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Abstract

In the evolving voter model, when an individual interacts with a neighbor having
an opinion different from theirs, they will with probability 1− α imitate the neighbor
but with probability α will sever the connection and choose a new neighbor at random
(i) from the graph or (ii) from those with the same opinion. Durrett et al. [7] used
simulation and heuristics to study these dynamics on sparse graphs. Recently Basu
and Sly [1] have analyzed this system with 1−α = ν/N on a dense Erdős-Rényi graph
G(N, 1/2) and rigorously proved that there is a phase transition from rapid discon-
nection into components with a single opinion to prolonged persistence of discordant
edges as ν increases. In this paper, we consider the intermediate situation of Erdős-
Rényi random graphs with average degree L = Na where 0 < a < 1. Most of the
paper is devoted to a rigorous analysis of an approximation of the dynamics called the
approximate master equation. Using ideas of [12] and [15] we are able to analyze these
dynamics in great detail.

1 Introduction

We consider a simplified model of a social network in which individuals have one of two
opinions (called 0 and 1) and their opinions and the network connections coevolve. In the
discrete time formulation, oriented edges (x, y) are picked at random. If x and y have the
same opinion no change occurs. If x and y have different opinions then: with probability
1−α, the individual at x imitates the opinion of the one at y; otherwise, i.e., with probability
α, the link between them is broken and x makes a new connection to an individual z chosen
at random (i) from those with the same opinion (“rewire-to-same”), or (ii) from the network
as a whole (“rewire-to-random”). The evolution of the system stops when there are no longer
any “discordant” edges that connect individuals with different opinions.

Holme and Newman [10] were the first to consider a model of this type. They chose
option (i), rewire-to-same, and initialized the graph with large number K of opinions so that
N/K remained bounded as the number of vertices N → ∞. They argued that there was
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a critical value αc so that for α > αc, the graph rapidly disconnects into a large number
of small components while if α < αc, a giant community of like-minded individuals of size
O(N) formed.

The work of Holme and Newman [10] was followed by a number of papers in the physics
literature. References can be found in Durrett et al. [7] and Silk et al. [15]. Recent papers
study several variants of the model include [11], [13], [14], and [4]. Here we will stick to the
basic version. Let p be the initial fraction of voters with opinion 1 and let π be the fraction
of voters holding the minority opinion after the evolution stops. Through a combination of
simulation and heuristics, Durrett et al. [7] argued that

• In case (i), rewire-to-same, there is a critical value αc which does not depend on p,
with π ≈ p for α > αc and π ≈ 0 for α < αc.

• In case (ii), rewire-to-random, the transition point αc(p) depends on the initial density
p. For α > αc(p), π ≈ p, but for α < αc(ρ) we have π(α, p) = π(α, 1/2).

The graphs in Figures 1 and 2 should help clarify these claims.
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Figure 1: Simulation of rewire to same model for Erdős-Rényi graphs with 100,000 vertices
and average degree 4. We start with an initial product measure with density p = 0.5, 0.25,
0.1, or 0.05 and vary α. As α decreases from 1, the ending density π(p) ≈ p and then at
αc ≈ 0.42 it drops to π(p) ≈ 0.

If we formulate the evolving voter model in continuous time with each oriented edge
subject to updating at rate 1, then arguments in [10] and [7] suggest that for α > αc(p) the
disconnection takes time O(log N), i.e., O(N log N) updates, while for α < αc(p) the time
becomes O(N), i.e., O(N2) updates. The first conclusion is easy to explain: if we rewire-to-
same and α = 1, then disconnection will occur when all of the edges have been touched. If

2



0 0.2 0.4 0.6 0.8 1
α

0

0.10

0.20

0.30

0.25

0.50

0.05

0.15

0.35

0.40

0.45

Fr
ac

tio
n 

in
 m

in
or

ity
 s

ta
te

initial fraction = 0.05
initial fraction = 0.10
initial fraction = 0.25
initial fraction = 0.50

Figure 2: Simulation of rewire to random model for Erdős-Rényi graphs with 100,000 vertices
and average degree 4, starting from product measure with densities p = 0.5, 0.25, 0.1, or
0.05. In [7], α → π(α, 1/2) is called the universal curve because for p < 1/2, π(α, p) is
constant for α > αc(p) and then follows the universal curve.

there are M edges, then by the coupon collectors problem, this requires time O(M log M)
where M is the number of edges.

The explanation for the long time survival is more complicated and, at the moment,
is based on phenomena observed in simulation and not yet rigorously demonstrated. The
intuitive picture is motivated by a result of Cox and Greven [3]. To state their result we
recall that the voter model on the d-dimensional lattice with nearest neighbor interactions
has a one parameter family of stationary distributions νθ, indexed by the fraction of sites in
state 1.

Theorem 1. If the voter model on the torus in d ≥ 3 with N sites starts from product
measure with density p then at time Nt it looks locally like νθ(t) where the density θ(t)
changes according to the Wright-Fisher diffusion process

dθt =
√

βd · 2θt(1− θt)

and βd is the probability that two random walks starting from neighboring sites do not hit.

In words, this is true because there is a separation of time scales:

(?) The time to converge to equilibrium is much smaller than the time needed for the density
to change, so if time is scaled appropriately then the system is always close to an equilibrium
and the parameter follows a diffusion process.

Let N1(t) be the number of vertices in state 1 at time t. Durrett et al. [7] demonstrate
that (?) is true for the evolving voter model by plotting various statistics versus N1(t) and
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showing that values were close to a curve, i.e., the values of all of the statistics are determined
by N1(t). That is, there is a one parameter family of quasi-stationary distributions and the
densities change slowly over time. Simulations supporting this claim for the evolving voter
model on sparse graphs can be found in [7]. Here, we will present simulation results for
the version of the model in which the average degree of vertices is L and the voting rate
1− α = ν/L. (We will describe the system in more detail in the next section.)

Figure 3: Plot of N10 versus N1 when N = 2500, L = 50, ν = 2.5

Figure 4: Plot of N100 versus N1 when N = 2500, L = 50, ν = 2.5

Figure 3 gives a simulation of the system with N = 2500, L = 50, ν = 2.5 and shows that
the (N1(t), N10(t)) is well approximated by the quadratic equation 1.9238x(1−x)− 0.11464.
Following [7] we call this curve the “arch.” Let N100 be the number of (x, y, z) in the graph
so that y is a neighbor of x, z is a neighbor of y and the states of x, y, z are 1, 0, 0. Figure 4
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plots the number of N100(t) in the graph versus N1(t). Again the values are close to a curve
indicating the statistic N100 is determined by N1. This time the fitted curve is a cubic, which
has the same zeros as the quadratic.

To describe the implications of this picture for the (conjectured) behavior of the process,
we note that the fitted quadratic in Figure 3 has roots at 0.0737 and 0.9263, as does the cubic.
If we start from p = 1/2, then the system rapidly comes to a quasi-stationary distribution
µ1/2. On the time scale Nt it is close to µθ(t) until the value of the parameter reaches one
of the endpoints of the “arch”where N10 = 0 and disconnection occurs. When N is large
the initial density will not change significantly at times o(N), i.e., o(N2L) updates (this
will be proved later, see Section 3) . Thus we expect the same final behavior if the initial
p ∈ (0.0737, 0.9263), while if p is outside the interval then rapid disconnection occurs.

Figure 5 gives a simulation of N = 2500, L = 50, ν = 1. The arch is now smaller with
endpoints at roughly 0.3 and 0.7. If ν > νc(1/2) and we let a(ν), 1− a(ν) be the endpoints
of the arch then

νc(p) = inf{ν : p ∈ (a(ν), 1− a(ν))}.
By arguments in the last paragraph when ν < νc(p) rapid disconnection occurs, while if
ν > νc(p) the ending minority fraction is the same as if we started from p = 1/2. Changing
variables α = 1 − ν/L, we see that the intuitive picture agrees with the behavior shown in
Figure 2. As explained in [7] the behavior in the case of rewire to same shown in Figure 1
is due to the fact that when the arch exists it end points are always 0 and 1. See Figure 8
in that paper.

Figure 5: Plot of N10 versus N1 when N = 2500, L = 50, ν = 1

The rest of the paper is devoted to different approaches to analyzing the evolving voter
model. In Section 2 we describe the recent results of Basu and Sly [1] for the process on
G(N, 1/2) and we extend two of their results to the case of thick graphs. In each case the
bounds do not depend on L supporting our conjecture that νc does not depend on L. Proofs
are deferred to Section 13.

In Section 3, we provide exact equations for the evolution of finite-dimensional distribu-
tions in the model: e.g., Nij = the number of ordered pairs of adjacent sites in state i and j,
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and Nijk = the number of ordered triples of adjacent sites. Derivation of these equations are
deferred to Section 7. As is often the case in interacting particle systems equations for k site
probabilities involve k+1 site probabilities so these cannot be solved. One approach is to use
the pair approximation to express three site probabilities in terms of two site probabilities to
obtain a closed system. When we began this work we thought (or hoped) that since L →∞
the pair approximation would give the right answer. As we explain in Section 3.1, this is not
true for the simple reason that the second moment is larger than the square of the mean.

In Section 4, we introduce the approximate master equation (AME) for Ak,`(t) the number
of sites in state 1 at time t that have k neighbors in state 1 and ` in state 0, and Bk,` the
number of sites in state 0 that have k neighbors in state 1 and ` in state 0. Since we do not
know the state of the neighbors of the neighbors, we use ratios of known probabilities to find
their distribution. For example, we use N101/N10 to estimate the number of 1 neighbors of
a 0 that is adjacent to a 1, in contrast to the pair approximation which declares that this is
always equal to N01/N0. If we view a particle in state i with k neighbors in state 1 and `
in state 0 as a point at (k, `) in plane i. This leads to an interesting system where vertices
walk around in two planes (one for those in state 1, the other for those in state 0) and jump
to the other plane when voter events change their states. Using recent results of Lawley,
Mattingly, and Reed [12] we can prove this system converges in distribution as t →∞.

