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Description of the Algorithm

Our algorithm (MEDBYLS) starts at an arbitrary genome and iteratively

performs a sequence of rearrangements to examine possible ancestral genomes.

After a predefined number of steps the algorithm outputs the best midpoint

seen so far. At each step t, the algorithm has a current midpoint Mt and a

set of elementary rearrangements Rt to get from Mt to Mt+1. The algorithm

chooses a rearrangement uniformly at random from the set Rt of elementary

rearrangements. If applying the rearrangement gives a midpoint with a better

total distance
∑3

i=1 d(Mt+1, Gi) than Mt the move is accepted, otherwise, the

move is accepted with probability p. We typically use p = 0.2 and initialize

our algorithm either with one of the three original genomes, or with a randomly

chosen genome.

A key element in the success of the algorithm comes from the choice of the

set Rt of possible moves or rearrangements at time t. By results of results of

Hannenhalli and Pevzner (1995b) given two genomes G and G′ we can identify

a sequence of rearrangements to get from G to G′ in the minimum number of

moves. We define R(G, G′) to be a special subset of these moves (see section 3

for the exact definition) and define Rt = ∪3
i=1R(Gt, G

i). Thus at each step, we are

taking a step in an optimal path toward one (or more) of the original genomes.
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1 Notation and Basic Definitions

Genomes with one chromosome are represented as signed permutations where each

integer corresponds to a gene or marker and the sign gives its orientation. A mul-

tichromosomal genome can be written as signed permutation divided into pieces

called chromosomes. More precisely, given a set of markers N = {1, 2, . . . n}, a

chromosome τ is an ordering of a subset of the markers in which each marker has

a sign, i.e., τ = (τ1 . . . τm) where |τi| ∈ N , m ≤ n and we identify (τ1 . . . τm) and

(−τm · · ·− τ1). A genome G on a set of markers N is a collection of chromosomes

in which each marker appears exactly once.

We consider four elementary kinds of rearrangements in a genome: reversals,

translocations, fusions and fissions. A reversal ρ = ρi,j of the interval (i, j),

1 ≤ i ≤ j ≤ m, applied to a chromosome π = (π1 . . . πm) takes π to

πρi,j = (π1 . . . πi−1 − πj − πj+1 . . . − πi+1 − πi πj+1 . . . πm)

A translocation ρ = ρi,j, 1 ≤ i ≤ m+1, 1 ≤ j ≤ l+1, applied to the two chro-

mosomes π = (π1 . . . πm) and τ = (τ1 . . . τl) results in the two new chromosomes.

There are two possibilities. The simplest is

{π; τ}ρi,j = {(π1 . . . πi−1 τj . . . τl), (τ1 . . . τj−1 πi . . . πm)}

but we could also flip the first chromosome before translocating ending up with:

{−π; τ}ρi,j = {(−πm · · · − πi τj . . . τl), (τ1 . . . τj−1 − πi−1 · · · − π1)}
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A fusion is a particular kind of translocation ρ = ρm+1,1 that concatenates

two chromosomes π and τ resulting in a chromosome (π1 . . . πm τ1, . . . τl) and an

empty chromosome (we could also flip one of the chromosomes before fusing).

A fission is the translocation ρ = ρi,1 that takes π and the empty chromosome

resulting in two chromosomes (π1 . . . πi) and (πi+1 . . . πm).

2 Breakpoint graph and genomic distance

In the study of the genomic distance for unichromosomal genomes Kececioglu and

Sankoff (1995) and Bourque and Pevzner (1996) introduced the breakpoint graph

for signed permutations. Caprara (1999b) generalized this notion to study the

median problem for unichromosomal genomes. We will now further extend the

notion of the breakpoint graph to the case of multichromosomal genomes and to

more than two species.

