λ = 4 [32]. Each curve

corresponds to a different initial density u of 1’s. The final fractions of the minority below phase

transitions follow an universal curve independent of the initial fractions.

changes according to a generalized Wright-Fisher diffusion process

dθt =
√

(1− α)[cαθt(1− θt)− bα]dBt (1)

until θt reaches the two absorbing states v(α) or 1−v(α), the two solutions of cαx(1−x) = bα.

In (1) Bt is a standard Brownian motion and cα and bα are unknown coefficients of the

‘arch’ studied in the following sections. To begin to explain the behavior of θt given in (1),

note that when an edge is picked with two endpoints that differ, a rewiring will not change

the number of 1’s, while a voting event, which occurs with probability (1 − α), will result

in an increase or decrease of the number of 1’s with equal probability. Thus the quantity

under the square root is (1−α)N01/M . When θt = u the rate at which 0-1 edges are chosen

is equal to the expected fraction of 0-1 edges under να,u, which is cαu(1− u)− bα.

To further explain the phrase “quasi-stationary distributions” in this context, we refer

the reader to Figure 3. Let N1(t) be the number of vertices in state 1 at time t, N01(t) be the

number of 0-1 edges (that is, the number of edges connecting nodes x and y with ξ(x) = 0,

ξ(y) = 1). Similarly, let Nabc(t) be the number of connected triples x-y-z with ξ(x) = a,

ξ(y) = b, and ξ(z) = c. The top panel of Figure 3 plots N01(t)/M versus N1(t)/N for five

different simulations (with different initial densities, u) for α = 0.5. Note that in each case

the simulation rapidly approaches a curve ≈ 1.710x(1 − x) − 0.188 and then diffuses along

5



0 0.2 0.4 0.6 0.8 1
10

4

10
6

rewiring probability α

av
er

ag
e 

fr
ee

zi
ng

 ti
m

e

 

 

u=0.1
u=0.3
u=0.5

FIG. 2. Freezing time (i.e., number of updates needed to reach the frozen configuration) at each

rewiring probability α. Each point is an average of 20 simulations, starting from Erdős-Rényi

graphs with N = 104 nodes and average degree λ = 4. Each curve corresponds to a different initial

density u of 1’s. Below the critical α freezing takes almost O(N2) updates while it only requires

O(N logN) updates above criticality.

the curve until freezing is reached (N01 = 0). At both of the possible freezing points on the

curve, the fraction of the minority opinion is ≈ 0.12, in accordance with the simulation in

Figure 1.

The bottom panel of Figure 3 similarly plots N010(t)/N versus N1(t)/N for α = 0.5

and u = 1/2. Again the simulation rapidly approaches a curve (approximately cubic) and

diffuses along it until freezing is reached. Since N010 = 0 if N01 = 0, and it is very unlikely

that all 0-1’s only occur in 0-1-1 triples, the zeros of the cubic curve for 0-1-0 and quadratic

curve for 0-1 coincide.

One can repeat the simulations in Figure 3 for other network measurements, with the

result that their values are similarly determined by the density u(t) = N1(t)/N . This is some-

what analogous to a stationary distribution from equilibrium statistical mechanics—e.g., the

Maxwell-Boltzmann distribution associating the velocity distribution with the temperature.

We call our distributions quasi-stationary because our system is a finite state Markov chain,

which will eventually reach one of its many absorbing states N01 = 0, and hence there is no

true stationary distribution. Nevertheless, an improved understanding of the system is ob-

tained from these observations, displaying a fast dynamics rapidly converging to a family of

neutrally-stable quasi-stationary distributions followed by slow, diffusive dynamics through
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FIG. 3. (Color online) (Top) Evolution of the fraction of edges that are discordant 0-1 edges,

N01(t)/M , versus the fraction of 1’s N1(t)/N when α = 0.5 for the rewire-to-random dynamic.

Five simulations starting from u=0.2, 0.35, 0.5, 0.65, and 0.8 are plotted in different colors. Each

simulation starts from an Erdős-Rényi graph with N=100,000 nodes and average degree λ = 4.

