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Abstract. In this paper we study a growth model on Z2 in which
particles reproduce sexually: in order for a new particle to appear at a
vacant site, two neighboring sites must be occupied. The fact that the
birth mechanism requires two parent particles causes the example to
exhibit a number of phenomena which are unheard of in models with
asexual reproduction (i.e. the “additive processes” of Harris (1974)). For
example, if we perturb the system by adding spontaneous births at a
small rate, then for certain parameter values we obtain a process with
“positive rates” which has two stationary distributions.

$1. Introduction. In this paper we investigate a growth model on
Z2 which has sexual reproduction and contrast its behavior with related
models which have asexual reproduction. The first step will be to give an
informal description of the models under consideration. A more precise
definition of these processes can be found in Section 2.

In each model the state of the system at time t is &4, a subset of Z2.
We interpret E; as the set of sites occupied by particles at time t.
Particles die (or in other words, occupied sites are vacated) according to
the simplest possible rule:

(i) if x € &y, then & — &4 \ {x} av.ate 1.

The birth mechanism (by which vacant sites becom¢ occupied) is
determined by a set of birth rates by, x € ZZ, which depend on the state
of the system:

(ii) if x ¢ E¢, then E¢ — E; U (x} at rate by(Ey),

where by(&4) depends only on |g; N (x + e, x + e3)l. (We use| .| to
denote cardinality and e4 and e for the natural unit basis vectors) We
are mainly interested in two choices of the birth rater by:
Example 1. Sexual reproduction.
be(B) « = X iflen{x+eq, x+e)l=2
= 0 otherwise.
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Example 2. Asexual reproduction.
b () S Eeiex if [EN{x+eq, x+e3}l =1or2
= 0 otherwise.

These examples can be thought of as two different ways to generalize to
two dimensions the so-called “one-sided contact process on Z°, which is
one of the most studied of all interacting particle systems. In the contact
process, a birth can occur at x € Z only if x + 1 is occupied. In our
Example 1, a birth can occur at x € Z2 only if x + ey and x + ez are
occupied, while in Example 2, the condition is that x + e or x + ez be
occupied. It turns out that “or" is easier to analyze than "and". The
reason for this is that Example 2 is additive in the sense of Harris (1978)
while Example 1 is not. Additive processes have associated with them
certain "dual processes” which greatly facilitate analysis of their behavior
(see Griffeath (1979) for a thorough exposition). Dual processes for
non-additive models have only recently been defined (Gray (1986)) and
are more difficult to manage. The contrast will become clear when we
describe the dual processes for Examples 1 and 2 in Section 2.

In order to set the stage for our results, we need to recall some
general facts which hold for a certain class of interacting particle
systems. A system is called atfractive if the birth and death rates b,
and d, satisfy

bye(E) 2 be(n) and dy(E) < dy(n) whenever 4 C E C Z2 .

In our examples, the death rates are identically 1 and the birth rates b,
are non-decreasing functions of the number of occupied sites in the set
{x + e4, x + @3}, so the above condition is satisfied. As first observed by
Holley (1972), attractwe systerns have certain useful monotonicity
properties. Let F-t and Et denote the state at time t when the initial
states are & and 72 respectively. Then for all A C Z2,

P(E,P N A = &) increases and P(:ti N A = @) decreases as t— oo,

Thus E,t and !E,t converge weakly as t— e to limits which we call E,., and
E,,,, and these limits are statlonary distributions of the process. We will
often use the symbols ° r,., and ° r.,.' for random variables which have
these distributions instead of for the distributions themselves.

