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ABSTRACT

Current methods for detecting fluctuating selection require time series data on genotype frequencies.
Here, we propose an alternative approach that makes use of DNA polymorphism data from a sample of
individuals collected at a single point in time. Our method uses classical diffusion approximations to model
temporal fluctuations in the selection coefficients to find the expected distribution of mutation frequencies
in the population. Using the Poisson random-field setting we derive the site-frequency spectrum (SFS) for
three different models of fluctuating selection. We find that the general effect of fluctuating selection is to
produce a more ‘‘U’’-shaped site-frequency spectrum with an excess of high-frequency derived mutations at
the expense of middle-frequency variants. We present likelihood-ratio tests, comparing the fluctuating
selection models to the neutral model using SFS data, and use Monte Carlo simulations to assess their power.
We find that we have sufficient power to reject a neutral hypothesis using samples on the order of a few
hundred SNPs and a sample size of �20 and power to distinguish between selection that varies in time and
constant selection for a sample of size 20. We also find that fluctuating selection increases the probability of
fixation of selected sites even if, on average, there is no difference in selection among a pair of alleles
segregating at the locus. Fluctuating selection will, therefore, lead to an increase in the ratio of divergence to
polymorphism similar to that observed under positive directional selection.

TWO mechanisms by which evolution can occur are
the adaptive process of natural selection and the

neutral processes of genetic drift. Which of these is the
principal force in the evolution of a population has
been one of the central issues in evolutionary biology.
An early exchange in this debate was over the changes
in the frequencies of a color polymorphism in a pop-
ulation of the scarlet tiger moth, Callimorpha (Panaxia)
dominula. Fisher and Ford (1947) argued that the pop-
ulation size was too large for the changes in the fre-
quencies to be due to drift and suggested that fluctuating
selection must be acting. Wright (1948) replied by ar-
guing that multiple factors could affect a population
and that the effective population size might be much
smaller than the census population size.

The potential importance of fluctuating selection on
the rate and patterns of molecular evolution is well
established on the basis of theoretical and simulation
arguments (see Gillespie 1991, 1994). While it is likely
that changing environmental conditions affect the fit-
ness and level of genetic variation in natural populations,
only a handful of empirical population genetic studies
have sought to investigate the issue. Part of the reason

this problem remains understudied is the lack of power-
ful statistical tools for comparing patterns of polymor-
phism to the predictions under fluctuating selection.

We begin by summarizing key experimental evidence
for the importance of fluctuating selection. Mueller

et al. (1985) developed statistical tools on the basis of
time series analysis to examine variations in allele fre-
quencies. These tests were applied to Drosophila pseu-
doobscura and D. persimilis populations sampled over a
3-year period. They found significant evidence that fluc-
tuating natural selection likely maintained genetic poly-
morphisms in 15–20% of cases, suggested by correlated
allele frequencies at different enzyme loci. Their model
allowed for time-correlated changes in the environmen-
tal conditions and it was noted that the power to detect
selection was at a maximum when the environmental
changes were strongly positively correlated in time rel-
ative to the sampling time. A year later, Lynch (1987)
argued that their findings of fluctuating selection effects
could have been the result of nearby migration that
could cause shifts in gene frequency. To eliminate this
possibility, he used enzyme loci in Daphnia populations.
These populations were large enough to dismiss signif-
icant variation due to drift over the timescale of the study
and isolated enough to preclude mass migration. He
detected variation in allele frequencies attributable to
fluctuating selection in the short term, but also discovered
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that the time-averaged selection coefficients for all loci
were not significantly different from zero.

A decade later, Cook and Jones (1996) reexamined
some of the earlier results by Fisher and Ford. Analyzing
census data from natural and artificial colonies of C.
dominula, they concluded that the color polymorphism
was maintained by frequency-dependent selection (i.e.,
selection for a rare variant and against a common var-
iant). They posited small effective population size as the
reason for the large variation in observed frequencies, as
opposed to fluctuating selection acting on the popula-
tions. More recently, O’Hara (2005) took a Bayesian
approach to fit the frequencies of the same medionigra
gene in C. dominula examined by Fisher and Ford, with
the aim of disentangling the relative contribution from
both drift and selection in the observations. He inferred
that, apart from a recent 8-year period (from the total 60
years of observations), random drift could explain most
of the data, but effects of selection were also present.
Furthermore, he determined that the time-averaged
selection coefficients were close to zero and no change
in fitness over the length of the study could be detected,
in agreement with previous authors. In contrast to these
earlier works, we develop procedures for estimation of
fluctuating selection coefficients from sequence poly-
morphism data taken from a sample of individuals at a
single point in time.

For statistical estimation and the derivation of the the-
oretical site-frequency spectrum, we follow the Poisson
random-field approach (Sawyer and Hartl 1992; Hartl

et al. 1994). This framework has proved to be useful in
estimating mutation and selection parameters in a vari-
ety of population genetic settings including genic selec-
tion in a population of constant size (Bustamante et al.
2001), general diploid selection (Williamson et al. 2004),
and selection in a population undergoing a change in
size (Williamson et al. 2005). In all of the cases exam-
ined, the site-frequency spectrum contains sufficient in-
formation so as to allow for parameter estimation and
hypothesis testing given sufficient polymorphism data
(normally in the hundreds or thousands of SNPs).