In Section 5, we use an approach of Silk et al. [15] to derive properties of the limiting
distribution. We write a pair of partial differential equations for the generating functions
Q(t, x, y) =

∑
k,` Ak,`(t)x

ky` and R(t, x, y) =
∑

k,` Bk,`(t)x
ky`, scale the degrees by L and

then take the limit L → ∞ to arrive at PDEs for the limiting generating functions U(a, b)
and V (a, b) for the equilibrium distribution, see (22) and (23).

In Section 6 we postulate power series solutions for the generating functions and study
the symmetric case p = 1/2. As is often the case in interacting particle systems, there are
not enough equations to find the coefficients but we are able to compute Uaa, Uab and Ubb

from Ub (which is the expected number of 1, 0 edge). If we use simulations to find Ub then
the predicted values Uab and Ubb are off by only 1% while the predicted value of Uaa, the
number of 111’s, is off by 10%.

The total number of edges is not conserved in the AME. Our initial goal was to find
self-consistent solutions to the AME. That is, values of the five parameters given in (14)
that result in an equilibrium in which the statistics agree with parameters. Silk et al. [15]
carry this out for the rewire to same dynamics but our computer skills do not allow us to
replicate their computation. We would try harder if it was possible to use the method for
the asymmetric case.

The remainder of the paper is devoted to proofs. Section 7 provides the derivation
of equations for the evolution of the “finite-dimensional distributions” in the evolving voter
model. To derive these equations, we fix a pair of adjacent vertices x, and y. Then we consider
all possible cases of voting and rewiring that can change the states, or the connectivity
between those two vertices. Summing over all possible pairs gives us the desired equations.

From the exact equations, we can obtain the pair approximation, a closed system of
equations. In Section 8, using these modified equations we can find the average number of
neighbors of a site in state i that are in state 1, Ji, and in state 0, Ki. These computations
make a prediction about the critical value, which simulation shows is incorrect. However,
the pair approximation value might be a lower bound on the true critical value.
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Section 9 and Section 10 deal with the analysis of approximate master equations. As
we have mentioned, AME transforms the evolving voter model into a system of N particles
moving on two planes and jumping between them. In Section 9 we analyze the differential
equations for each individual plane, and show that they have globally attracting fixed points.
Building on this, in Section 10 we show that the two plane system has a unique stationary
distribution. Here the results of Lawley, Mattingly, and Reed [12] are helpful. Although,
their set-up does not quite match ours, we can adapt their techniques to make it work in
our case. Standard techniques from renewal theory, and ergodic theory helps here.

In Section 11 we derive the differential equations corresponding to the generating func-
tions of Ak,`(t), and Bk,`(t). Again, this follows upon a careful consideration of all possible
cases of voting, and rewiring. Section 12 provides the derivation of the moment equations
corresponding to the limiting generating functions U and V in the symmetric case p = 1/2.

In Section 13, we provide the proofs of extensions of two result of Basu and Sly to thick
graphs. Our improvements in their proofs are minor. Our Lemma 3 gives a better control
on the maximum degree of the evolving graph after an amount of time O(NL), which helps
us to obtain better bound on the threshold for both the theorems (see the statements of
Theorem 5 and Theorem 6 in Section 2).

2 Results of Basu and Sly

Recently Basu and Sly [1] have rigorously proved the existence of a phase transition for the
dynamics described above on the dense Erdős-Rényi graph G(N, 1/2). They work in discrete
time with voter events occurring with probability 1−α = ν/N . They prove three results. To
state them we need some notation. Let τ be the first time there are no discordant edges. Let
N∗(t) be the number of vertices holding the minority opinion at time t and for 0 < ε < 1/2
let τ∗(ε) = min{t : N∗(t) ≤ εn}.

In all three results stated here the system starts from product measure with density 1/2.
In their first result, they use the efficient version of the model in which only discordant edges
are chosen at random for updating.

Theorem 2. There is a ν0 so that for all ν < ν0 and any η > 0

P (τ < 10N2, N∗(τ) ≥ 1

2
− η) → 1 as N →∞.

The number of edges M ∼ N(N − 1)/2. Separation requires O(N2) updates rather than
O(M log M) because the efficient algorithm always picks discordant edges while the one with
random choices takes a long time to find the last few remaining discordant edges. The second
result says that the density of voters with opinion 1 does not change much from its initial
value of 1/2. Since the number of voters with opinion 1 is a martingale this follows easily
once rapid disconnection is established.

They prove their second and third results for the discrete time algorithm in which edges
are chosen at random. The next theorem is the main result of their paper and has a very
long and difficult proof.
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Theorem 3. Let ε′ ∈ (0, 1/2) be given. There is a ν∗(ε
′) so that for ν > ν∗(ε

′) we have
τ∗(ε

′) ≤ τ with high probability and

lim
c↓0

lim inf
N→∞

P (τ > cN3) = 1.

If each edge were chosen at rate 1, then O(N3) updates translates into time O(N) and is
consistent with the results stated in the previous section.

Theorem 3 gives a lower bound on the disconnection time and shows that if ν is large
then before disconnection occurs the minority fraction has been ≤ ε′. The next result shows
that in the rewire-to-random case for fixed ν there is a lower bound on the minority fraction
when fixation occurs. This is consistent with the simulation for sparse graphs shown in
Figure 2, but is believed to be false for rewire to same on sparse graphs, see Figure 1.

Theorem 4. Let ν > 0 be fixed. For the rewire-to-random model, there is an ε∗(ν) so that
τ < τ∗(ε∗) with high probability.

2.1 Results for thick graphs

The evolving voter model on a dense Erdős-Rényi random graph G(N, 1/2) is ugly because it
will quickly develop self-loops and parallel edges. To avoid this problem, while retaining the
simplifications that come from having vertices of large degree, we will consider Erdős-Rényi
random graphs in which the mean degree is L with L = Na and 0 < a < 1. This regime
is intermediate between dense graphs with L = O(N) and sparse graphs with L = O(1), so
we call them thick graphs. Since a Poisson distribution with mean L has standard deviation√

L there is little loss of generality in supposing that we start with a random graph in which
each vertex has degree L. To do this, we have to assume LN is even.

Following Basu and Sly, voting occurs on each oriented edge (x, y) at rate ν/L, i.e., x
imitates y; while at rate 1, x severs its connection to y and connects to a randomly chosen
vertex z that is not already one of its neighbors. We can drop the −ν/L from the rewiring
rate since ν/L → 0, but in this section we will retain it to have a closer connection with [1].

Theorems 2 and 4 generalize in a straightforward way to the new model. Here, and
throughout the paper, we will consider only the rewire-to-random version and let p be the
initial fraction of vertices in state 1. In the next two results, we consider discrete time and
use the efficient algorithm in which at each step a discordant edge is selected for updating.
Theorem 2 becomes

Theorem 5. Suppose p ≤ 1/2 and let ε > 0. If ν ≤ (0.15)/(1+3p) then with high probability
τ < 3pNL, and at time τ the fraction of 1’s is between p− ε and p + ε with high probability.

Note that the bound does not depend upon the average degree L. When p = 1/2 the bound
is 0.06.

Sketch of the proof. Here we have followed the proof in [1] with some improvements in
the arithmetic. Let Xm be the number of discordant edges after m updates. Independent
of the current frequency of sites in state 1, every time a rewiring event occurs Xm decreases
by 1 with probability 1/2 and stays the same with probability 1/2. To handle voting events,
we take the drastic approach that they can at most increase Xm by Dmax(m), the maximum
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degree of vertices in the graph, and Dmax(tNL) ≤ (1 + ε + t)L, the second bound resulting
from estimating the number of times a vertex is chosen to receive a rewiring, ignoring the
fact that vertices will lose neighbors due to rewirings.

Our next result is Theorem 6.1 in [1], from which Theorem 4 stated above follows easily.
Let G(p, N, L) = graphs with vertex set V = {1, 2, , . . . , N} labeled with 1’s and 0’s so that
the number of vertices in state 1, N1(G) = pn, and the number of edges is NL/2.

Theorem 6. Let ν > 0 and ε > 0 There is a p(ν) < 1/2 so that for all G(0) ∈ G(p, N, L)
with p ≤ p(ν), we have with high probability τ < 7NL and the fraction of vertices in state 1
at time τ is ∈ (p− ε, p + ε).

Since this result assumes nothing about the graph except for the number of edges, it follows
that if the density of 1’s gets to p(ν) then rapid disconnection will occur. The proof will
show that we can take p(ν) = (ν/60)e−21ν , which again is independent of L. When ν = 1,
p(ν) = 1.26 × 10−11. Even though the value is tiny the form of the bound allows us to
conclude that for p < p0 the threshold for prolonged persistence νc(p) ≥ (1/21) log(1/p) →∞
as p → 0.

Sketch of the proof. The proof is clever but again uses arguments that are extremely
crude. One uses a special construction in which counters K(v, m) determine if an event on
an oriented edge (v, u) at update m will be a voting (the counter is 0) or a rewiring. The
K(v, m) are initialized to be independent geometrics and 1 is subtracted each time the vertex
is used.

To study the dynamics, we divide the graph into the set of vertices S with initial degree
≤ 11L and T = V − S. The key observation is that if a 0 in S is changed to a 1 by voting
and the counter for the site is assigned a geometric that is ≥ 20L (called a stubborn choice)
then with high probability it will not change back to 0 before 7NL updates have been done.
Thus if we can show that there are at least 1.1pN vertices in S that flip to 1 by time 7NL
and are associated with stubborn choices we will contradict Lemma 4 below, which shows
that with high probability the fraction of vertices in state 1 will be ∈ (p − ε, p + ε) up to
that time. The last result holds because only voter events change the number of 1’s and we
expect 7νN of them by time 7NL.

The last two results are proved in Section 13. Based on the fact that the bounds do
not depend on L, and on our analysis of approximate models below, which remove the
dependence on L by letting L →∞, we conjecture that the critical value νc does not depend
upon L, or to be precise

Conjecture 1. If we let L = Na and N → ∞ then the limiting critical value does not
depend upon a.