In Examples 1 and 2, 50 = & for all t, s0 80, is trivial and all the
attention is focussed on £, . Let



p0) = lim PO €t = PO kL),
t— o0

If p(A) = 0, then &L = £ , and it is not hard to show that for all initial
configurations, E(t)=>84 as t— . (The notation means “E(t) converges
weakly to the point mass at 2°. In this context, weak convergence is
equivalent to the convergence of the finite dimensional distributions. In
other words, it means convergence of the dlstnbutlon of E(t) N {x)} for
each x) On the other hand, if p(A) > 0, then e, is non-trivial and
distinct from E,,,

Let Ac = inf {A: p(A) > 0}). According to the preceding paragraph,
t;,,- E,,, = 8p if A < ?\c,andﬁt- E,?,lfl”tc Thus, one of the most
basic questions to ask concerning a given system is whether or not
0 < A; ¢ oo. The answer to this question is “yes" for both of our examples.

The proof that A; > 0 is easy in both cases. If we think of the
particles as potential parents of new particles, then the birth rate per
particle is bounded by A in Example 1 and by 2\ in Example 2. Thus if
A < 1 in the first example or if A < % in the second, the population dies off
ata faster rate on the average than it replenishes itself, and it is easy to
see that Ew# 5gp-

It is considerably harder to show that A, < o. For Example 2, we
can reduce this to a known result by observing that if the process is
projected onto the line y = -x, then it dominates the so-called two-sided
contact process on Z. It is known (Holley and Liggett (1978)) that A, < 4
in the two-sided contact process on Z, so A; < 4 < o for Example 2.

The fact that A; ¢ ¢ in Example 1 follows from our first main result:

Theorem 1. In the sexual contact process (Example 1), p(A)—1 as A—ee.

Our proof uses what is commonly known as a contour argument. This
method was developed for use in continuous time processes by Gray and
Griffeath (1982) and Bramson and Gray (1984). (In other contexts, the
technique can be traced back to the so-called "Peierls’ argument” in
Peierls (1936). For discrete time processes, Toom (1979) is most
responsible for its application and refinement.) We will follow the basic
pattern set in Gray and Griffeath (1982). We will define a contour in
such a way that

P(0 ¢ E,’,',) < P(at least one contour exists).
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We will estimate the right side by using the expected number of
contours, which will in turn be bounded by a series expansion which
converges for sufficiently large A. The sum of the series will go to 0 as
A— <o, proving Theorem 1.

As is usual for contour methods, an upper bound for A; emerges
from the computations, but this bound is typically crude. In our case we
will be able to conclude that

A < 4(3+/5)2-2 < 108

in Example 1, whereas computer simulations (done by Tom Liggett)
suggest that 10 < A; < 20. For comparison, note that for the one-sided
contact process, the estimate obtained in Gray and Griffeath (1982) is
Ac € 14, while the actual value is believed to be a little larger than 3.

Once it has been shown that 0 < A; ¢ eo, it is natural to ask how &
behaves as t — < starting from simple initial distributions other than
the ones concentrated at & or Z2. Let E,tp be the state at time t when
the initial distribution is product measure with parameter p (i, the
events {x € EP}, x ¢ 22, are independent and have probability p). Using
duality techniques it can be shown that Example 2 (like all additive
models) satisfies

(1) ifp>0,thenE,tp=b§: ast — oo,

We will indicate the easy proof at the end of Section 2.

Somewhat surprisingly, (1) is false for Example 1. It is known from
the theory of oriented percolation (see Durrett (1984)) that there exists a
p* strictly between 0 and 1 such that for all p < p* there is as. a
sequence of vacant sites {xx} in the initial configuration E,f such that
Xk+1 =
Xy + @ or X + e for all k. It is easy to see from the description of the
birth mechanism that these sites can never become occupied and hence
that a birth can never occur at any of the sites x; - e or xi - ey
Therefore, after any particles present at these two sites die, they will be
forever vacant. Iterating this argument we find that any site of the
form xg - njeq - nzez , ny, nz > 0, will eventually remain unoccupied,
and it is not difficult to conclude from translation invariance that for
Example 1, .

(2) if p < p*, then £ = 85 ast — oo,



If we define the critical probability p,()) = sup {p: F.tp = 8y}, then (2)
implies that p.()\) 2 p® for all A. We conjecture that

(a) pe(A) \, p* as A / o; and

(b) if p > ps(A) then £} = t;: ast — oo
but we have no idea how to prove either of these results.