Our first step is to calculate the predicted effect of
fluctuating selection on the site-frequency spectrum (SFS).
That is, the SFS is the number of mutations at frequency
i=n, where 1 # i , n � 1 and n is the number of indi-
viduals sampled. To obtain the SFS we use a diffusion
approximation for the stationary distribution of the mu-
tation frequencies in a large population. Kimura (1954)
was the first to attempt to use diffusion theory to study
how the allele frequencies might change under fluctu-
ating environments. There was an error in the calcula-
tion that was later corrected by Gillespie (1973) and
Jensen (1973). Karlin and Levikson (1974) studied
the model with independent fluctuations in more detail
and with some simulations. They calculated fixation prob-
abilities and the expected time to fixation under different
assumptions. Takahata et al. (1975) (TIM) derived the

diffusion approximation when fluctuations were corre-
lated in time. The TIM model served as a springboard for
the rich body of theoretical investigation by Gillespie
and others (see Gillespie 1991). Briefly, the TIM model
is part of a class of diploid selection models denoted by
Gillespie as stochastic additive scale–concave fitness func-
tion (SAS–CFF) models. SAS describes the stochastic ad-
ditive scale to which alleles contribute, and the additive
scale is mapped to a CFF that is used to assign fitness to
the different genotypes. These models can also be ex-
tended to include dominance, subdivision, or autocor-
relations in the environment.

To compute the theoretical SFS when there are tempo-
ral fluctuations in the environment, we use the diffusion
approximation. We take the mean selection coefficient
of each allele to be equal, implying a net mean selection
coefficient of zero. This is in agreement with the con-
clusions of earlier works on the absence of a long-term
net fitness advantage between alleles, when examining
temporal data. We also derive the theoretical site fre-
quency, assuming an autocorrelation in environmental
changes. As a validation of the diffusion approximation,
we compare the diffusion approximation prediction for
the SFS to data gathered from simulation assuming in-
dependent sites.

The site-frequency spectrum data are then used to
define a maximum-likelihood function from which we
obtain estimates of the mutation rate parameter, u, and
a parameter, b, which measures the variance of the fluc-
tuating selection coefficients. This allows the derivation
of the asymptotic variance and covariances for these param-
eters and a comparison to likelihood-based uncertainty
bounds. To distinguish between fluctuating selection and
a neutral model, we compute the power of the likelihood-
ratio test (LRT) for various values of b. We also investi-
gate the coverage of b and explore the power to distinguish
fluctuating selection and negative or positive (directional)
selection by generating a series of empirical distribu-
tions for the LRT statistic under the appropriate null
hypothesis.

THEORY AND METHODS

Diffusion approximation for the site-frequency
spectrum: We begin with the model of Karlin and
Levikson (1974). Consider two alleles A and a that have
the following fitnesses

A a
Fitness in generation n : 1 1 sðnÞ 1 1 tðnÞ;

where s(n) and t(n) are identically distributed random
variables representing the relative change in fitness due
to random environmental changes. We follow their
procedure in looking for the diffusion approximation
to then calculate the site-frequency spectrum. To derive
the diffusion approximation, we first need the drift
coefficient and the variance. The drift coefficient is
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bðxÞ ¼ xð1� xÞð2N Þ½Eðs� tÞ � Eðs2 � t2Þ=2

1 Eðs� tÞ2ð1=2� xÞ� ð1Þ

and the variance is

aðxÞ ¼ xð1� xÞ1 x2ð1� xÞ22NEðs� tÞ2: ð2Þ

(For a full derivation see the appendix.) To simplify the
formulas we let

a ¼ 2N ½Eðs� tÞ � Eðs2 � t2Þ=2 1 Eðs� tÞ2=2�

b ¼ 2NEðs� tÞ2

so that

bðxÞ ¼ xð1� xÞða� bxÞ aðxÞ ¼ xð1� xÞ½1 1 bxð1� xÞ�:
ð3Þ

At first glance, the drift term looks like balancing se-
lection, but there is an extra term in the variance that
speeds up the movement and prevents accumulation of
intermediate-frequency alleles. We consider the special
case in which s and t have the same distribution, so
E(s� t)¼ 0, E(s2� t2)¼ 0, and hence a¼b/2. In these
models, b is a scaled measure of the total variance in the
fluctuating selection since var(s � t) ¼ b/(2N) . Thus,
substituting a ¼ b/2 we get

bðxÞ ¼ xð1� xÞ b

2
� bx

� �
aðxÞ ¼ xð1� xÞ½1 1 bxð1� xÞ�:

ð4Þ

Finding the stationary solution to the diffusion equa-
tion (see the appendix) and using the formula derived
in Kimura (1962) or in Sawyer and Hartl (1992), we
find the density of mutations for a unit overall mutation
rate is given by f(y, b)dy, where

f ðy;bÞ ¼ 2

K ðbÞyð1� yÞ log
1� r1ðbÞ
y � r1ðbÞ

� r2ðbÞ � y

r2ðbÞ � 1

� �
: ð5Þ

Here, r1ðbÞ¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ð4=bÞ

p
=2, r2ðbÞ¼ 1

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ð4=bÞ

p
=2,

and

K ðbÞ ¼ log
1� r1ðbÞ
�r1ðbÞ

� r2ðbÞ
r2ðbÞ � 1

� �
:

K(b) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 4b

p
� f(1), where f(y) is an increasing

scale function normalized by f(0) ¼ 0. To show the re-
lationship to the neutral case (b ¼ 0), we rewrite (5) as

f ðy;bÞ ¼ 2

y
� 1

K ðbÞð1� yÞ log
1� r1ðbÞ
y � r1ðbÞ

� r2ðbÞ � y

r2ðbÞ � 1

� �

[
2

y
hðb; yÞ:

The function h(b, y) / 1 as b / 0 as we would expect.
When b 6¼ 0, we find that limy/0hðb; yÞ ¼ 1 and

lim
y/1

hðb; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4 1 bÞ

p
2 logðb=2 1 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4 1 bÞ

p
=2Þ

 !
$ 1:

Therefore, compared to the neutral model, the occur-
rence of rare alleles (with y close to 0) is unaffected by
the fluctuating environmental effects while the propor-
tion of high-frequency derived alleles (y close to 1) is
higher than expected under neutrality. Intermediate-
frequency alleles, however, are underrepresented with
respect to the neutral case (see results). The reason for
this is that fluctuating selection (unlike directional se-
lection) does not result in a net increase in the sojourn
time of selected mutations relative to neutrality. Rather,
it appears as if the increase in fixation comes at the ex-
pense of higher genetic drift at intermediate-frequency
alleles.