After initial transients, the fraction of discordant edges behaves as a function of the population of

opinions. (Bottom) Similarly, the number of 0-1-0 connected triples behaves as a function of N1/N

after an initial transient (one simulation).

the space local to the quasi-stationary distributions until freezing is reached.

As shown in [32], the behaviors for the rewire-to-same model in terms of quasi-stationary

distributions are very similar, but with small differences from the rewire-to-random model

that yield fundamentally different freezing states. In rewire-to-same, there are quasi-

stationary distributions ν ′
α,u under which the expected fraction of 0-1 edges is c′αu(1 − u).

Again the simulation comes rapidly to this curve and diffuses along it until freezing is

reached. That is, unlike Figure 3 (Top), the arches of quasi-stationary N01/M values versus
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N1/N maintain their zeros at N1/N = {0, 1}. Thus, for α < α′
c(1/2), the minority fraction

obtained at the freezing time is always ≈ 0 for rewire-to-same.

III. MULTI-OPINION MODELS

Böhme and Gross [33] have studied the three-opinion version of the coevolving voter

model with rewire-to-same dynamics. In this case, the limiting behavior is complicated –

one may have partial fragmentation (1’s split off rapidly from the 2’s and 3’s) in addition to

full fragmentation and coexistence of the three opinions. See their Figures 3–5. As we will

see in the present section, the behavior of the multi-opinion rewire-to-random model is much

simpler because small groups of individuals with the same opinion will be drawn back into

the giant component. We thus aim to extend the understanding of the two-opinion model

behavior to larger numbers of opinions.

Consider now the k-opinion model in which voters are assigned independent initial opin-

ions that are equal to i with probability ui. Let u = (u1, u2, ..., uk) and let N6= be the

number of edges at which the endpoint opinions differ. When k = 3, frequencies of the three

types must lie in the triangle of possible values ∆ = {u = (u1, u2, u3) : ui ≥ 0,
∑

i ui = 1}.
To preserve symmetry, we draw ∆ as an equilateral triangle in barycentric coordinates by

mapping (x, y, z) → (x, z
√
3/2). The top panel in Figure 4 plots N6=(t)/M as a function of

the opinion densities as the system evolves, generalizing the one-dimensional arch observed

for k = 2 to a two-dimensional cap for k = 3.

Generalizing the parabolic form of the arch for k = 2, we conjecture

EuN6=/M =
c2(α)

2

(

1−
k
∑

i=1

u2
i

)

− c0(α), (2)

where the expectation Eu of the fraction of discordant edges N6=/M is taken under the

quasi-stationary distribution να,u, and c2(α) and c0(α) are unknown coefficients to be fitted

to the quasi-stationary distributions. As in the two opinion case, the simulated values come

quickly to the surface and then diffuse along it. In some situations, one opinion is lost before

freezing occurs and the evolution reduces to that for the two opinion case. However, in one

of the simulations shown, the realization ending with x ≈ 0.5, all three opinions persist until

the end.

The picture is somewhat easier to understand if we look at the cap from a top view, where
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FIG. 4. (Color Online) Top: plot of the fraction of discordant edges versus the population of

opinions in barycentric coordinates for three opinions and α = 0.5. Multiple simulations corre-

sponding to different initial densities are shown while each one starts from an Erdős-Rényi graph

with N=10,000 nodes and average degree λ = 4. Similar to the two-opinion case, the simulations

quickly converge to a parabolic cap of quasi-stationary distributions. Bottom: top view of the

parabolic caps of quasi-stationary distributions for α=0.1,0.2,...,0.8. We fit the parabolic cap (2)

to simulation data at various α’s and then plot the level sets EuN 6= = 0, which are the intersections

of the parabolic caps with the N6= = 0 plane, as the large circles with colors indicating values of α.

the EuN6= = 0 level sets for different α are observed to be circles. In the bottom panel of

Figure 4 we plot the EuN6= = 0 circles for different α’s fitted from simulation data using (2)

as well as the freezing opinion frequencies from the simulations (indicated by small circle data

points). The two agree with each other up to small stochastic fluctuations. The size of the