Another interesting question concerns the behavior of the systemn
when A = A.. If we examine the proof given above that (1) does not hold
in Example 1, we see that by the same argument, g, = 83 for any initial
distribution in which the vacant sites percolate in the sense of oriented
percolation. (We would like to thank Michael Aizenman for this
observation.) This suggests the following:

Conjecture. In Example 1, there exists ¢* > 0 such that if p(}) =
P(0 € & ) <€¥ then p(3) = 0.

Since p(7) is known to be right continuous (a simple compactness
argument shows that E,: is weakly right continuous in }), it would follow
from the conjecture that

p(A) = p(A) > D as A\ Ac.

We have been able to prove this conjecture when 72 is replaced by
the binary tree 7. We label the sites of T with finite strings of 0's and
1's which begin with a 0 (the "root” is labelled with a 0, the two nodes
next to the root are labelled 00 and 01, and so on, with n + 1 binary
digits required to label the nodes at level n above the root). The process
is defined as in Example 1 with a constant death rate equal to 1 and a
birth rate at the site x which depends on the sites x1 and x0 that
neighbor x at the next higher level: the birth rate at x is A if both x0
and x1 are occupied, and the rate is 0 otherwise. Our proof of the
conjecture in this case is simple and short and doesn't fit in anywhere
else, so we give it here.

Let gt" denote the state at time t if the initial distribution is | = E,: ;
Then

d P(0 € &,)

M M M
- = -P(0 € £,) + \P(0 ¢ &, and 00, 01 ¢ E}).

Since Ei is stationary, p(\) = P(0 € E,t" ), so it follows that



0 = -p(\) + AP(0 ¢ &f and 00, 01 € &} ).

By a result of Harris (1977), the events {0 ¢ E.t"} and {00, 01 ¢ E,f } are
negatively correlated. Furthermore it is easy to see that the behavior of
the process at the site 00 is independent of the behavior at 01 and that
P(00 € Ef) = P(01 € &}) = P(0 € E}) = p(A). Therefore,

(3 0

1A

-p(\) + AP(0 ¢ E})P(00, 01 € &})

-p() + AP(0¢ E{)P(00 € £})P(01 € &)

-p(V[1 - Ap(N (1 - O],

If A < 4, then 1 - Ap(A)(1 - p(A)) > 0, so it follows that p(A) = 0 and

:_ 8p, or in other words, A; 2 4 > 0. Now assume that e > A > ) (the
proof that A; < o is similar to the proof of Theorem 1). Then p(3) > 0, so
(3) implies that 1 < Ap(A) (1 - p(2)), from which it follows by right
continuity that 1 < A;p(A)(1 - p(ry)). This last inequality implies that
p(Ac) > 0. Since p(}) is non-decreasing, the statement in the conjecture
follows, with £* = p(A;). O

For small p, we can think of product measure as a perturbation of
the absorbing state &. Statements (1) and (2) imply that under such a
perturbation, the equilibrium 8y is an "attracting fixed point” in the
sexual contact process in Example 1 and an “unstable fixed point” in the
asexual contact process in Example 2. We may expect similar
statements to hold under another kind of perturbation, namely that of
adding a small quantity p > 0 to all the birth rates ("spontaneous births
at rate p"). An argument similar to the one used for (1) shows this to be
true for Example 2. In fact, if we let E,O"’ and 51"’ be the states at time t
for the system with spontaneous births at rate p and initial states & and
Z? respectively, and if we let F,E"’ and ﬁi’p be the weak limits of E,lo"’ and
Eti'p as t = o, then in Example 2,

(42) £ = £1P is the unique stationary distribution for all p > 0.
There is a strong sense in which &14’ is "larger than E,i forallp>0

(they can be defined jointly so that E,i-" D E,” ), so it follows from (4a)
and a compactness argument that



(4b) asp\ 0, EQP = £l .