Autocorrelated selection coefficients: Takahata et al.
(1975) considered a Wright–Fisher diffusion with varying
selection:

1

4N
xð1� xÞ d2

dx2 1 sðtÞxð1� xÞ d

dx
:

They let �s ¼ E ½sðtÞ� and V ¼
Ð ‘

0 Eð½sðtÞ � �s�½sð0Þ � �s�Þdt
and found that in the diffusion approximation

aðxÞ ¼ 1

2N
xð1� xÞ1 2Vx2ð1� xÞ2

bðxÞ ¼ �sxð1� xÞ1 Vxð1� xÞð1� 2xÞ:

To connect this to the model discussed above (which as-
sumed s and t uncorrelated in time), suppose that
E(s2 � t2) ¼ 0, let �s ¼ Eðs� tÞ, and equate V ¼ E(s �
t)2/2. This suggests that to extend the previous analysis
to autocorrelated selection coefficients, (sn, tn), all we
do is replace E(s � t)2/2 by the sum of the autocovar-
iance function

X‘

n¼0

E ½ðs0 � t0Þðsn � tnÞ� ð6Þ

if E(s� t)¼ 0. In other words, we use (6) as the formula
for b/(4N) in (5). While the above is not a proof, it is
supported by the calculations that Takahata et al.
(1975) give for their model. We also show numerically
that substituting the autocovariance (6) for V gives a
good approximation to the case where s and t are not
independent and identically distributed.

We consider two different forms for the autocorre-
lation of the selection coefficients. In an earlier article
(Gillespie 1993), Gillespie used an autocorrelated model
where the fitness of an allele changed by assigning a
random fitness 1 1 Xi(t). The Xi(t)’s are normal random
variables that remain constant, on average, for 1/a gen-
erations before changing,

XiðtÞ ¼
Xiðt � 1Þ with probability 1� a
jiðtÞ with probability a;

�
ð7Þ
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where j(t) are independent and identically distributed
normal random variables with mean zero and variance
s2. For this case the autocovariance is

EðX ðtÞ � X ðt 1 kÞÞ ¼ s2ð1� aÞk

and

X‘

k¼0

EðXiðtÞ; Xiðt 1 kÞÞ ¼ s2

a
: ð8Þ

We also consider an autocorrelated model with a higher
degree of noise every generation:

Xiðt 1 1Þ ¼ jiðt 1 1Þ1 XiðtÞ with probability 1� a
jiðt 1 1Þ with probability a:

�
ð9Þ

The sum of the autocovariance is

X‘

k¼0

EðXiðtÞ; Xiðt 1 kÞÞ ¼ 2s2

a2 �
s2

a
: ð10Þ

We get this quantity by rewriting the Xi(t)’s as the se-
quence of random variables X(0), X(0) 1 S1, X(0) 1

S2 , . . . , X(0) 1 Sk�1, jk, where Sk¼ j1 1 j2 1 . . . 1 jk. To
find the covariance we need to find

EððX ð0Þ1 SiÞ � ðX ð0Þ1 SjÞÞ ¼ EX ð0Þ2 1 ES2
i : ð11Þ

The middle terms disappear since X(0) and Sk are inde-
pendent and since SiSj ¼ S2

i 1 SiSj�i for j . i and Si, Sj�i

are independent. Thus the covariance is

X‘

i¼0

EX ð0Þ2 1 ES2
i ¼

X‘

k¼0

s2

a
1 is2

� �
ð1� aÞi

¼ s2

a2 1 s2
X‘

i¼0

ið1� aÞi : ð12Þ

To evaluate the sum in the second line of (12), we can
rewrite it as

s2
X‘

i¼0

i
a

a
ð1� aÞð1� aÞi�1 ¼ s2 1

a
� 1

� �X‘

i¼0

iað1� aÞi�1

and now note that the sum (on the right) is the geo-
metric mean so (12) simplifies to

X‘

i¼0

EX ð0Þ2 1 ES2
i ¼

2s2

a2 �
s2

a
: ð13Þ

Again, the quantity (10) is simply substituted for b/(4N)
in Equation 5.