The first step is to double the markers. For a signed marker +x, u(+x) =

2x−1, 2x and u(−x) = 2x, 2x−1. Given a signed chromosome (τ1, . . . , τm) define

an unsigned chromosome

u(τ) = (u(τ1), . . . , u(τm)) = (x1, x2, . . . , x2m−1x2m)

In this case the adjacency graph for the chromosome will have edges

{(x2i, x2i+1) : i ∈ 1, . . . , n} ∪ {(H, x1), (H, x2m)}.
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For a genome we apply this procedure to each chromosome and take the union

to form the adjacency graph Γ(G). The H’s in this graph denote the adjacencies

to the chromosome “ends”. The H’s are all different points in the graph, but we

denote them by the same symbol to simplify the notation.

Given two genomes G and G′, with k ≥ ` chromosomes, the breakpoint graph

Γ(G, G′) is defined by combining the adjacency graphs Γ(G) and Γ(G′) using dif-

ferent labels H and H ′ for chromosome ends corresponding to different genomes,

and different colors for edges, say black for G and gray for G′. If k > l we add

k − l empty chromosomes to G′.

The next picture gives the example Γ(G, G′), for G = {1 − 2 3 5; −4 − 6}

and G′ = {1 2 3; 4 5 6}. Doubling the markers in the first genome gives edges

H − 1, 2 − 4, 3 − 5, 6 − 9, 10 − H, H − 8, 7 − 12, 11 − H which are drawn as

thick lines (black edges). We then add the adjacencies in the other genome as

thin lines (gray edges).

H 1 2 4 3 5 6 9 10 H

H 8 7 12 11 H

H ′ H ′

H ′H ′

������
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Note that, except for the special nodes H and H ′, which always have degree

one, all the other nodes in Γ(G, G′) have degree 2, and are incident with one gray

and one black edge.

We have two types of connected components in the breakpoint graph Γ(G, G′),

one without special vertices C = {x1x2 . . . x2r} that we call cycles, and a sec-

ond type that begins and ends with special vertices: C = {H ′x1x2 . . . x2r+1H},

C = {Hx1x2 . . . x2rH}, C = {H ′x1x2 . . . x2rH
′} that we call paths. We can write

Γ(G, G′) in a unique way as a union of paths that start and end at the special

nodes (with no special node in the middle of each path), and cycles of non-special

nodes. Let c(G, G′) be the number of paths and cycles, including empty chromo-

somes. Let #(H, H ′) be the number of cycles that start with H and end with

H ′.

In the example drawn above the breakpoint graph has five components {H 1 H ′},

{2 4 5 3 2}, {H ′ 6 9 8 H}, {H 10 11 H} and {H ′ 7 12 H ′} so c(G, G′) = 5, and

the number of same genome cycles #(H, H) = #(H ′, H ′) = 1.

The graph distance between two genomes G = {τ 1, . . . , τk}, G′ = {π1, . . . , πl}

is defined as

d(G, G′) = n + k − c(G, G′) + #(H ′, H ′).

The graph distance for the example in Figure 4 is 6 + 2 − 5 + 1 = 4. Since any

move can only decrease d(G, G′) by at most 1, the graph distance is a lower bound
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on the genomic distance. It is easy to check in the example we are considering

that we can transform G into G′ in four rearrangements.

3 Elementary rearrangements

The final step in the description of the algorithm is to define the elementary

rearrangments R(G, G′). We say that a component of the breakpoint graph is

elementary if it has the form {H x H ′} or {x y}. The first kind corresponds to

a common end, the second one corresponds to x and y being adjacent in both

genomes. We say a rearrangement ρ acting on a cycle (path) of the breakpoint

graph Γ(G, G′) is elementary if Γ(Gρ, G′) is obtained from Γ(G, G′) by one of the

following operations:

• splitting one of the cycles, (with or without special vertices), C into a 2-cycle

and a smaller cycle. This applies to all paths and cycles

• splitting one of the cycles (paths) C with special vertices into a 3-vertex

path and a smaller path.
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