(See Holley (1972) or Liggett (1985), Chapter 3, for the missing details,
particularly concerning the meaning of the word “larger”)

For A> A, &g = 52 - Ej , 50 (4b) says that 8y is unstable under this
type of perturbation in Example 2. In contrast, 8y is stable in Example 1
under the same type of perturbation:

Theorem 2. For any A » 0 in the sexual contact process (Example
1), 82P = §5asp \ 0.

Since & 1p l: as p\, 0, it follows from Theorem 2 that for A > A; and p
sufficiently small, £ 0 !:1-” Our proof of Theorem 2 actually yields an
estimate for how small "sufficiently small” is:

Corollary 1. If A > ; and Bpu 4)\3/4 ¢ 1, then the sexual contact

process with parameter A and spontaneous births at rate p has 53,13 =
1p
BN

The reader should note that the lower bound on the allowable
perturbation does not go to 0 as A = A;. We think this is more evidence
for the conjecture made above.

Systems like the one in Corollary 1 which have strictly positive
translation invariant birth and death rates with finite range interaction,
and which are known to be non-ergodic (i.e. to have two distinct
stationary distributions) are relatively rare. One well-known set of
examples in provided by the two dimensional stochastic Ising models. It
is instructive to compare their behavior under perturbation with that of
our Example 1. Consider birth and death rates defined as follows:

if x ¢ £y then &y — Ey U (x} at rate exp(2h + (k - 2)p),
if x € &4 then £y — & \ {x} atratel

wherep >0, h € R and
=lEgN{x+eq, x+ey x-eq,x- el

Let 50.13. and 51-9 h e the limiting (statmnary) distributions as t—eo
starting from the initial states §3 and 22 respectively, and define



mO(g, h) = P(0 € £E%PP) and mi(p, h) = P(0 € E1PD),

It is known (see Durrett (1981) and the references therein) that there
exists p. > 0 such that

(5a)  gQPR . plBh jff h - Oandp>p;

(5b)  if p> P, , then 1/2 < mi(p, 0) = 1 - m%p, 0);

(5¢c)  mi(p, h) » ml(p,0), i=0o0r1,ash\ 0, and
mi(p, h) » m%p, h),i=0or1,ash /0.

The reader should especially note (5a) and (5¢), which say that
non-ergodicity is very unstable in the Ising model: one of the two
stationary distributions disappears when h is perturbed away from 0. In
contrast, the non-ergodicity of Example 1 is stable under arbitrary types
of perturbations, as long as they are finite range in nature. (The finite
range condition ensures the existence and uniqueness of the process.)
This fact is a second consequence of Theorem 2:

Corollary 2. Let (c,) be an arbitrary collection of finite range birth
rates with 0 < ¢y < 1. If A > A; and p > 0 is so small that P(0 € £0P) <
P(0 € E,j ), then adding pcy, to the birth mechanism in Example 1
preserves the non-ergodicity of the system.

Proof. Let (E}) stand for the perturbed system, with Eto and Etl
representing the states at time t if the initial states are 8 and Z2. Then
in the same sense described immediately following (4a), the perturbed
system (Ey) is "larger” than the unperturbed system (&;) and "smaller"
than the system in which the birth rates are perturbed by adding p.
Thus if p and A satisfy the hypotheses,

1A

lim P(0 € ED) lim P(0 € £2P)

t-e t-w

= P(0eglP)

¢ POetl)



= lim P(0 € &})

t—+ew
s lim P(0 € E}).
t-o

A standard compactness argument completes the construction of two
distinct stationary distributions for (E;). O

We hope that the results above have convinced the reader that “sex
makes life interesting.” We offer one final piece of evidence for this
viewpoint by describing some unusual properties of an example in which
the birth rate has both sexual and asexual components:

Example 3. The death rate is still 1. The birth rate b, is defined
as:

‘ by(&)

ML+a)if En{x+e,x+el]l = 2
Ao if EN{x+e,x+exdl = 1

= 0 otherwise,
where o > 0. (The case ot = 0 is Example 1.)