Site-frequency spectrum: Whether we are discussing
the time-correlated or -uncorrelated selection model,
the stationary polymorphism density of the frequency of
a single mutation per unit overall mutation rate is

f ðq;bÞdq ¼ 2

K ðbÞ
1

qð1� qÞ log
1� r1

q � r1

r2 � q

r2 � 1

� �
dq: ð14Þ

Given f(q, b) we can now write formulas for the expected
site-frequency spectrum, following Bustamante et al.
(2001). For a particular site containing a derived mu-
tation at frequency q in the population, the probability
of sampling i sequences with the derived mutation and
n� i with the ancestral type is binomially distributed with
parameters n and q. We assume an infinite-sites model of
mutation where sites are independent, and each muta-
tion that enters the population is described by the two-
allele model outlined in the previous section. Therefore,
if mutations are entering the population at rate u/2, the
number of sites that have a derived mutation count i, i.e.,
the site-frequency spectrum, fYign

i¼1, are independent
Poisson-distributed random variables with mean uF(i, b),
where

F ði;bÞ ¼
ð1

0

f ðq;bÞ
2

n
i

� �
qið1� qÞn�idq: ð15Þ

Simulations: We verify the accuracy of the diffusion
approximation in the previous section, using indepen-
dent Wright–Fisher Monte Carlo simulations for each
site. The numerical routine proceeds as follows:

1. Run Wright–Fisher simulations to estimate the de-
rived mutation frequency, starting at geometrically
distributed time intervals measured in generations
with rate u/2. This represents the appearance of a
mutation at a previously unmutated site (the sites are
independent, so each mutation follows the two-allele
model described earlier). The mutant and ancestral
alleles have fluctuating selection coefficients, s and
t, with strengths and autocorrelation parameters dic-
tated by the model we are simulating. The population
size for the Wright–Fisher simulations, N, should be
sufficiently large such that the diffusion approxima-
tion holds. More specifically, the variances of the se-
lection parameters, quantified by b should be of order
1=

ffiffiffiffiffi
N
p

. Thus b is of order one. We have chosen N ¼
2000 for all results presented here.

2. After a suitable burn-in to ensure stationarity (10N
generations in our simulations), we begin to sample
from the population at regularly spaced time intervals.
At each time interval, we determine the population
frequency of each of the derived mutations. The num-
ber of derived mutations in the population (i.e., the
number of segregating sites, S) is simply the number
of Wright–Fisher trajectories that have not been fixed
or lost at the given sample time.

3. For each derived mutation with population frequency
pi, i ¼ 1, . . . , S, we generate a binomial random vari-
able with parameters n and pi, which gives the num-
ber of derived mutations of that type seen in a sample
of size n. (We choose n ¼ 20.)
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4. We make a histogram {y1, y2, . . . , yn�1} of the number
of sites carrying derived mutations that occur with
frequency 1, . . . , n � 1 in the sample. This sample
provides one realization of the site-frequency spec-
trum for a given value of b. The results are discussed
later and shown in Figure 2.

Parameter estimation and inference: As the site-
frequency spectrum is independent Poisson distributed,
the likelihood function for an observed spectrum, {yi}, is
given by

Lðu;bÞ ¼
Yn�1

i¼1

expð�uF ði;bÞÞðuF ði;bÞyi Þ
yi !

: ð16Þ

Therefore, the log-likelihood function ½dropping the
term log(yi!) independent of parameters� is

lðu;bÞ ¼
Xn�1

i¼1

yilogðuF ði;bÞÞ � u
Xn�1

i¼1

F ði;bÞ: ð17Þ

The parameters u and b can be estimated by maximizing
the likelihood (using standard optimization techniques,
e.g., conjugate gradient). We note (as in Bustamante

et al. 2001) that the maximizer of u for a given b is easily
computed to be ũ ¼ S=

Pn�1
i¼1 F ði;bÞ, where S ¼

Pn�1
i¼1 yi

is the number of segregating sites in the sample. There-
fore we can work with the profile log-likelihood function,
l*ðbÞ ¼ lðũðbÞ;bÞ, which is now a function of a single var-
iable. We use both simulation and asymptotic theory to
study properties of these estimates. We follow Bustamante

et al. (2001), where all their equations (9)–(32) apply to
this method as well, with the appropriate changes given
the new expression for f(q, b).

To obtain asymptotic confidence intervals, we must
compute the inverse of the Fisher information matrix
(FIM), I, given by the expected value of the Hessian of
�1 times the log-likelihood function (17):

I ¼ �E

@2l

@u2

@2l

@u@ðlog bÞ
@2l

@ðlog bÞ@u

@2l

@ðlog bÞ2

0
BBB@

1
CCCA: ð18Þ

Thederivativesareallevaluatedat themaximum-likelihood
estimates (MLEs) for the parameters. As we now show,
the mixed partial derivatives are in fact zero for all values
of u and b, so the FIM is diagonal and the covariances
Cov(b, u) ¼ 0. To see this, note that

@l

@u
¼ S

u
�
Xn�1

i¼1

F ði; bÞ;

where S ¼
Pn�1

i¼1 yi . In fact, f(y, b) 1 f(1 � y, b) does not
depend on b, which implies that

Pn�1
i¼1 F ði;bÞ is inde-

pendent of b; therefore û is constant. It is more con-
venient to work with log b since the profile-likelihood
function is better approximated by a Gaussian when

using this transformation (Figure 1). By the invariance
principle of maximum likelihood, the estimates of the
parameter are not affected, but we obtain better perfor-
mance when far away from the maximum in calculating
derived statistics such as confidence intervals. For exam-
ple, using the log b transformation, we are assured that
the lower confidence bounds in the original coordi-
nates are prevented from being negative. The asymp-
totic variance–covariance matrix for the ML estimates is
provided by the inverse FIM,

V ¼ 1

I11I22 � I 2
12

I22 �I12

�I12 I11

� �
¼

1=I11 0

0 1=I22

� �

¼
s2

û
0

0 s2
logðb̂Þ

 !
: ð19Þ

For a 95% confidence interval on û, we compute û 6

1:96sû. For logðb̂Þ the confidence interval is logðb̂Þ6
1:96slogðb̂Þ.