In support of this conjecture, Figure 6 gives a simulation of the system with N = 2500,
L = 25, ν = 2.5 and shows that the (N1(t), N10(t)) is well approximated by the quadratic
equation 1.9059x(1− x)− 0.11633. In Figure 3 we saw that for the system with N = 2500,
L = 50, ν = 2.5 the curve (N1(t), N10(t)) is well approximated by the quadratic equation
1.9328x(1− x)− 0.11464.
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Figure 6: Simulation with N = 2500, L = 25, ν = 2.5

3 Exact Equations and Pair Approximation

The results of Basu and Sly [1] described in the previous section establish the existence
of a phase transition, but do not give very much information about it. Our first step in
obtaining more detailed (but approximate) results for the evolving voter model is to write
down evolution equations for “finite dimensional distributions.” Define

Ni =
∑

x

1{ξ(x)=i},

Nij =
∑

x,y∼x

1{ξ(x)=i,ξ(y)=j},

Nijk =
∑

x,y∼x,z∼y,z 6=x

1{ξ(x)=i,ξ(y)=j,ξ(z)=k},

where y ∼ x means y is a neighbor of x, and ξ(x) denote the opinion of vertex x. More
abstractly, in the terminology of the theory of the convergence of random graphs Nijk is the
number of homomorphisms of the small labeled graph drawn below to the one on N vertices.

•
i

•
j

•
k

Note that N11 counts each 1− 1 twice, once for each orientation. Similarly N101 counts each
1 − 0 − 1 twice. It is natural to think of these as finite-dimensional distributions but they
are not. If we let d(x) be the degree of vertex x, Then∑

i,j

Ni,j =
∑

x

d(x) = NL (1)∑
i,j,k

Ni,j,k =
∑

x

d(x)(d(x)− 1) (2)
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The first quantity is constant in time, but the second one is not.
Let p = N1/N be the initial fraction of vertices in state 1. Our first observation, which is

implicit in the arguments given in the previous section, is that in determining whether rapid
disconnection occurs we can suppose p is constant . To do this we note that rewiring events
do not change the number of 1’s. The number of oriented edges is NL. Thus the number
of 1’s is can increase by 1 with rate at most (NL/2)(ν/L), and decrease by 1 with rate at
most (NL/2)(ν/L). N1(t)/N is a martingale, so

E(N1(t)/N − p)2 ≤ νt

N
,

and therefore the fraction of 1’s will not change significantly until times of O(N).
Using reasoning from [7] it is easy to show (see Section 7) that

dN10

dt
= −N10 +

ν

L
[N100 −N010 + N110 −N101] (3)

1

2

dN11

dt
= pN10 +

ν

L
[N101 −N011] (4)

1

2

dN00

dt
= (1− p)N10 +

ν

L
[N010 −N100] (5)

Note that Nij = O(NL) while Nijk = O(NL2) so the terms on the right-hand side of (3)-(5)
are of the same order of magnitude. In writing these equations we have omitted terms of
the form (ν/L)Nij since there are O(N). Note that (1) implies three equations sum to 0.

3.1 Pair approximation (PA)

As is often the case in interacting particle systems, the derivatives of probabilities concerning
two sites involve three sites and if one writes differential equations for probabilities concerning
three sites one gets expressions involving four sites. One way to deal with this problem is to
use the pair approximation to express three site probabilities in terms of the density of 1’s and
two site probabilities. In the sparse graph case considered in [7] this was an approximation
that did not give a very good answer, see Figure 9 there.

When we began this research, here we thought (or hoped) that when the degrees are
large, the pair approximation would give the right answer. Intuitively, if y is a neighbor of
x then since x is one of O(L) neighbors of y the state of x has very little influence on the
state of y and even less on the states of the neighbors of y.

To do the pair approximation, let Ji and Ki be the average number of 1 neighbors and
0 neighbors of a vertex in state i. By definition

N1J1 = N11, N0K0 = N00, N1K1 = N0J0 = N10.

The pair approximation in this context states that if j0(y) is the number of neighbors of a
vertex y in state 1 then when we average over the neighbors of x, having opinion 0, we get
the mean J0. That is,

N101 =
∑

x:ξ(x)=1

∑
y:ξ(y)=0

j0(y) = N10J0.

11



Applying similar reasoning for the other Nijk’s we have

1

2

dN11

dt
≈ pN10 +

ν

L
[N10J0 −N01J1], (6)

1

2

dN00

dt
≈ (1− p)N10 +

ν

L
[N01K1 −N10K0]. (7)

Analyzing these equations in Section 8 gives the following predictions about the means in
equilibrium

J∗0 = L

(
1− p2 + (1− p)2

ν

)
p, J∗1 = J∗0 +

Lp

ν
, (8)

K∗
1 = L

(
1− p2 + (1− p)2

ν

)
(1− p), K∗

0 = K∗
1 +

L(1− p)

ν
. (9)

In equilibrium we must have J∗0 , K∗
1 ≥ 0. This leads to the following:

Guess. In the rewire-to-random model, rapid disconnection occurs for ν < νc(p) = p2 +(1−
p)2, and prolonged persistence for ν > νc(p).

Unfortunately simulation shows that the second conclusion is not correct. If we let N = 1600
and L = 40 then this guess predicts that if the starting frequency of 1’s is = 1/2 then the
phase transition occurs at ν = 1/2, while simulation shows that rapid disconnection occurs
for ν = 0.8. To see the flaw in the intuition used earlier note that

N101 =
∑

x:ξ(x)=0

j0(x) · (j0(x)− 1) ≈ N1E[j0(x)2].

Since E[j0(x)2] > [Ej0(x)]2 = J2
0 unless the distribution of x is degenerate, we have

N101 ≥ J0N1J0 = N10J0.

Conjecture 2. The critical value from the pair approximation is a lower bound on the true
value.

If one can show that the pairs (J0, K0) and (J1, K1) are each negatively correlated this would
follow. This is far from obvious since N0 and N1 are random.

4 Approximate Master Equation (AME)

Most of the work in this paper is devoted to studying an improvement of the pair approxi-
mation that was also used in [7]. For more on the PA and the AME and their use in studying
dynamics on networks, see [8, 9]. The AME (i) uses ratios such as N101/N10 as parameters
rather than approximating them by N01/N0 and (ii) tracks not only the means but the joint
distribution of the state of a site and the number of neighbors with states 1 and 0. We
visualize our system as N particles, one for each vertex, moving in two planes. A point at
(i, j, k) means that the state of the vertex is i, there are j neighbors in state 1, and k in state
0. Voting events at the focal vertex x cause jumping from (1, j, k) → (0, j, k) at rate νk/L
and from (0, j, k) → (1, j, k) at rate νj/L. For the rewire-to-random model the transitions
within each plane are as follows:
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Here the rates on horizontal and vertical edges which come from rewiring are exact.
On the diagonal arrows kN1/N and jN0/N are exact but the others come from e.g., using
Nijk/Nij to compute the expected number of neighbors of z in state k when x is in state i
and y is in state j. It is important to note that while the number of edges is conserved is in
the original model, that is not true for our approximation.

On the time scale of our calculation N1 = Np stays constant, so the dynamics in plane
1 can be expressed as

dj1

dt
=

N10

N
+ pk1 +

ν

L
· N101

N10

k1 −
ν

L
· N110

N11

j1, (10)

dk1

dt
=

N10

N
− k1 − pk1 −

ν

L
· N101

N10

k1 +
ν

L
· N110

N11

j1. (11)

Writing q = 1− p the plane 0 dynamics are

dj0

dt
=

N10

N
− j0 − qj0 −

ν

L
· N010

N01

j0 +
ν

L
· N001

N00

k0, (12)

dk0

dt
=

N10

N
+ qj0 +

ν

L
· N010

N00

j0 −
ν

L
· N001

N00

k0. (13)

To go from the first set to the second exchange j ↔ k, 0 ↔ 1, and change p to q.
To study this system, we will introduce

α =
N101

N10

, β =
N110

N11

, η =
N10

N
δ =

N010

N01

, ε =
N001

N00

. (14)

and analyze the general system

dj1

dt
= η + pk1 +

ν

L
αk1 −

ν

L
βj1, (15)

dk1

dt
= η − k1 − pk1 −

ν

L
αk1 +

ν

L
βj1, (16)

dj0

dt
= η − j0 − qj0 −

ν

L
δj0 +

ν

L
εk0, (17)

dk0

dt
= η + qj0 +

ν

L
δj0 −

ν

L
εk0. (18)
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Once this is done we will look for self-consistent parameters, i.e., values of the Greek letters
so that (14) holds in equilibrium.

Suppose for the moment that there are no jumps between planes. To find the equilibrium
in plane 1, we add (15) and (16) to get

d(j1 + k1)

dt
= 2η − k1.

so in equilibrium k∗1 = 2η. Using this in (15) we have

ν

L
· βj∗1 = η

(
1 + 2p + 2α

ν

L

)
.

A similar calculation shows that j∗0 = 2η and

ν

L
· εk∗0 = η

(
1 + 2q + 2δ

ν

L

)
.

This equilibrium (j∗1 , k
∗
1) is globally attracting because, as we show in Section 9, the linear

differential equations in (15) and (16) have solution(
j1(t)− j∗1(t)
k1(t)− k∗1(t)

)
= exp[At]

(
j1(0)− j∗1(0)
k1(0)− k∗1(0)

)
,

where A is a matrix with two negative real eigenvalues. See Section 9 for details.
To analyze our two plane system, we take advantage of results of Lawley, Mattingly, and

Reed [12]. To put our system into their setting, we assume that the values of N1/N , N0/N
and N10/NL are fixed. When this holds the individual particles move independently. If we
let N →∞ scale space by L, and suppose

α

L
→ ᾱ,

β

L
→ β̄,

η

L
→ η̄,

δ

L
→ δ̄,

ε

L
→ ε̄. (19)

then in the limit we get a one particle system that moves according to the following differ-
ential equations in plane 1

dx1

dt
= η̄ + py1 + νᾱy1 − νβ̄x1,

dy1

dt
= η̄ − y1 − py1 − νᾱy1 + νβ̄x1.

and in plane 0 according to

dx0

dt
= η̄ − x0 − qx0 − νδ̄x0 + νε̄y0,

dy0

dt
= η̄ + qx0 + βδ̄x0 − βε̄y0.