Let & be the state at time t if the initial state is the singleton {0}.
Since this initial state has only finitely many occupied sites, it is possible
for the process to reach the state &, in which case we say it "dies out".
If £ =4 for all t 2 0, then we say it "survives for all t*. Let Q, be the
event that & survives for all t, and let As = inf (\: P(Q,) > 0). (In
Example 3, the value of A\¢ depends of course on a.) At one time it was
tempting to conjecture that A¢ = A; for “reasonable” growth models. In
many examples this is known to be true (eg., all one-dimensional
attractive nearest neighbor systems and many “nearest particle” systems
-- see Durrett and Griffeath (1983), Gray (1985) and Liggett (1983)) --
and it is strongly believed to hold for many other systems such as our
Example 2. Thus it is a little surprising to realize that the process in
Example 1 goes extinct as. starting from any  finite initial state, so that -
Af = oo in Example 1 (proof: observe that if &y € [-N,N]2, then
Ep C [-N,N]2 for all t. It is easy to see that since the death rate is 1, the
easy half of Borel-Cantelli implies that sooner or later, all the sites in
[-N,N]z will be vacant and the process will die out. In fact for any finite
initial state there isan € > O such that P(5y = #) < (1 -e)t = 0ast —
00.) -

Since )¢ is infinite in Example 1, it is tempting to weaken the
conjecture "Ag = A" to “A¢ = A; whenever both are finite." But Example 3



10

provides a counterexample even to this modified version, as shown by
our third main result and its corollaries:

Theorem 3. In Example 3, suppose A 2 1 and o < 1/(144)). If € <
o> and p < e/(1 + €), then P(0 € £P) — 0 exponentially fast as t — .
(See above for the definition of EP )

Consequently, if we let E,tA be the state at time t when the initial state is
the set A, we have

Corollary 3. In Example 3,if A 21 and o ¢ 1/(144)), then for any
finite A,

P( E,tA = @) — 0 exponentially fast as t = co.

Proof. If the initial measure were product measure with densny P,
then the probability that A is occupied at time 0 would be pl‘e‘I so P( E,O
C E,O ) > 0. It follows from the Markov property and Corollary 2 that

P(x ¢ E,tA ) = 0 exponentially fast as t = oo, uniformly in x € Z2.

It follows from this that for any constant ¢ > 0,
P( E,tA N [-ct, ctlé = @) = 0 exponentially fast as t — oo,

Standard arguments concerning the rate of spread of the set of occupied
sites in population models (based on the simplest large deviations for
random walks) imply that c can be chosen (depending on A) so that

P( l.=,,;"’L N ([-ct, ct]®)® = &) — 0 exponentially fast as t — oo,
and Corollary 3 follows. O

Comparison with the two-sided contact process (as done for Example
2) reveals that for Example 3, A\s < 4/, since it is known for the 2-sided
contact process that A¢ = A, < 4. Comnbining this with Corollary 3 gives:

Corollary 4. If o < 1/144 then 1/(144a) < Mlar) < 4/ax.
The constants in these inequalities are crude, but we do see that Af(a) =

O(ac™1), which is more than enough information to conclude that since
Ac(a) is bounded above by the critical value of Example 1, 0 ¢ A(cx) ¢



Af(ax) < e in Example 3 for sufficiently small o > 0. In other words, the
system has two phase transitions.

The rest of the paper is devoted to proving the statements made
above. In Section 2 we describe the objects which are key to the proofs,
namely dual processes. The recipe that we give for constructing duals
can be applied to any attractive system. If it is used on additive
processes like Example 2, then it leads to essentially the same duals that
are found in Harris (1978) and Griffeath (1979). In such cases, the state
space of the dual process is the set of finite subsets of 29 . When we
apply our recipe to non-additive systems like Example 1, however, the
result is one level more complicated: the dual process takes values in the
space of finite collections of finite subsets of 29 . This dark cloud has a
silver lining: the exotic behavior exhibited by Example 1 is only possible
because its dual is complicated.