For the empirical distribution of the parameter esti-
mates, we generate 1200 data sets (site-frequency spectra)
for given values of u and b. We then compute the MLE

Figure 1.—Comparison of normal approximation to the
log-likelihood function for (A) log b and (B) b.
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values û and b̂ for each of the data sets and obtain 95%
confidence intervals on the basis of both a normal ap-
proximation of the sampling distribution of the MLE as
well as a x2-approximation of the sampling distribution
of the log likelihood.

Unfortunately, the parameters involved in the auto-
correlated cases are not individually identifiable; they
enter the likelihood expression only through b. That is,
for both of the autocorrelated cases we have b¼ 4Ng(s2,
a) where g is the function described in (10) or (8).
There is a one-parameter family of pairs of values for s2

and a that yields the same value for b. Note that, for the
form of autocorrelation in (7), b¼ 4Nt � v (t¼ 1/a, and
v is the variance of the autocorrelated noise); then,
given an MLE for b, b̂, any combination of (t, v) with t $

1 and tv ¼ 4N b̂ will be consistent with the data.

RESULTS AND DISCUSSION

The site-frequency spectrum: In the theory and

methods section we computed the expected frequency
of the derived alleles in the whole population and we
can calculate the expected site-frequency spectrum uF(i, b)
for a sample of size n. To validate the theory we use simu-
lations (described in the Simulations section) with n¼ 20,
u¼ 20, and b¼ 50. The expected site-frequency spectra
are shown in Figure 2. The diffusion approximation is
excellent; the data generated by the simulation for the
independent case agree with the theory (see Figure 2A).
Note that as mentioned before, the more common alleles
are favored while alleles with intermediate frequencies
are underrepresented, and there are fewer rare alleles
than in the neutral case. Another interesting feature is
that the expected number of segregating sites does not
change with b since

Pn�1
i¼1 F 9ði;bÞ ¼ 0 (the integrand is

an odd function), which implies that u
Pn�1

i¼1 F ði;bÞ is
constant. For the autocorrelated case corresponding to
(7) and (9) see Figure 2, B and C. We used a¼ 0.1, which
represents a change in the environment about every 10
generations, on average. The theory curve is slightly off
at the edges of the spectrum but it is sufficiently accurate
as to validate our substitution of E(s� t)2/2 by the sum
of the autocovariances.

We present in Figure 3 the predicted fixation rates
relative to neutrality for fluctuation selection and direc-
tional selection as a function of the selection parameter.
The natural scaling is

ffiffiffi
b
p

for the fluctuating selection
model and g ¼ 2Ns for the directional selection model.
We see that in the parameter range of ½0, 30�, the two
models make qualitatively similar predictions as the in-
crease in substitution relative to neutrality. This result
suggests that fluctuating selection will lead to an excess
of divergence relative to polymorphism and in the anal-
ysis of protein-coding DNA sequences result in rejection
of the McDonald–Kreitman test in the same direction as
positive selection.

Figure 2.—Comparison of predictions from diffusion the-
ory to Monte Carlo simulation with b ¼ 50 and u ¼ 20. (A)
Selection coefficients are drawn independently from genera-
tion to generation; (B) selection coefficients have a 90%
chance of being identical to the selection coefficient in the
previous generation; (C) selection coefficients have a 90%
chance of being identical to the selection coefficient in the
previous generation plus a random uncorrelated component.
In all cases, simulation results are well predicted by theory.
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We also considered the impact of fluctuating selection
on commonly used SFS statistics for detecting deviation
from the standard neutral model. Surprisingly, we find
that the expected values of Tajima’s D and Fu and Li’s
statistics are not affected by fluctuating selection. A po-
tential explanation for this observation is that Tajima’s D
is derived from the folded site-frequency spectrum that
is not nearly as affected by selection as the unfolded SFS
that can distinguish rare from high-frequency derived
alleles.

The power of the test: We perform a test of neutrality
that compares the null hypothesis (b ¼ 0) with the alter-
native hypothesis (b 6¼ 0). The likelihood test statistic is

L ¼ Lðû; b̂ j xÞ
Lðûw; 0 j xÞ

;

where ûw is Watterson’s (1975) estimator of u and 2
ln(L) has (asymptotically) a x2-distribution with 1 d.f. To

assess the power of the test, we generate 1200 data sets
(described in the Simulations section), and for each data
set, we apply the LRT at the (1 � a) significance level
where a¼ 0.05. We used different levels of mutation u 2
{20, 40, 60} with b 2 {2, 8, 14, 20, 26, 32, 38, 44, 50, 56}.
The results are shown in Figure 4. We observe that the
test has very good power to detect deviations from neu-
trality as u and b increase. For higher mutation rates,
there are a larger number of sites with derived mutations
in any given sample, and intuitively the power to detect
for selection is improved. The P-values obtained here de-
pend on the independent-sites assumption. However, it
is possible to find P-values in the presence of linkage by
using coalescent simulations with recombination to find
the critical value for the test statistic (Zhu and Bustamante

2005).
Sampling distributions of logðb̂Þ and û: Using the

generated data under different mutation rates we find
that the distributions for logðb̂Þ are centered around the
true value (Figure 5) with increasing variance as b moves

Figure 4.—Power of the LRT test. On the x-axis are the dif-
ferent values of b under which the data were simulated. The
y-axis represents the proportion of data sets of 1200 that re-
jected neutrality (b ¼ 0).

Figure 3.—Fixation rate of mutations under directional
selection with scaled selection coefficient g or under fluctuat-
ing selection with standard deviation

ffiffiffi
b
p

relative to neutrality
(g ¼ 0).