EuN6= = 0 level set then dictates different freezing state properties. For example, the circle

corresponding to α = 0.5 intersects ∆ in three disconnected arcs. As α increases, the radius
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of the EuN6= = 0 level set decreases. When α > αc(1/2), the critical value of the two opinion

model, the circle EuN6= = 0 falls fully inside the triangle, so an initial condition including all

three opinions will continue to demonstrate all three opinions at freezing. For example, the

small circles around the innermost circle give the ending frequencies for several simulations

for α = 0.8. If the initial frequencies fall within the EuN6= = 0 circle, then the model will

quickly relax to the quasi-stationary distributions above the circle and then diffuse along

the cap until freezing is reached at some EuN6= = 0 point. If instead the initial frequencies u

fall outside the EuN6= = 0 circle—that is, for α above the phase transition point α3(u)—the

freezing time jumps from O(N2) to O(N logN), similar to αc(u) for the two-opinion model,

with the final opinion frequencies essentially the same as the initial u. What is new in this

case is that when starting with three opinions and αc(u) < α < α3(u) ≤ α3({1/3, 1/3, 1/3}),
the system always ends up with three distinct opinions.

For k > 3, our simulation results indicate the same type of behavior as the system evolves.

We define αk to be the largest α for which freezing takes O(N2) updates when we start with

k opinions with density 1/k for each opinion. Then as k → ∞ the multi-opinion model has

infinitely many phase transitions. When αk < α < αk+1, freezing occurs after O(N logN)

steps if we start with k opinions, while if we start with k+1 equally likely opinions the system

quickly converges to a quasi-stationary distribution and diffuses until freezing occurs after

O(N2) updates and there will always be k + 1 opinions present at the end. The associated

picture is the natural dimensional extension of the relationship between the k = 2 and k = 3

models: just as α2 = αc(1/2) corresponds to the point at which the EuN6= = 0 circle for

k = 3 is the inscribed circle within the ∆ triangle, α3 corresponds to the point at which the

EuN6= = 0 circle reaches zero radius—that is, the point at which the EuN6= = 0 sphere for

k = 4 has become the inscribed sphere within the corresponding barycentric tetrahedron.

IV. QUANTITATIVE CHARACTERIZATION OF QUASI-STATIONARY DIS-

TRIBUTIONS

For each k we simulate our multi-opinion rewire-to-random model starting from k opin-

ions with each opinion taking 1/k fraction of nodes at random for a wide range of α’s.

Generalizing the picture of the one-dimensional arch for k = 2 and the two-dimensional

cap for k = 3, the number of discordant edges as a function of frequencies conjectured
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FIG. 5. Coefficient c0(β) (left) and c2(β) (right) in (2) for models with multiple opinions. Each

value of the coefficients is obtained by fitting (2) to multiple simulations starting from Erdős-Rényi

graphs with N=100,000 nodes and average degree 4. The fitting error is very small (R2 ≈ 0.99)

except for β close to the critical values.

in (2) is a co-dimension 1 hypersurface characterizing the quasi-stationary states, and the

behavior of the equal-initial-populations case will allow us to describe this surface, thereby

characterizing behaviors for general initial populations.

First the critical αk’s are identified when the slow diffusion of N6= cannot be observed

for the first time as α increases from 0 to 1. Then we fit N6=(t)/M to ui(t) = Ni(t)/N

(i = 1, ..., k) using (2) at every α up to αk, and plot the fitted coefficients c0 and c2 against

β = α/(1−α) in Figure 5. Remarkably, the coefficients in (2) appear to be well approximated

by linear functions of β = α/(1− α). The graphs shows some curvature near β = 0, which

may be caused by the fact that β = 0 (α = 0) corresponds to a voter model without

evolution of the underlying network. In the rest of the paper, we will work with β for

simplicity. Naturally, critical points αk translate to βk = αk/(1− αk).