In Section 3 we prove Theorem 1, in Section 4 we prove Theorem 2
and Corollary 1, and in Section 5 we prove Theorem 3. All of these proofs
are "contour arguments”. This type of argument is notoriously
unpleasant, so very few people have used them enough to know that
they are also very simple. To oversimplify just a little, there are always
three main steps:

Step 1. Introduce a lot of notation to define the contour.

Step 2. Show that a certain positive fraction of the turns in the
contour must be associated with low probability events which are
essentially independent and derive exponential bounds for the length of a
contour with a given number of turns.

Step 3. Do a seemingly endless number of multiple integrals and
then sum a geometric series.

To emphasize our point that contour arguments are simple, we have
divided the proofs below into the three steps outlined above, and have
tried to do the arguments in parallel as much as possible. We have done
this with the aim of making contour arguments into a science (rather
than an art) but we have not completely succeeded. If we had, we
would be able to tell which properties of Example 1 hold for the variant
system in which the birth rate is A if (and only if) both sites in at least
one of the two sets {x + @4, x + @3} or {x - e4, x - e} are occupied. Apart
from reaching the trivial conclusion that A < e, which follows by
comparison with Example 1, we have not been able to do this.
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§2. Defining the dual processes. In this section we will show
that every attractive set-valued process has two dual processes.
Roughly speaking, these are obtained by starting at time t with the
question “Is x occupied?” or “Is x vacant?" and working backwards to
time 0. To show how this works, we will first describe a simple, rigorous
method for constructing the examples in Section 1. Dual processes will
then arise in a natural way from this construction.

For each x € Z2 let Sp,(x) and Ty(x), n » 1, be independent Poisson
processes with rates 1 and A respectively. Thus if we let Sp(x) = To(x) =
0, then the increments Sj,(x) - Sp_4(x) and T,(x) - T,-1(x), n 2 1, are
independent exponentially distributed random variables, with means 1
and 1/ respectively. Given these raw materials, the construction of the
process is easy. We begin by labelling certain points in the space-time
graph Z2x[0,), using the Poisson processes:

(6) mark the points (x, Sy(x)) with §'s (for death), and interpret the &
as telling us to kill a particle at the site x at time S,(x) , if one is
present;

(7) mark the points (x, T,(x)) with A's (for life), and interpret the A as a
birth at x at time Tj(x), provided the necessary conditions are

met, i.e.
in Example 1, x ¢ eTn(,)- and both x +eq and x + e €
ng(x)' :
in Example 2, x ¢ ET,(x)~ and either x +ej and x + e; €
ﬁTn(x)' .

Having marked points in the space-time graph, we can compute the
evolution of the process according to the rules for interpreting the §'s and
A's given in (6) and (7).

Since there are infinitely many sites, there is no first time at which
a § or A appears, so it is not immediately clear that the recipe above
specifies a unique process. To prove this we observe that we can make
P(S1(x) > €, T1(x) > €) as close to 1 as we like by choosing € > 0 sufficiently
small. Then trivial results about percolation in Z2 imply that for each x
€ Z2 there is a finite set ("random island") C(x) containing x which has
the property that its boundary aC(x) = {y ¢ C(x): there exists z € C(x)
with ly - 2| = 1} consists completely of points y with Sy(y) > € and Ty(y) >
€. According to our prescription, there will be no births or deaths on
dC(x) during the time interval [0, €, so each of the islands C(x) can be
treated as an isolated, finite system for which the evolution is uniquely
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determined during [0, €]. It follows that the entire process is uniquely
defined for 0 < t < €, and hence by induction for all t > 0. This
construction is due to Harris (1978). The reader should note that it
allows us to define for each starting set A € Z2 and starting time s, a
process E(t; s, A), t 2 s, which starts with E(s; s, A) = A and evolves
according to the rules specified above. It is important to realize that this
can be done simultaneously for all A and s, all on the probability space
determined by the Poisson point locations S,(x) and Ty(x).