Figure 5.—The sampling distributions of log b as a func-
tion of b for two values of the mutation rate (u 2 {20, 60}).
The dashed lines connect the median estimates across values
of b. The open space contains 95% of the observed values for
log b̂.
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away from zero. The variance is large for smaller u. This
happens because for some data sets we get very large
values for b̂ and can have b̂ ¼ ‘. For example, if we use a
data set generated with u¼ 20 and b¼ 56, we get b¼ ‘.
If one plots the log-profile-likelihood function, it is easy
to see that the function is monotonic and peaks at b¼ ‘

(see Figure 6). On the other hand, the estimation of u is
excellent for the different values of b. The variance stays
mostly constant as we vary b (see Figure 7).

Confidence sets: We examined two types of confi-
dence sets: (1) the region that contains (1� a)100% of
the area under the normal approximation to likelihood
function and (2) the region in the profile-likelihood space
that is ,0:5x2

1;1�a likelihood units from the maximum-
likelihood point. The corresponding area at a ¼ 0.05 is
1.96 standard deviations away from logðb̂Þ, where the

standard deviation is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðlogðb̂ÞÞ

q
for the first

confidence set. For the second confidence set, at a¼ 0.05,
this corresponds to the region where l*ðb̂Þ � l*ðbÞ, 1:92
likelihood units.

From Figure 8, we see that the confidence intervals
based on the profile-likelihood function have good cov-
erage. The confidence intervals based on the normal ap-
proximation to the likelihood do cover very well for all
values of b, in fact, extremely well for u¼ 20. This occurs
because for smaller u it is common to see that the best
estimate for b is zero. Since f(i, b) is not defined for b¼ 0,
we have to use the limit as b goes to zero. This results in
an upper confidence interval that is ‘ and a lower confi-
dence interval that is zero. Here we are estimating log(b)
instead of b because the quadratic approximation to the
log-profile function is better when we use log(b). It is
important to note that sometimes using b does not give
good coverage. In Figure 9 we compare the coverage us-
ing b, log(b), and

ffiffiffi
b
p

; b gives bad coverage,
ffiffiffi
b
p

gives good
coverage, and using log(b) gives big coverage. This im-
plies that perhaps

ffiffiffi
b
p

is the best function of b of the three.

Distinguishing between positive selection and fluctu-
ating selection: We also investigated how much power
we have to distinguish fluctuating selection from positive
or negative (constant) selection. Since these two models
are not nested, we need to empirically find the distribu-
tion of our statistic under the null (constant selection)
model. That is:

1. Generate a data set as explained in the Simulations
section but under the g-model; i.e., the ancestral al-
lele has fitness one, and the derived allele has fitness
1 1 s, where s is constant in time, and g ¼ 2Ns.

2. Find the MLE estimate of g using the likelihood for
the g-model ½this requires using the appropriate
f(y, g) that is given in Bustamante et al. 2001� and
the MLE estimate of b using the likelihood for the
b-model.

3. Let L ¼ 2lðû; b̂Þ � 2lðû; ĝÞ.
4. Repeat steps 1–3 M times to generate the empirical

distribution of the statistic L.

Figure 6.—The log-profile-likelihood function of b for a
data set with true b ¼ 56 and maximum-likelihood estimate
at b ¼ ‘.

Figure 7.—The sampling distributions of u as a function
of b for two values of the mutation rate (u 2 {20, 60}). The
solid horizontal line is the true value of u and the dotted line
is the median of û. The open space contains 95% of the ob-
served û.
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To compute the power to distinguish these two models,
we generated data under the b-model and computed
the MLE estimates for g and for b. We then calculated
Lobs ¼ 2lðû; b̂Þ � 2lðû; ĝÞ, and we computed Lobs for 1000
data sets. The power is then the proportion of times (of
1000) that the P-value was ,0.05. This translates to the
number of times that Lobs lies in the upper 5th per-
centile of the empirical distribution. Figure 10 shows the
results. The power to distinguish fluctuating selection
from negative selection is excellent for all values of b.
However, the power to distinguish positive selection from
fluctuating selection is not very good for small b and the
power fluctuations are big; but for bigger values of b the
power is satisfactory.

Conclusions: Fluctuating selection is potentially an
important force in shaping polymorphism, and even
though it has received much theoretical attention, it is
commonplace to use population genetic models that

assume that all new mutations are under constant selec-
tion (deleterious, neutral, or positive). We have devel-
oped a statistical inference for fitting population genetic
models that incorporate temporal fluctuations in the
environment. Our simulation results suggest that the
method has reasonable power to distinguish fluctuating
selection from neutral evolution, with increasing power
as the number of segregating sites increases. We also
examined the possibility of distinguishing constant se-
lection from fluctuating selection. The power to do so
was very good when we tried to distinguish negative se-
lection from fluctuating selection; however, when we
looked at positive selection vs. fluctuating selection, it
became harder to detect true fluctuating selection when

Figure 8.—Coverage of 95% confidence intervals using two
different methods for building confidence sets. One is based
on the normal approximation and the other uses the differ-
ence in profile log likelihood. The coverage under the normal
approximation is always higher than when using the profile
log-likelihood function.

Figure 9.—Coverage of 95% confidence intervals under
u ¼ 60 using the normal approximation method for b,
log b, and

ffiffiffi
b
p

.

Figure 10.—Power to distinguish positive and negative se-
lection from fluctuating selection. Data were simulated for
b 2 {8, 32, 56}, n ¼ 20, and u ¼ 60. The x-axis is the selection
coefficient, the parameter of the data where the empirical dis-
tribution of the test statistic was obtained to get a critical value
for the test.

Statistical Methods for Detecting Fluctuating Selection 333



b is small since both models lead to an increase in high-
frequency derived alleles.