The particle jumps from plane 1 to plane 0 at rate νy1 and from plane 0 to plane 1 at rate
νx0.

14



If there are no jumps between planes then the system in plane 1 has a fixed point with
y∗1 = 2η̄ and

νβ̄x∗1 = η̄ (1 + 2p + 2νᾱ) ,

A similar calculation shows that x∗0 = 2η and

νε̄y∗0 = η̄
(
1 + 2q + 2νδ̄

)
.

By almost exactly the same reasoning used on the previous system, the fixed points in each
plane are globally attracting. Building in this, in Section 10 we prove the following theorem.

Theorem 7. Fix ν > 0, p ∈ (0, 1) and let q = 1 − p. For any ᾱ, β̄, γ̄, ε̄, η̄ > 0 The two
plane system has a unique stationary distribution that is the limit starting from any initial
configuration.

The proof, which we learned from [12], is based on a variant of a trick used in random
matrices (and other subjects). To prove that the product A1 · · ·An converges in distribution,
we show that A−n ·A−n+1 · · ·A−1 converges almost surely. To apply this trick we first study
the embedded discrete time that tracks the locations of the particle when the process changes
planes. Using the fact that the linear ODEs in each plane are contractions the almost sure
convergence of the backwards version is easy. To get from this to the convergence of our
continuous time process we use a little (Markov) renewal theory. See Section 10 for details.

To get a feel for what the stationary distribution looks like, we turn to simulation. Figure
7 shows a simulation with ᾱ = 0.3625, β̄ = 0.3074, η̄ = 0.0833. These values correspond to
the system with ν = 2, see the first line in Table 1 in Section 5.

Figure 7: Picture of the stationary distribution for the one particle chain. The curves for
planes 1 and 0 are plotted on the same graph.
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5 Generating Functions, PDE

Theorem 7 only asserts the existence of a unique stationary distribution in the two plane
system, and it does not provide any further information. In this section we begin the process
of identifying the limit distribution in Theorem 7. The calculations here are inspired by
work of Silk et al. [15], so we change our dynamics slightly to match theirs. In our revised
dynamics each oriented edge (x, y) is chosen at rate 1 then x imitates y with probability ν/L,
and x rewires to a new neighbor with probability 1 − ν/L. Let Ak,`(t) (Bk,`(t)) be fraction
of vertices in state 1 (0) with k neighbors in state 1, and ` neighbors in state 0 at time t.
For ease of writing, we suppress the dependence on t, and continue to write Ak,`, and Bk,`

instead. Note that with this definition
∑

k,` Ak.` = p the fraction of vertices in state 1 (recall
at the time scale in which we are interested the fraction of 1 does not change).

Let Q(t, x, y) =
∑

k,` Ak,`x
ky` and R(t, x, y) =

∑
k,` Bk,`x

ky`. Writing Qx, Qy, etc for
partial derivatives, one can with some patience (see Section 11) arrive at

Qt =
ν

L
β(y − x)Qx +

ν

L
xRx

+
([ ν

L
+ α

ν

L
+ p(1− ν/L)

]
(x− y) + (1− y)− ν

L

)
Qy (20)

+ (1− ν/L)η(x− 1)Q + (1− ν/L)η(y − 1)Q.

where we have set η = N10/N .
Writing q for 1− p, similar reasoning gives

Rt =
([ ν

L
+ δ

ν

L
+ q(1− ν/L)

]
(y − x) + (1− x)− ν

L

)
Rx (21)

+
ν

L
yQy +

ν

L
ε(x− y)Ry + (1− ν/L)η(x− 1)R + (1− ν/L)η(y − 1)R.

To go from the Q equation to the R equation, interchange the roles of x and y and change
the constants α → δ, β → ε, p → q.

Silk et al. [15] considered “rewire to same.” If in their notation we take p = 1 − p̄ and
p̄ = ν/L then their equation (13) becomes

Qt =
ν

L
β(y − x)Qx +

ν

L
xRx

+
([

1 + α
ν

L

]
(x− y) + (1− y)− ν

L

)
Qy + (1− ν/L)γ(x− 1)Q,

Rt =
([

1 + δ
ν

L

]
(y − x) + (1− x)− ν

L

)
Rx

+
ν

L
yQy +

ν

L
ε(x− y)Ry + (1− ν/L)ζ(x− 1)R.

where γ = Qy(1, 1)/Q(1, 1) = N10/N1 and ζ = N10/N0 replace η = N10/N . Inside the square
brackets in (20) and (21) N1/N and N0/N are replaced by 1 and the last two terms collapse
to one in rewire to same, because in that case rewiring cannot cause a 0 to become a neighbor
of a 1.
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5.1 Limit as L →∞
Let Ji (Ki) be the number of neighbors in state 1 (0) for a randomly chosen vertex in state
i. Now we express the notations α, β, η etc in terms of functions of Ji and Ki. To begin, we
note that K1 = N10/N1, and also η = N10/N .

α =
Rxx(1, 1)

Rx(1, 1)
=

E(J0(J0 − 1))

EJ0

,

β =
Qxy(1, 1)

Qx(1, 1)
=

EJ1K1

EJ1

, η = pEK1.

If p = N1/N is the fraction of vertices in state 1 then as L →∞

Q(1 + a/L, 1 + b/L) → U(a, b) = pE exp(aJ̄1 + bK̄1),

R(1 + a/L, 1 + b/L) → V (a, b) = (1− p)E exp(aJ̄0 + bK̄0).

where J̄i and K̄i are the limits in distribution of Ji/L and Ki/L. To derive the partial
differential equations that U and V satisfy we note that

Ua(a, b) = pE[J̄1 exp(aJ̄1 + bK̄1)],

while

1

L
Qx(1 + a/L, 1 + b/L) =

∑
j,k

j

L
(1 + a/L)j−1(1 + b/L)kAj,k

→ pE[J̄1 exp(aJ̄1 + bK̄1)] = Ua(a, b).

Plugging in x = 1 + a/L, and y = 1 + b/L in (20) and using p = N1/N we have

0 =
ν

L
β

(
b

L
− a

L

)
Qx

(
1 +

a

L
, 1 +

b

L

)
+

ν

L
(1 + a/L)Rx

(
1 +

a

L
, 1 +

b

L

)
+

([ ν

L
+ α

ν

L
+ p(1− ν/L)

] (
a

L
− b

L

)
− b

L
− ν

L

)
Qy

(
1 +

a

L
, 1 +

b

L

)
+ (1− ν/L)η

( a

L

)
Q

(
1 +

a

L
, 1 +

b

L

)
+ (1− ν/L)η

(
b

L

)
Q

(
1 +

a

L
, 1 +

b

L

)
.

Using ᾱ, β̄ and η̄ as the limits of α/L, β/L, η/L we have

0 = νβ̄(b− a)Ua + νVa + ([p + ᾱν](a− b)− b− ν)Ub + η̄aU + η̄bU. (22)

Similarly,

0 = νε̄(a− b)Vb + νUb + ([p + δ̄ν](b− a)− a− ν)Va + η̄aV + η̄bV. (23)

This concludes the derivation of the limiting PDEs.
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6 Analysis for the symmetric case p = 1/2

In Section 5 we obtained limiting PDEs for the generating functions Q and R of (Ak,`)k,`,
and (Bk,`)k,`, respectively. In this section our goal is to obtain solutions that satisfy the
PDEs (22) and (23). To this end, we restrict ourselves to the symmetric case, i.e. p = 1/2.
It will be evident from below that symmetry plays a crucial role in this computation. In this
symmetric case Q(a, b) = R(b, a), so we look for solutions of the form

U(a, b) =
∑
m,n

cm,na
mbn, V (a, b) =

∑
m,n

cn,mambn. (24)

Calculations given in Section 12 show that the coefficients satisfy

0 = η̄cm−1,n + η̄cm,n−1

+ νβ̄cm+1,n−1(m + 1)− (νβ̄m + (3/2 + νᾱ)n)cm,n + (1/2 + νᾱ)cm−1,n+1(n + 1) (25)

+ νcn,m+1(m + 1)− νcm,n+1(n + 1).

Notice that there are terms of order m+n−1, m+n and m+n+1. Now we try to solve for the
unknown coefficients cm,n. Since m!n!cm,n = ∂am∂bnU(0, 0), we therefore obtain equations
involving different partial derivatives of U evaluated at (0, 0). Since all the derivatives are
evaluated at (0, 0), for convenience in writing, we suppress the argument (0, 0).

As we noted earlier, degree is not conserved in the approximate master equation. If the
average degree in equilibrium is L then when p = 1/2 the average degrees of vertices in states
i = 1, 0 is L by symmetry and we have

Ua + Ub = 1/2. (26)

We say that the system is conservative in this case.

Zeroth order. If we set a = b = 0 in (22) then we get

0 = νVa − νUb.

This holds by symmetry, but is true in general since it says (1−p)EJ̄0 = pEK̄1 or N0LEJ̄0 =
N1LEK̄1, which is true since each side is N10.

First order. If we take m = 1, 0 and n = 1 −m in (25) then we find (see Section 12 for
details) that in general

η̄ = Ub,

and we have
0 = −νβ̄Ua + (1 + νᾱ)Ub + ν(Ubb − Uab). (27)

For self-consistent solutions we can use

ᾱ =
Ubb

Ub

and β̄ =
Uab

Ua

to simplify this to
0 = −νUab + Ub + νUbb + νUbb − νUab,
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or rearranging we have
Ub = 2ν[Uab − Ubb]. (28)

which is a close relative of (4).