The fitted coefficients from the 2-opinion model deviate slightly from those fitted from

higher-order models, which implies that (2) is not universal for the multi-opinion model and

higher-order terms are possible. However, while the discrepancy between the fitted coeffi-

cients of the 2-opinion model and those of the 3-opinion one is apparent, difference between

fitted coefficients of higher-order models is negligible, which implies that the inclusion of

higher-order terms beyond the 3rd would not make significant changes to the equation. To

probe the effect of higher-order terms we introduce terms up to kth order for k opinions.
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FIG. 6. Coefficients c0(β) (left) and c2(β) (right) in (4) for models with multiple opinions. Each

value of the coefficients is obtained by fitting (4) to the same data as in Figure 5.

Noting (
∑

i ui)
2 = 1, (2) is equivalent to:

EuN6=/M = −c0(α) + c2(α)
k
∑

i,j=1;i>j

uiuj. (3)

Given the symmetry of the system in ui’s, the only possible choice in degree-k polynomials

is:

EuN6=/M = −c0(α) + c2(α)
∑

{i1,i2}∈A2

ui1ui2

+c3(α)
∑

{i1,i2,i3}∈A3

ui1ui2ui3 + · · ·

+ck(α)
∑

{i1,··· ,ik}∈Ak

ui1ui2 · · ·uik , (4)

where Ai is the collection of all i-element subsets of {1, 2, ..., k}. Using the same simulation

data as above, we refit N6=(t)/M to ui(t)’s (i = 1, ..., k) according to the generalized formula

(4) and plot the fitted coefficients c0 and c2 against β in Figure 6. Fitting diagnostics suggest

that higher-order terms are significant from zero (with p-value < 10−4) and it can be seen

that those terms explain the inconsistency between fitted coefficients of different models

in Figures 5. However, the difference between the two fitted functions of (2) and (4) is

actually small (≈ .1 in L2-norm) and thus higher-order terms are small corrections to the

hyper-surface (2).

Values of the coefficients ci(β) for the three opinion model near its critical value β3 ≈ 5.2

show some scatter, but this is to be expected since the surface is very small at this point.
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Values for the four opinion model appear to become more difficult to fit prior to β4 since

EuN6= = 0 is a three-dimensional hyper-surface in four-dimensional space, so much more

data is required to get reliable estimates of coefficients.

As is visually apparent in Figure 6, the coefficients c0 and c2 for the first two terms

in (4) are well approximated by linear functions, with best fits c0(β) ≈ 0.22β and c2(β) ≈
1.3+0.38β. In contrast, coefficients for higher-order terms are not linear in β (e.g., see Figure

7 for c3(β)). Moreover, the fitted coefficients for higher-order terms become particularly

noisy as β increases (again, see Figure 7) at the same time that their relative contribution

to the shape of the hyper-surface decreases (relative to the linearly increasing c0 and c2).

For comparison, the best fits for c0 and c2 in (2) (as in Figure 5) are

c2(β) ≈ 1.3 + 0.5β, c0(β) ≈ 0.25β. (5)

Since (2) well approximates the higher-order hyper-surface (4), its simple form can be used

to estimate the critical points for phase transitions. Combining (2) and (5), and then solving

(0.65 + 0.25β)(1− k(1/k)2)− 0.25β = 0

gives

βk = 2.6(k − 1) .

which agrees with the critical βk’s identified when the slow diffusion ofN6= cannot be observed

in simulations as β increases.

V. CONCLUSION

Our multi-opinion voter model has infinitely many phase transitions. When βk < β <

βk+1, freezing occurs rapidly when we start with k opinions; however, starting with k + 1

equally likely opinions will always yield k + 1 opinions present at freezing for this β range

(Figure 8). To a good approximation βk = 2.6(k − 1), but the departures from linearity

in the plots of c2(β) and c0(β) suggest that this result is not exact. However, formulas for

various quantities associated with this model are close to polynomials, so an exact solution
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density.

may be possible.
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[33] G. A. Böhme, T. Gross, Fragmentation transitions in multistate voter models. Phys. Rev. E.

85:066117 (2012)

16