We also note that fluctuating selection, much like po-
sitive directional selection, leads to an increase in the
ratio of divergence to polymorphism as compared to
neutrality. The magnitude of this effect is very compa-
rable for

ffiffiffi
b
p

(standard deviation of fluctuations) and
g (strength of directional selection) in the range of
selection parameters likely to be important in molecular
evolution. This implies that often-used tests of neutrality
that make use of polymorphism and divergence (such as
the HKA and McDonald–Kreitman tests) may reject
neutrality if fluctuating selection has shaped the evolu-
tion of the molecule and the rejection will occur ‘‘in the
same direction’’ as for positive selection. This raises the
tantalizing hypothesis that the signature of positive se-
lection in Drosophila may really be the result of fluc-
tuating (and not directional) selection. This hypothesis
has also recently been put forth in a similar analysis by
Mustonen and Lassig (2007).

This method also allowed us to make point estimates
for ðû; b̂Þ and to compute confidence intervals for these
parameters. Finally, we compared methods for making
confidence bounds on our estimators. We showed that
we obtained good coverage when using the likelihood
function directly, but the normal approximation implied
by using the Fisher information matrix was often overly
conservative.

The approaches outlined here are also readily gener-
alized to more complicated demographic models such as
selection in a population undergoing size change (e.g.,
expansion, contraction, or bottlenecks) (Williamson et al.
2005). Even though this analysis does not incorporate
important factors such as population structure and as-
sumes high levels of recombination, this method ap-
pears to have good promise for detecting temporal
fluctuations in selection from genomewide patterns of
polymorphism.
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APPENDIX

To derive the diffusion approximation, note that the change in frequency in one generation is

xð1 1 sÞ
xð1 1 sÞ1 ð1� xÞð1 1 tÞ � x ¼ ðs� tÞxð1� xÞ

1 1 sx 1 tð1� xÞ
� ðs� tÞxð1� xÞ½1� sx � tð1� xÞ�:

Writing x ¼ 1
2� ð12� xÞ and 1� x ¼ 1

2 1 1
2� x we have

� ðs� tÞxð1� xÞ½1� ðs 1 tÞ=2 1 ðs� tÞð1=2� xÞ�
¼ xð1� xÞ½ðs� tÞ � ðs2 � t2Þ=2 1 ðs� tÞ2ð1=2� xÞ�:
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Taking the expected value and speeding up time by a factor of 2N the drift coefficient is

bðxÞ ¼ xð1� xÞð2N Þ½Eðs� tÞ � Eðs2 � t2Þ=2 1 Eðs� tÞ2ð12� xÞ�: ðA1Þ

To compute the variance, let DX be the change in frequency and Y be the environment:

varðDX Þ ¼ E varðDX jY Þ1 varðEðDX jY ÞÞ:

To evaluate the first term, recall that the variance of Binomial(2N, p) is 2Np(1 � p) so

varðDX jY Þ ¼ xð1 1 sÞð1� xÞð1 1 tÞ
2N ½xð1 1 sÞ1 ð1� xÞð1 1 tÞ�2 � xð1� xÞ=2N

since s and t are small. As we computed above

EðDX jY Þ ¼ ðs� tÞxð1� xÞ
1 1 sx 1 tð1� xÞ:

This time we can ignore the contribution from the denominator:

varðEðDX jY ÞÞ ¼ x2ð1� xÞ2Eðs� tÞ2:

Adding the two results and speeding up time by a factor of 2N gives

aðxÞ ¼ xð1� xÞ1 x2ð1� xÞ22NEðs� tÞ2: ðA2Þ

To simplify formulas we let

a ¼ 2N ½Eðs� tÞ � Eðs2 � t2Þ=2 1 Eðs� tÞ2=2�

b ¼ 2NEðs� tÞ2

so that

bðxÞ ¼ xð1� xÞða� bxÞ aðxÞ ¼ xð1� xÞ½1 1 bxð1� xÞ�: ðA3Þ

To compute the natural scale we want to solve c9(x) ¼ �2b(x)c(x)/a(x). To do this, we begin by noting

�2bðxÞ
aðxÞ ¼

�2½a� bx�
1 1 xð1� xÞb: ðA4Þ

The quadratic in the denominator has two roots r1 , 0 , 1 , r2 given by

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 4=b

p
2

:

To evaluate the integral we write

�2bðxÞ
aðxÞ ¼

�2½a� bx�
1 1 xð1� xÞb ¼

�2½a=b� x�
1=b 1 xð1� xÞ ¼

C

x � r1
1

D

r2 � x
:

The quadratic in the denominator has two roots r1 , 0 , 1 , r2 given by

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 4=b

p
2

:

Note that the two roots are symmetric about 1
2.

To find the constants we solve �C 1 D ¼ 2 and Cr2 � Dr1 ¼ �2a/b to find

C ¼ 2r1 � 2a=b

r2 � r1
D ¼ 2r2 � 2a=b

r2 � r1
:

Integrating
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ðy C

x � r1
1

D

r2 � x
dx ¼ C lnðy � r1Þ � D lnðr2 � yÞ

yields

cðyÞ ¼ exp

ðy �2bðxÞ
aðxÞ dx

� �
¼ ðy � r1ÞCðr2 � yÞ�D :

Consider now the special case in which s and t have the same distribution so E(s� t)¼ 0, E(s2� t2)¼ 0, and hence
a ¼ b/2. Then