Second order. Taking m = 2, 1, 0 and n = 2 − m in (25) then we conclude (again see
Section 12 for details)

(ν/2)(Uaab − Ubbb) = η̄Ua + Uab/2 + ν(ᾱUab − β̄Uaa),

0 = η̄(Ua + Ub)− 3Uab/2 + Ubb/2 + ν[ᾱ(Ubb − Uab)] + β̄(Uaa − Uab)], (29)

(ν/2)(Ubbb − Uaab) = η̄Ub − 3Ubb/2 + ν[β̄Uab − ᾱUbb].

adding the equations we get
Uab + Ubb = Ub. (30)

At this point we have four equations for our five unknowns Ua, Ub, Uaa, Uab and Ubb, but
this still allows us to compute all of them in terms of Ub. In the self-consistent case using
(28) and (30) we get

Uab =
1

2

(
1 +

1

2ν

)
Ub, β̄ =

Uab

Ua

=

(
1 +

1

2ν

)
Ub

1− 2Ub

, (31)

Ubb =
1

2

(
1− 1

2ν

)
Ub, ᾱ =

Ubb

Ub

=
1

2

(
1− 1

2ν

)
. (32)

To compute Uaa now, we note that ᾱ = Ubb/Ub and Uab−Ubb = Ub/2ν so νᾱ(Ubb−Uab) =
−Ubb/2 and (29) simplifies to

0 = η̄/2− 3Uab/2 + ν[β̄(Uaa − Uab)].

Rearranging
−η̄ = 2νβ̄Uaa − (2νβ̄ + 3)Uab,

so we have

Uaa =

(
1 +

3

2νβ̄

)
Uab −

η̄

2νβ̄
(33)

To get a sense of the accuracy of the approximate master equation we simulate the system
with N = 1600, L = 40 to find Ub then use the equations (31), (32), and (33). The predicted
values of Uab and Ubb given in Table 1 agree well with those from simulation, having errors
that are mostly about 1%. However the predictions for Uaa have errors of about 10%, showing
that 1’s are more clustered than the approximate master equation predicts.

If we go to third order then we have four new equations, see (51) but we have three new
equations for four new unknowns so we are falling further behind. Despite this fact, as Silk et
al. [15] explain, it is possible in the symmetric case to compute generating function and find
“self-consistent solutions,” i.e., those that have the property that if we set the values of ᾱ, β̄,
and η̄ and then compute the values of Ubb/Ub, Uab/Ua, and Ub they agree with the specified
parameters. To do this they note that if one specifies the values of the Uaaab . . . Ubbbb then one
can solve for the lower order U ’s then one has a fourth order approximation to the solution.
If we do the nth order approximation, choose the nth order variables so that Ua + Ub = 1/2,
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ν Ub sim Uab sim (31) Ubb sim (32) Uaa sim (33)
2 0.1666 0.1025 0.1041 0.0604 0.0625 0.2336 0.2208
1.6 0.1371 0.0907 0.0900 0.0466 0.0471 0.2859 0.2574
1.44 0.1216 0.0827 0.0819 0.0394 0.0397 0.3115 0.2810
1.32 0.1094 0.0757 0.0754 0.0343 0.0340 0.3310 0.3047
1.2 0.0896 0.0641 0.0635 0.0264 0.0261 0.3735 0.3351
1 0.0454 0.0339 0.0341 0.0132 0.0113 0.4690 0.4129

Table 1: Simulation of evolving voter model compared with computations for the approxi-
mate mater equation.

and let n → ∞ then the limit exists. They take the eighth order approximation and then
use symbolic computation to find self-consistent values of ᾱ, β̄, and η̄. See their paper for
results for rewire to same.

Since this is beyond our computer skills we leave this as an exercise for more capable
readers. We would be more excited if this method could be used to get results for the general
case, however symmetry seems crucial to the computation.

7 Derivation of the Equations

This section provides the derivation of the equations (3)-(5). To this end, we begin by writing
the equations in the notation of [7], i.e., α is the rewiring rate not the quantity N101/N10

introduced in the discussion of the approximate master equation.

Rewire-to-random. We fix (x, y) and consider (d/dt)1{ξ(x)=i,ξ(y)=j} for all possible i, j. To
do this we consider the various possibilities for the oriented edge (u, v) and which the update
occurs and whether the even is voting or rewriting.

I. Pairs destroyed by rewiring.

u = x v = y rate destroy
1 0 αN10 10
0 1 αN10 01

u = y v = x rate destroy
1 0 αN10 01
0 1 αN10 10

II. Pairs created by rewiring.
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u = x v v′ = y rate create
1 0 0 αN10(1− p) 10
1 0 1 αN10p 11
0 1 0 αN10(1− p) 00
0 1 1 αN10p 01

u = y v v′ = x rate create
1 0 0 αN10(1− p) 01
1 0 1 αN10p 11
0 1 0 αN10(1− p) 00
0 1 1 αN10p 10

III. Internal voting on (x, y).
10 vote rate destroy create
uv (1− α)N10 10 11
vu (1− α)N01 01 11
01 vote rate destroy create
uv (1− α)N01 01 00
vu (1− α)N10 10 00

IV. External Voting

u ∼ x = v, y rate create destroy
10 0 (1− α)N100 10 00
10 1 (1− α)N101 11 01
01 0 (1− α)N010 00 10
01 1 (1− α)N011 01 11

u ∼ y = v x rate create destroy
10 0 (1− α)N001 01 00
10 1 (1− α)N101 11 10
01 0 (1− α)N010 00 01
01 1 (1− α)N110 10 11

Adding up the rates from the tables gives the following equations. Note that N11, N00, N111

and N000 do not appear on the right-hand side. Noting that N110 = N011 and N100 = N001

we have

dN10

dt
= −αN10 + (1− α)[−2N10 + N100 −N010 + N110 −N101],

1

2

dN11

dt
= αpN10 + (1− α)[N10 + N101 −N011], (34)

1

2

dN00

dt
= α(1− p)N10 + (1− α)[N10 + N010 −N100].

We have separated the rewiring terms I+II multiplied by α from the voting terms III+IV
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multiplied by 1− α. Simplifying gives

dN10

dt
= −(2− α)N10 + (1− α)[N100 −N010 + N110 −N101],

1

2

dN11

dt
= (1− α(1− p))N10 + (1− α)[N101 −N011],

1

2

dN00

dt
= (1− αp)N10 + (1− α)[N010 −N100].

Let dx be the degree of x and M =
∑

x dx be the number of oriented edges. Note that

N11 + 2N10 + N00 =
∑

x

dx = M ∼ N2p

so the sum of the three equations must be 0 (and it is).
When 1− α = ν/L we have

dN10

dt
= −N10 +

ν

L
[N100 −N010 + N110 −N101],

1

2

dN11

dt
= pN10 +

ν

L
[N101 −N011], (35)

1

2

dN00

dt
= (1− p)N10 +

ν

L
[N010 −N100].

8 Pair approximation

In this section we derive (8)-(9), namely the means of 1 neighbor, and 0 neighbor under the
pair approximation. To this end, we recall (6) and (7)

1

2

dN11

dt
= pN10 +

ν

L
[N10J0 −N01J1], (36)

1

2

dN00

dt
= (1− p)N10 +

ν

L
[N01K1 −N10K0]. (37)

In equilibrium we have

p +
ν

L
(J0 − J1) = 0, (1− p) +

ν

L
(K1 −K0) = 0.

or rearranging

J1 − J0 =
Lp

ν
, K0 −K1 =

L(1− p)

ν
. (38)

To have four equations we recall that

pK1 = (1− p)J0, (39)

p(J1 + K1) + (1− p)(J0 + K0) = L. (40)

To simplify the equations we begin by noting that using (40) with (38) gives
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pJ1 +pK1 +(1− p)J0 +(1− p)K0 = L
(1− p)J1 −(1− p)J0 = Lp(1− p)/ν

−pK1 +pK0 = Lp(1− p)/ν

so we have

J1 + K0 = L +
2Lp(1− p)

ν
. (41)

Adding the equations in (38)

J1 + K0 − J0 −K1 =
Lp

ν
+

L(1− p)

ν
.

Using (41)

L +
Lp(1− p)

ν
+

Lp(1− p)

ν
= J0 + K1 +

Lp

ν
+

L(1− p)

ν
,

so we have

L− Lp2

ν
− L(1− p)2

ν
= J0 + K1.

Using (39) now and noting J0 + (1− p)J0/p = J0/p we have that in equilibrium

J∗0 = L

(
1− p2 + (1− p)2

ν

)
p, (42)

K∗
1 = L

(
1− p2 + (1− p)2

ν

)
(1− p). (43)

To finish up we note that from (38)

J∗1 = J∗0 +
Lp

ν
= L

(
1 +

1

ν
− p2 + (1− p)2

ν

)
p, (44)

K∗
0 = K∗

1 +
L(1− p)

ν
= L

(
1 +

1

ν
− p2 + (1− p)2

ν

)
(1− p). (45)

For J∗0 , K∗
1 > 0 we must have ν > νc(p) ≡ p2 + (1 − p)2. In this case we will also have

J∗1 , K∗
0 > 0. To begin to check (40) we note that

J∗1 + K∗
1 = L

(
1 +

p

ν
− p2 + (1− p)2

ν

)
,

J∗0 + K∗
0 = L

(
1 +

(1− p)

ν
− p2 + (1− p)2

ν

)
.

so we do have p(J∗1 + K∗
1) + (1− p)(J∗0 + K∗

0) = L.

9 Analysis of the single plane ODEs

Recall that in Section 4 we introduced approximate master equation, where we represent the
states of a local neighborhood of a vertex by a triplet. Namely, in (i, j, k) i represents the
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state of the focal vertex, j is the number of 1 neighbors, and k is the same for 0 neighbors.
This gives rise to a two plane system, and we claimed in Theorem 7 that this two plane
system has a unique stationary distribution. To prove Theorem 7, we first need to show that
the sets of differential equations in the individual planes are globally attractive, which is
done in this section. Building on this, we finish the proof of Theorem 7 in the next section.