C ¼ 2r1 � 2a=b

r2 � r1
¼ 2ðr1 � 1=2Þ

r2 � r1
¼ �1

D ¼ 2r2 � 2a=b

r2 � r1
¼ 2ðr2 � 1=2Þ

r2 � r1
¼ 1

and we have the very nice formula

cðyÞ ¼ ðy � r1Þ�1ðr2 � yÞ�1 ¼ 1

yð1� yÞ1 1=b
:

One can check this by noting that

c9ðyÞ ¼ � 1� 2y

½yð1� yÞ1 1=b�2

¼ � 1� 2y

yð1� yÞ1 1=b
cðyÞ ¼ �2ðb=2� byÞ

1 1 byð1� yÞ cðyÞ

when a¼ b/2 and comparing with (A4). Karlin and Levikson (1974) find c(y)¼ ½1 1 by(1� y)��1 in their p. 402, but
this agrees with our computation since the solution of c9(y) ¼ �2b(y)c(y)/a(y) is determined only up to a constant
multiple. To make it easier to compare with their formulas, we let

cðyÞ ¼ 1

byð1� yÞ1 1
¼ b�1ðy � r1Þ�1ðr2 � yÞ�1: ðA5Þ

To compute the natural scale f, we integrate to find

fðxÞ ¼ b�1

ðx

0
ðy � r1Þ�1ðr2 � yÞ�1dy

¼ 1

bðr2 � r1Þ

ðx

0

1

y � r1
1

1

r2 � y
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 4b

p ½lnðx � r1Þ � lnð�r1Þ � lnðr2 � xÞ1 lnðr2Þ�: ðA6Þ

This is close to but not exactly the same as that in Karlin and Levikson (1974). Their roots are l2¼ r1 and l1¼ r2, and
they write w ¼ b/2, so their constant has 2b instead of 4b.

Since f(0) ¼ 0, the probability of fixation starting from frequency x is

hðxÞ ¼ fðxÞ
fð1Þ ¼

ln ðx � r1Þ=�r1 � r2=ðr2 � xÞ½ �
ln ð1� r1Þ=�r1 � r2=ðr2 � 1Þ½ �

since r2 � 1
2 ¼ 1

2� r1 and r2 � 1 ¼ �r1 so fð12Þ=fð1Þ ¼ 1
2 and we can write the above as

1

2
1

fðxÞ � fð1=2Þ
fð1Þ ¼ 1

2
1

log ðx � r1Þ=ðr2 � xÞ½ �
2 log½r2=ð�r1Þ�

:

This is (8) in Jensen (1973). As b / ‘, r1 / 0, and r2 / 1 so fðxÞ/1
2.
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The speed measure

mðyÞ ¼ 2

aðyÞcðyÞ ¼ 2
byð1� yÞ1 1

yð1� yÞð1 1 byð1� yÞÞ ¼
2

yð1� yÞ

is exactly the same as for the neutral case. Since f(0) ¼ 0, Green’s function G(x, y) is

2
fðxÞ
fð1Þ �

fð1Þ � fðyÞ
yð1� yÞ 0 # x # y

2
fð1Þ � fðxÞ

fð1Þ � fðyÞ
yð1� yÞ y # x # 1:

The expected time to fixation is

Ext ¼ 2
fðxÞ
fð1Þ

ð1

x

fð1Þ � fðyÞ
yð1� yÞ dy 1 2

fð1Þ � fðxÞ
fð1Þ

ðx

0

fðyÞ
yð1� yÞdy:

Since 1/(1 � y)y ¼ 1/(1 � y) 1 1/y has antiderivative log(y/(1 � y)), integrating by parts gives

¼ 2
fðxÞ
fð1Þðfð1Þ � fðyÞÞ � log

y

1� y

� �����1
x

1 2
fðxÞ
fð1Þ

ð1

x
cðyÞlog

y

1� y

� �
dy

1 2
fð1Þ � fðxÞ

fð1Þ fðyÞ � log
y

1� y

� �����x
0

� 2
fð1Þ � fðxÞ

fð1Þ

ðx

0
cðyÞlog

y

1� y

� �
dy:

Since f(1) � f(y) � f9(1)(1 � y) as y / 1 and x log x / 0 as x / 0, evaluating the first term at 1 gives 0, as does
evaluating the third term at 0. Evaluating the first term at x cancels with evaluating the third at x, so the above becomes

¼ 2
fðxÞ
fð1Þ

ð1

0
cðyÞlog

y

1� y

� �
dy 1

ðx

0
2cðyÞlog

1� y

y

� �
dy:

c(y) is symmetric about 1
2 and log(y/(1 � y)) is antisymmetric about 1

2 so the first integral vanishes and

Ext ¼
ðx

0

2

1 1 byð1� yÞ log
1� y

y

� �
dy:

When x # 1
2; ð1� yÞ=y $ 1 and hence the log is nonnegative throughout the range of integration, so Ext is a decreasing

function of b. Whenx $ 1
2 we can use the fact that the total integral is 0 to write

Ext ¼
ð1

x

2

1 1 byð1� yÞ log
y

1� y

� �
dy

and we again conclude that this decreases as b increases. This result, which is on p. 402 of Karlin and Levikson

(1974), is somewhat surprising since (A3) shows that the diffusion has a drift toward 1
2, which will encourage it to spend

more time at intermediate values. However, as the computations above show, this effect is counteracted by the increase
in a(x).

By Hartl and Sawyer’s formula the site-frequency spectrum is

vðxÞ ¼ lim
N /‘

2N uGð1=2N ; yÞdy ¼ uf9ð0Þ
fð1Þ �

fð1Þ � fðyÞ
yð1� yÞ ;

which up to a constant is

2

yð1� yÞ � log
1� r1

y � r1
� r2 � y

r2 � 1

� �
:
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