To this end, using (15), (16) and subtracting

0 = η + pk∗1 +
ν

L
αk∗1 −

ν

L
βj∗1 ,

0 = η − k∗1 − pk∗1 −
ν

L
αk∗1 +

ν

L
βj∗1 ,

we conclude:

d(j1 − j∗1)

dt
= − ν

L
α(j1 − j∗1) +

(
p +

ν

L
β
)

(k1 − k∗1),

d(k1 − k∗1)

dt
=

ν

L
α(j1 − j∗1)−

(
1 + p +

ν

L
β
)

(k1 − k∗1),

Scaling by L and letting L →∞
d(x1 − x∗1)

dt
= −νᾱ(x1 − x∗1) + (p + νβ̄)(y1 − y∗1),

d(y1 − y∗1)

dt
= νᾱ(x1 − x∗1)− (1 + p + νβ̄)(y1 − y∗1),

Either equation can be written in matrix form as(
u1(t)
v1(t)

)
= A

(
u1(0)
v1(0)

)
,

where

A =

[
−a p + b
a −(1 + p + b)

]
.

with a, b > 0 so the solution is (
u1(t)
v1(t)

)
= exp[At]

(
u1(0)
v1(0)

)
,

The trace of A is −(1+ p+a+ b) < 0 while the determinant is a > 0, so it is clear that both
eigenvalues have negative real part. To show that they are real we note that they satisfy

det(λI − A) = λ2 + (1 + p + a + b)λ + a = 0. (46)

Solving the quadratic equation we have

λi =
−(1 + p + a + b)±

√
(1 + p + a + b)2 − 4a

2
. (47)

To show that the quantity under the square root is positive we note that if r = 1 + p + b
then

(1 + p + a + b)2 − 4a = (r + a)2 − 4a = (r − a)2 + 4ra− 4a > 0

since a > 0 and r > 1.
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10 AME: Convergence to Equilibrium

Building on the results of Section 9 we now finish the proof of Theorem 7. Recall that the
set of equation for plane i can be written in the following form:(

ui(t)
vi(t)

)
= exp[Ait]

(
ui(0)
vi(0)

)
,

where both the eigenvalues of Ai are real negative, and hence there exists a unique solution
of the differential equation in plane i starting from z = (xi, yi), which is denoted hereafter
by Φi

t(z). It is clear that t → Φi
t(z) are continuous. The matrix representations imply that

if t > 0
|Φi

t(z)− Φi
t(w)| ≤ Ki(t)|z − w| (48)

with Ki(t) < 1. Note that Ki(s + t) ≤ Ki(s)Ki(t).
Let Ti(z) be the time of the first jump to the other plane when the solution starts at z

in plane i. [12] study the situation in which there are two differential equations and the kth
pair of switching times between them (τ k

0 , τ k
1 ) are independent and drawn from a distribution

µ0 × µ1. In our situation the jump times depend on the starting point, but their method of
proof extends easily. Let Fi,z be the distribution of Ti(z), let U1

k , U0
k be i.i.d uniform on (0, 1)

and let τ k
i (z) = F−1

i,z (Uk
i ) which has the same distribution as Ti(z). Define the compositions

Gk
ω(z) = Φ1

τk
1 (w)(Φ

0
τk
0 (z)(z)) where w = Φ0

τk
0 (z)(z),

Hk
ω(z) = Φ0

τk
0 (w)(Φ

1
τk
1 (z)(z)) where w = Φ1

τk
1 (z)(z).

Define the forward maps φn and γn and the backwards maps φ−n and γ−n by

φn
ω(z) = Gn

ω ◦ · · · ◦G1
ω(z), and γn

ω(z) = Hn
ω ◦ · · · ◦H1

ω(z),

φ−n
ω (z) = G1

ω ◦ · · · ◦Gn
ω(z), and γ−n

ω (z) = H1
ω ◦ · · · ◦Hn

ω(z).

This is a well-known trick in the theory of iterated functions. The functions φn and φ−n

have the same distribution but φ−ns admit a almost sure limit:

Lemma 1. Y1(ω) = limn→∞ φ−n
ω (z) and Y0(ω) = limn→∞ γ−n

ω (z) exist almost surely and are
independent of z.

This follows easily from the contraction property in (48), see the proof of Proposition 1 in
[12].

G1
ω(z) gives the location of the path on its first return to plane 0, so Y1 gives the equi-

librium distribution at that time. Likewise, H1
ω(z) gives the location of the path on its first

return to plane 1, so Y0 gives the equilibrium distribution at that time. It follows easily from
the existence of the limit that (this is Proposition 2 in [12])

Lemma 2. Y0 =d Φ0
τ0(Y1)(Y1) and Y1 =d Φ1

τ1(Y0)(Y0).

The average time spent in plane 0 is ν0 = Eτ0(Y1). The average time spent in plane 1 is
ν1 = Eτ1(Y0). Once we show these are finite we can conclude that the long run fraction of
time spent in plane 1 is ν1/(ν1 + ν0). To compute the limiting behavior of the continuous
time process the following picture is useful.
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•
Y 1

0

t11

σ0 = 0
•
Y 1

1

t10

•
Y 2

0

t21

σ1

•
Y 2

1

t20

•
Y 3

0

σ2

The superscripts refer to time. In words, we start in plane 1 at location Y 1
0 =d Y0, we follow

the ODE for time t11 = τ1(Y
1
0 ) when we jump to Y 1

1 = Φ1
τ1(Y 1

0 )
(Y 1

0 ) in plane 0, etc.

Consider now the process Z(t) that is constant on each time interval and equal to the
value at the left endpoint of the interval. Z(t) is a Markov alternating renewal process.
Recall that in an Markov renewal process if we jumped into state Xk at time Tk then the
next state Xk+1 and the waiting time tk+1 until we jump to Xk+1 have a joint distribution
(Xk+1, tk+1) that depends on Xk but is otherwise independent of the past before time Tk.
See e.g., Chapter 10 of Cinlar [2]. Our process is “alternating” because the joint distribution
used alternates.

Call the sojurn in plane 1 combined with the sojurn in plane 0, a cycle. Let ρ1 be the
distribution of Y0 on plane 1, and let ρ0 be the distribution of Y1 on plane 0. Let ρ̄i be the
measure with

dρ̄i

dρi

(z) = Eτi(z)

ρ̄i has total mass νi. Let π be the measure that has density πi = ρ̄i/(ν1 + ν0) on plane i than
applying the Ergodic Theorem to the sequence of cycles {Z(σk−1 + t), 0 ≤ t ≤ σk − σk−1}
shows that our alternating renewal process Z(t) has stationary distribution π. To do this
note that the cycles are simply a Markov chain on a space of paths starting from its stationary
distribution.

Let V (t) be the process that starts at Y 1
0 at time 0, is at Φ1

t (Y
1
0 ) for t < τ1(Y

1
0 ) when

it jumps to Y 1
1 , etc. Let L(t) be the time of the last jump before time t, let g(t) =

f1(Z(t))1{t−L(t)>x} where f1 is a bounded function with f1 = 0 on plane 0. It follows from
the applying the Ergodic Theorem to the sequence of cycles that

1

t

∫ t

0

g(s) ds → E(f1(Y0)(τ1(Y0)− x)+)

ν1 + ν0

.

For the use of this idea in the simpler setting of renewal theory see Section 3.3.2 in [5].
The last result when supplemented by the analogous conclusion for a function f0 that

vanishes on plane 1 gives the limiting joint distribution of (Z(t), A(t)) where A(t) = t−L(t)
is the age (time since the last jump) at time t. Differentiating with respect to x we see that
on plane i that joint distribution is given by

χi(z, a) =
ρi(z)P (τi(z) > a)

ν1 + ν0

.

From this we can compute the limiting distribution of V (t). If f1 is as above

lim
t→∞

Ef1(V (t)) =

∫
[0,∞)2

dz

∫ ∞

0

daEf1(Φ
1
a(z)).
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11 Derivation of the PDE

In this section we provide the derivation of (20), and (21). Writing x for the focal vertex,
y for a neighbor, z a neighbor of the neighbor y, and w some other vertex in graph. By
patiently considering all the possible changes one finds:

dAk,`

dt
=

ν

L
[kBk,` − `Ak,`] vote y → x

+
ν

L
[(` + 1)Ak−1,`+1 − `Ak,`] vote x → y

+
ν

L
α[(` + 1)Ak−1,`+1 − `Ak,`] vote z → y, ξ(y) = 0

+
ν

L
β[(k + 1)Ak+1,`−1 − kAk,`] vote z → y, ξ(y) = 1

+ (1− ν/L)[(` + 1)Ak,`+1 − `Ak,`] y rewires away from x

+ (1− ν/L)p[(` + 1)Ak−1,`+1 − `Ak,`] x rewires and connects to a 1

+ (1− ν/L)η[Ak−1,` − Ak,`] w with ξ(w) = 1 rewires to x

+ (1− ν/L)η[Ak,`−1 − Ak,`] w with ξ(w) = 0 rewires to x

For the last two equations note that for each discordant edge, one of the orientations brings
a 1, the other a 0.

Let Q(t, x, y) =
∑

k,` Ak,`x
ky` and R(t, x, y) =

∑
k,` Bk,`x

ky`. Writing Qx, Qy, etc for
partial derivatives, the second terms in lines 1, 2, 3, 5, 6 are∑

k,`

`Ak,`x
ky` = y

∑
k,`

Ak,`x
k`y`−1 = yQy.

Similarly the second term in line 4 and the first in line 1 are∑
k,`

kAk,`x
ky` = xQx and

∑
k,`

kBk,`x
ky` = xRx.

The first terms in lines 2, 3, 6 are∑
k,`

(` + 1)Ak−1,`+1x
ky` = xQy.

The first term in line 4 is ∑
k,`

(k + 1)Ak+1,`−1x
ky` = yQx.

The first term in line 5 is ∑
k,`

(` + 1)Ak,`+1x
ky` = Qy.

The first terms in lines 7 and 8 are∑
k,`

Ak−1,`x
ky` = xQ and

∑
k,`

Ak,`−1x
ky` = yQ.
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Combining the formulas for the sums with formula for dAk,`/dt we have

Qt =
ν

L
[xRx − yQy] +

ν

L
[xQy − yQy] +

ν

L
α[xQy − yQy] +

ν

L
β[yQx − yQx]

+ (1− ν/L)[Qy − yQy] + p(1− ν/L)[xQy − yQy]

+ (1− ν/L)η[xQ−Q] + (1− ν/L)η[yQ−Q]

Taking the terms from the last expression in the order 4, 1.1 (the first part of line 1), 2+3+6,
1.2 + 5, 7, and 8, we have

Qt =
ν

L
β(y − x)Qx +

ν

L
xRx

+
([ ν

L
+ α

ν

L
+ p(1− ν/L)

]
(x− y) + (1− y)− ν

L

)
Qy (49)

+ (1− ν/L)η(x− 1)Q + (1− ν/L)η(y − 1)Q

where we have set η = N10/N , and recall γ = N10/N1

12 Moment equations

From the differential equations of Q, and R, namely (20)-(21), in Section 5.1, we obtained
differential equations for the limits U , and V (see (22)-(23)), where

U(a, b) = lim
L→∞

Q(1 + a/L, 1 + b/L),

V (a, b) = lim
L→∞

R(1 + a/L, 1 + b/L).

In Section 6, in the symmetric case, we then looked for solutions of the form

U(a, b) =
∑
m,n

cm,na
mbn, V (a, b) =

∑
m,n

cn,mambn.

In this section, we provide the derivation of the moment equations of Section 6. To this end,
letting r1 = 1/2 + νᾱ, r2 = 3/2 + νᾱ, it follows from (22) that we need

0 = νβ̄
∑
m,n

cm,nmam−1bn(b− a) + ν
∑
m,n

cn,mmam−1bn

+
∑
m,n

cm,nnambn−1[r1a− r2b− ν] + η̄
∑
m,n

cm,na
m+1bn + η̄

∑
m,n

cm,na
mbn+1

= νβ̄
∑
m,n

cm,nm(am−1bn+1 − ambn) + ν
∑
m,n

cn,mmam−1bn

+
∑
m,n

cm,nn[r1a
m+1bn−1 − r2a

mbn − νambn−1]

+ η̄
∑
m,n

cm,na
m+1bn + η̄

∑
m,n

cm,na
mbn+1.
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The coefficient of ambn is

0 = νβ̄cm+1,n−1(m + 1)− νβ̄cm,nm + νcn,m+1(m + 1)

+ r1cm−1,n+1(n + 1)− r2cm,nn− νcm,n+1(n + 1) + η̄cm−1,n + η̄cm,n−1.

So rearranging and filling in the values of the ri we have (25)

0 = η̄cm−1,n + η̄cm,n−1

+ νβ̄cm+1,n−1(m + 1)− (νβ̄m + r2n)cm,n + r1cm−1,n+1(n + 1)

+ νcn,m+1(m + 1)− νcm,n+1(n + 1).

First order. Taking m = 1, n = 0 then m = 0, n = 1 in (25) we have

0 = η̄c0,0 − νβ̄c1,0 + (1/2 + νᾱ)c0,1 + νc0,2 · 2− νc1,1,

0 = η̄c0,0 + νβ̄c1,0 − (3/2 + νᾱ)c0,1 + νc1,1 − νc0,2 · 2.

Recalling m!n!cm,n = ∂m
a ∂n

b U(0, 0) this becomes

0 = η̄U − νβ̄Ua + (1/2 + νᾱ)Ub + νUbb − νUab,

0 = η̄U + νβ̄Ua − (3/2 + νᾱ)Ub + νUab − νUbb.

Since p = 1/2, we get U(0, 0) = 1/2, and therefore when we add these equations we find

0 = 2η̄U − Ub, (50)

so in general η̄ = Ub. Using this in the first equation we have

0 = −νβ̄Ua + (1 + νᾱ)Ub + ν(Ubb − Uab).

Second order. Taking m = 2, 1, 0 and n = 2−m in (25) we get

0 = η̄c1,0 + 0 + 0− νβ̄c2,0 · 2 + 0 + (1/2 + νᾱ)c1,1 + νc0,3 · 3− νc2,1,

0 = η̄c0,1 + η̄c1,0 + νβ̄c2,0 · 2− (νβ̄ + 3/2 + νᾱ)c1,1 + (1/2 + νᾱ)c0,2 · 2,
0 = 0 + η̄c0,1 + νβ̄c1,1 + 0− (3/2 + νᾱ)c0,2 · 2 + 0 + νc2,1 − νc0,3 · 3.

Recalling again m!n!cm,n = ∂m
a ∂n

b U(0, 0), this becomes

0 = η̄Ua − νβ̄Uaa + (1/2 + νᾱ)Uab + νUbbb/2− νUaab/2,

0 = η̄/(Ua + Ub) + νβ̄Uaa − (νβ̄ + 3/2 + νᾱ)Uab + (1/2 + νᾱ)Ubb,

0 = η̄Ub + νβ̄Uab − (3/2 + νᾱ)Ubb + νUaab/2− νUbbb/2.

Rearranging gives

(ν/2)(Uaab − Ubbb) = η̄Ua + Uab/2 + ν(ᾱUab − β̄Uaa),

0 = η̄(Ua + Ub)− 3Uab/2 + Ubb/2 + ν[ᾱ(Ubb − Uab)] + β̄(Uaa − Uab)],

(ν/2)(Ubbb − Ubbb) = η̄Ub − 3Ubb/2 + ν[β̄Uab − ᾱUbb].
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The middle equation is (29). If we add the equations we get

0 = 2η̄(Ua + Ub)− Uab − Ubb.

Since Ua + Ub = 1/2 and η̄ = Ub we get (30)

Uaa + Uab = Ub.

Third order. Taking m = 3, 2, 1, 0 and n = 3−m in (25) we get

0 = η̄c2,0 + 0 + 0− νβ̄c3,0 · 3
+ 0 + (1/2 + νᾱ)c2,1 · 1 + νc0,4 · 4− νc3,1 · 1,

0 = η̄c1,1 + η̄c2,0 + νβ̄c3,0 · 3− νβ̄c2,1 · 2
− (3/2 + νᾱ)c2,1 · 1 + (1/2 + νᾱ)c1,2 · 2 + νc1,3 · 3− νc2,2 · 2,

0 = η̄c0,2 + η̄c1,1 + νβ̄c2,1 · 2− νβ̄c1,2 · 1
− (3/2 + νᾱ)c1,2 · 2 + (1/2 + νᾱ)c0,3 · 3 + νc2,2 · 2− νc1,3 · 3,

0 = 0 + η̄c0,2 + νβ̄c1,2 · 1 + 0

− (3/2 + νᾱ)c0,3 · 3 + 0 + νc3,1 · 1− νc0,4 · 4.

Recalling once more m!n!cm,n = ∂m
a ∂n

b U(0, 0),

0 = η̄Uaa/2− νβ̄Uaaa/2 + (1/2 + νᾱ)Uaab/2 + νUbbbb/3!− νUaaab/3!,

0 = η̄Uab + η̄Uaa/2 + νβ̄Uaaa/2− νβ̄Uaab

− (3/2 + νᾱ)Uaab/2 + (1/2 + νᾱ)Uabb + νUabbb/2− νUaabb/2,

0 = η̄Ubb/2 + η̄Uab + νβ̄Uaab − νβ̄Uabb/2

− (3/2 + νᾱ)Uabb + (1/2 + νᾱ)Ubbb/2 + νUaabb/2− νUabbb/2,

0 = η̄Ubb/2 + νβ̄Uabb/2− (3/2 + νᾱ)Ubbb/2 + 0 + νUaaab/3!− νUbbbb/3!.

Rearranging gives

(ν/3!)(Uaaab − Ubbbb) = η̄Uaa/2− νβ̄Uaaa/2 + (1/2 + νᾱ)Uaab/2,

(ν/2)(Uaabb − Uabbb) = η̄Uab + η̄Uaa/2

+ νβ̄Uaaa/2− νβ̄Uaab−(3/2 + νᾱ)Uaab/2 + (1/2 + νᾱ)Uabb,

(ν/2)(Uabbb − Uaabb) = η̄Ubb/2 + η̄Uab (51)

+ νβ̄Uaab − νβ̄Uabb/2−(3/2 + νᾱ)Uabb + (1/2 + νᾱ)Ubbb/2,

(ν/3!)(Ubbbb − Uaaab) = η̄Ubb/2 + νβ̄Uabb/2− (3/2 + νᾱ)Ubbb/2.

If we add all the equations, the voter terms cancel out and we conclude that

0 = η̄(Uaa + 2Uab + Ubb)− Uaab/2−Uabb − Ubbb/2.

If we use the fact that the first equation plus the fourth is 0 then we get a second new
equation without the fourth order variables. We have another unused second order equation
but we have three new equations for four new unknowns so we are falling further behind.
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13 Proofs of Theorems 5 and 6

In this section we prove Theorem 5 and Theorem 6, which are generalizations of Basu and
Sly results for the thick graphs. While proving these two theorems we follow the efficient
algorithm, that is at each step we pick a discordant edge. Now let {Zi} be independent
Bernoulli(1/2). If Zi = 1 we pick the end with 1 to be the left end point of the oriented edge;
if Zi = 0 we pick the end with 0. We will have a collection of counters K(v, m) to decide
what type of event occurs (rewiring or voting). Suppose that on the mth step we decide to
update the oriented edge (v, u). If K(v, m − 1) = 0 then v imitates u. If K(v, m − 1) > 0
then K(v, m) = K(v, m− 1)− 1. We set K(x, m) = K(x, m− 1) for x 6= v.

To create and update these counters, let Xi and X ′
i be independent geometric(ν/L),

taking values in {0, 1, 2 . . .}. In addition we have two sequences of indices Ii and I ′j that
start with I0 = 0 and I ′0 = N , i.e., we use the second sequence to initialize the counters
K(i, 0) = X ′

i. Let T0 = 0 and let Wk be i.i.d. uniform on the set of vertices V . Recall that
the set S is the collection of vertices with initial degree less than equal to 11L.

• If v ∈ S and v is in state 0, set I ′m = I ′m−1. If K(m − 1, v) > 0 define Tm = min{k >
Tm−1 : Wk 6= v, Wk 6∼ v}. Rewire to WTm . If K(v, m − 1) = 0 v imitates u. Let
Im = Im−1 + 1, K(v, m) = XIm .

• If v 6∈ S or v is in state 1, set Im = Im−1. If K(m − 1, v) > 0 define Tm = min{k >
Tm−1 : Wk 6= v, Wk 6∼ v}. Rewire to WTm . If K(v, m − 1) = 0 v imitates u. Let
I ′m = I ′m−1 + 1, K(v, m) = XI′

m
.

Lemma 3. Suppose that initially all vertices have degree L. Let Dmax(m) be the maxi-
mum degree after m updates. Let ε > 0 and t > 0. While Dmax(tNL) ≤ CL, we have
Dmax(tNL) ≤ (1 + ε + t)L with high probability.

Proof. While Dmax(tNL) ≤ CL the number of values excluded by the conditions Wk 6= v
and Wk 6∼ v is ≤ 1+CL. Thus Tm−Tm−1 is stochastically dominated by a geometric random
variable with success probability 1 − 1+CL

N
. Since L = Na, with a ∈ (0, 1), using standard

large deviation arguments it follows that if L is large then TtNL ≤ (t + ε/2)NL with high
probability, and hence

sup
v
|{k ≤ (t + ε/2)NL : Wk = v}| ≤ (t + ε)L.

From this the desired result follows immediately.

Now we are ready to prove Theorem 5. Before going to the proof, let us first recall its
statement once again.

Theorem 5. Suppose p ≤ 1/2 and let ε > 0. If ν ≤ (0.15)/(1+3p) then with high probability
τ < 3pNL, and the fraction of vertices in state 1 at time τ is between p − ε and p + ε with
high probability.
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Proof. Let Xm be the number of discordant edges after m updates. Every time a rewiring
occurs Xm decreases by 1 with probability 1/2, and stays the same with probability 1/2.
After a voting event Xm can increase by at most Dmax(m). If τ > m then

E(exp(λXm+1/L)|Fm) ≤ exp(λXm/L)

[
(1− ν

L
)

(
1 +

1

2
(e−λ/L − 1)

)
+

ν

L
exp(λDmax(m)/L)

]
Let τ1 be the first time Dmax(m) > (2.5 + ε)L. It follows from Lemma 3 that τ1 > 1.5NL
with high probability. Let τ0 = min{τ, τ1}. When τ0 > m the quantity in square brackets is

≤
(
1− ν

L

) (
1 +

1

2
(e−λ/L − 1)

)
+

ν

L
exp((2.5 + ε)λ)

If λ < λ0(ε) then e(2.5+ε)λ ≤ 1 + (2.5 + 2ε)λ and e−λ/n − 1 ≤ −(1− 2ε)λ/n then the above is

≤
(
1− ν

L

) (
1− (0.5− ε)

λ

L

)
+

ν

L
(1 + (2.5 + 2ε)λ) (52)

= 1 + (2.5 + 2ε)λ
ν

L
− (0.5− ε)

λ

L

(
1− ν

L

)
= 1 + (2.5ν − 0.5(1− ν/L)) + ε(2ν + (1− ν/L))λ/L

We first prove the result when p = 1/2. If we take ν = 3/50 then 2.5ν − 0.5 = −0.35. If
ε0 is small and λ < λ0(ε0) then for large L the above is ≤ 1− 0.34λ/L ≤ exp(−0.34λ/L). It
follows that

P (τ0 > m) ≤ E(exp(λXm/n)1{τ0>m}) ≤ exp(λ(X0/L)− 0.34mλ/L)

Since there are NL/2 edges and each is discordant with probability 1/2 we have X0 ≤ NL/2
with high probability. Taking m = (3/2)NL

P (τ0 > (3/2)NL) ≤ exp(−0.02λN/2).

To prove the result for p < 1/2, note that if we only go out to time 3pNL, (52) becomes

≤
(
1− ν

L

) (
1− (0.5− ε)

λ

L

)
+

ν

L
(1 + (1 + 3p + 2ε)λ)

= 1 + (1 + 3p + 2ε)λ
ν

L
− (0.5− ε)

λ

L

(
1− ν

L

)
Let ν = 0.15/(1 + 3p). If ε is small enough then for large L the above is ≤ 1− 0.34pλ/L. It
follows that for m ≤ 3pNL

P (τ0 > m) ≤ E(exp(λXm/n)1{τ0>m}) ≤ exp(λ(X0/L)− 0.34mλ/L)

Since there are NL/2 edges and each is discordant with probability 2p(1 − p) we have
X0 ≤ pNL with high probability. Taking m = 3pNL

P (τ0 > 3pNL) ≤ exp(−0.02λpN/2).

which completes the proof of Theorem 5
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Recall G(p, N, L) = graphs with vertex set V = {1, 2, . . . , N} labeled with 1’s and 0’s
so that N1(G) = pn and the number of edges is NL/2. We now prove Theorem 6, after
recalling its statement.

Theorem 6. Let ν > 0 and ε > 0 There is a p(ν) < 1/2 so that for all G(0) ∈ G(p, N, L)
with p ≤ p(ν), we have with high probability τ < 7NL and the fraction of vertices in state 1
at time τ is ∈ (p− ε, p + ε).

Lemma 4. If G(0) ∈ G(p, N, L) and N is large enough then with high probability the number
of vertices in state 1 remains between (p− ε) and (p + ε)n throughout the first 7NL updates.

Proof. On voting events the number of 1’s changes by ±1 with equal probability independent
of the past. The expected number of voting steps is 7νN and with high probability will be
≤ 8νN .

Let S be the set of vertices that at time 0 have degree ≤ 11L and T = V − S. It follows
that |S| ≥ 0.9N . If not then |T | ≥ 0.1N , and hence the number of edges in the graph is
≥ (0.1N)(22L)/2 = 1.1NL/2 contradicting our assumption that there are total NL/2 edges.

Lemma 5. Call an Xi stubborn if Xi > 20L. Let Y = |{i ≤ L7NL : Xi > 20L}| be the
number of stubborn elements which are used in the first 7NL steps. Then with high probability
N1(7NL) ≥ Y .

Proof. Note that stubborn X’s are used after a v ∈ S in state 0 has flipped to 1. Let

H = {|{i ≤ T7NL : Wi = v}| ≤ 8L for all v ∈ V }

By Lemma 3, H has high probability if N is large. On H the number of rewirings to v
is ≤ 8L. If v ∈ S then the initial degree ≤ 11L, so the number of vertices that are ever
connected to v is ≤ 19L. If the number of rewiring events that are rooted at v is > 19n
then we would run out of edges. This implies that if N large then with high probability he
number of events rooted at v is ≤ 20L. Thus when a stubborn element is used the vertex
will stay in state 1 until time 7NL.

Lemma 6. Let RLSS denote the number of times a relabeling occurs when an edge with both
endpoints in S is chosen. For p sufficiently small RLSS ≤ νN/20 with high probability.

Proof. Let RL+
SS be the number that result in a change from 0 to 1.

RL+
SS ≤ min

i
{{j ≤ i : Xj ≥ 20L} > 1.1pN}

or using Lemma 5 we have a contradiction of Lemma 4. P (Xj ≥ 20L) = (1−ν/L)20L ≥ e−26ν

if L is large. It follows that if

1.2p <
ν

50
e−26ν (53)

then with high probability there are more than 1.1pN stubborn elements within the first
νN/50 and hence RL+

SS.
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Each time a relabeling occurs it is equally likely to be 1 → 0 or 0 → 1, and these events
are independent of each other, so

P
(
RLSS > νN/20, RL+

SS ≤ νN/50
)
≤ e−cνN/50

The form of the right-hand side comes from the fact that the event is that fewer than 40%
of the first νN/50 have Zi = 1.

Lemma 7. Let RSS be the number of times an edge with both endpoints in S was picked.
For p sufficiently small RSS ≤ NL/10 with high probability.

Proof. Each time an edge is picked, it leads to a relabeling with probability ν/L. The result
now follows from Lemma 6 and

P (RSS > NL/10, RLSS ≤ νN/20) ≤ P (Binomial(NL/10, ν/L) ≤ νN/20) ≤ e−νN/80

To get the Binomial large deviations we use the fact that if X = Binomial(M, p) then

P (X ≤ M(p− z)) ≤ exp(−Nz2/2p)

See e.g., [6, Lemma 2.8.5]. Here M = NL/10, p = ν/L Mp = νN/10, Mz = νN/20,
z = ν/2L, so we have

Nz2

p
=

NL

10
· ν2

4L2
· L

2ν
=

νN

80

Lemma 8. Let RST be the number of times a disagreeing edge was picked with one endpoint
in S and the other in T . For p sufficiently small RST ≤ 2.8NL with high probability.

Proof. Let WST be the number of rewiring moves with one endpoint in S and the other in
T . On each of these moves 1/2 the time it is rewired with the root at S and if n is large
then with probability at least

|S| − 1

n− 1
≥ 8

9

the new vertex is in S. Let YSS be the number of S to S edges at the end and WST→SS be
the number of (S, T ) to (S, S) rewirings. We must have

NL ≥ YSS ≥ WST→SS −RSS

so if RSS ≤ NL/10 (which has high probability by Lemma 6.5) we must have WST→SS ≤
1.1NL. If WST ≥ 2.7NL then we expect WST→SS ≥ (2.7NL)(4/9) = 1.2NL so

P (WST→SS ≤ 1.1NL,WST ≥ 2.7NL) ≤ exp(−cNL)

Since each time a disagreeing edge is picked, with probability 1− ν/L it leads to a rewiring,

P (RST > 2.8NL,WST ≤ 2.7NL) ≤ e−cNL

which completes the proof.
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Lemma 9. Let RTT be the number of times a disagreeing edge was picked with both endpoints
in T . For p sufficiently small RTT ≤ 4NL with high probability.

Proof. From the proof of Lemma 8, we see that after rewiring an edge with both endpoints
in T the chance is becomes an edge with one edge in S and one in T is ≥ 9/10. Let YST

be the number of S to T edges at the end and WTT→ST be the number of (T, T ) to (S, T )
rewirings. We must have

NL ≥ YST ≥ WTT→ST −RST

so if RST ≤ 2.8NL (which has high probability by Lemma 8) we must have WTT→ST ≤
3.8NL. Arguing as in the previous lemma we can conclude that with high probability
WTT ≤ 3.9NL and RTT ≤ 4NL.

Proof of Theorem 6. From Lemmas 7, 8, and 9 we see that for p < p(ν) and G(0) ∈
G(p, N, L) we have RSS+RST +RTT ≤ 6.9NL with high probability so there are no discordant
edges after 7NL updates.
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