Thus we have (a rather clumsy) method for computing the evolution
of the process. If we are interested in the state of a particular site x at a
particular time t, however, it is more efficient to work backwards from
the point (x, t) in space-time, and identify the §'s and A's which could
have affected the state of x at time t. Consider the outcome drawn in
Figure 1,

n (0, 1) (1, 1) (2, 1)

(0, 0) (1,0 3 (2, 0)

and suppose for the moment that it is being used to compute the
evolution in Example 2. Next to each A, we have drawn a pair of lines
connecting the corresponding site to its potential parent sites. If we start
at time t with the question “Is the site x = (0, 0) occupied?" and work
backward we have the following answers:



In this time interval

(Tq, tl
(T2, T4l
(T3, T3]
(T4, T3]
(tg, T4]
[0, Tg]
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the answer is yes if any of these sites

is occupied
(0,0)

(0, 0), (0, 1), (4, 0)

(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)
(0,1), (1,0, (1, 1), (2,0

(0, 1), (1, 0), (1, 1), (0, 2), (2, 0)
(0, 1), (1, 0), (1, 1), (0, 2)

Table 1

If instead, we take the same outcome pictured in Figure 1 and use it
to compute the evolution of Example 1, we get much different answers:

In this T interyal

(T4, t]
(19, T4l
(1’3, Tz]

(T4, T3l

(5, T4l

[0, T5]

the answer is ves if any of these sets
f sites | lete] o
{(0, 0)}
{(0, 0)} or {(1, 0), (0,1)}
{(0, 0)}
or {(1, 0), (0,1)}
or {(0, 1), (1, 1), (2,0)}
{(1, 0), (0,1)}
or {(0, 1), (1, 1), (2,0)}
{(1, 0), (0,1)}
or {(0, 1), (1, 1), (2, 0)}
or {(1, 0), (1, 1), (0, 2)}
or {(1, 1), (0, 2), (2, 0)}
{(1, 0), (0,1)}
or {(1, 0), (1, 1), (0, 2)}

Table 2

From the sample paths above it should be clear that

(a) in Example 2 we can use the second column in Table 1 to define
a dual process Es, s € [t, 0], which has the interpretation that if some
point in Es is occupied at time s then x = (0,0) will be occupied at time t,

(b) in Example 1 we can use the second column of Table 2 to define a
dual process X, s € [t, 0], whose state at any time is a collection of finite
subsets of Z2 and has the interpretation that if one of the sets in ¥ is
completely occupied, then x = (0,0) will be occupied at time t.

A little thought reveals that the behavior of the dual processes can
be described as follows (remember that one works backward in time
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when tracking the evolution of the dual process):

(8) when a 8 occurs at site x at time s, then
in Example 2, x disappears from £
in Example 1, all sets containing x disappear from %;

(9) when a X occurs at site x at time s, then
in Example 2, x + e; and x + e3 are added to &
in Example 1, the set (A \ {x}) U { x + eq, x + ey} is added
to X5 for each A € X ssuchthat x ¢ A .

To prepare for a remark below we would like to observe that if we
rewrote £, as a collection of singletons X = {{x} : x € £_}, then the
occurrence of a 6 at x affects ¥ 5 and is in the same way, that is, all
sets containing x are removed. However, the occurrence of a \ at x
affects ¥ differently than it does Xs: if {x} € ¥, then two new sets,
{x + e4} and {x + ep}, are added to X..

To define the dual process rigorously we need a number of
definitions. Let Zfd denote the finite subsets of Z9. A function 7 from
[s, t] into Zfd is said to fill a set B at time t starting from a set A at time
s if 1 is right continuous, has a finite number of discontinuities, and
satisfies:

(10) n(s) = A and m(t) O B; and
(11)ifssu<vet, then E(v; u, m(u)) O n(v).

Taking u = s in (11) gives E(v; s, A) D w(v), so w(v) is a subset of the set
of occupied sites. Applying (11) at u > s shows that m is “self-sustaining”
in the sense that if m(u) is occupied at time u then m(v) will be occupied
at time v. An example should help explain the definition. For the sample
path in Figure 1, one way to fill {(0, 0)} at time t starting from {(0, 2),

(1, 1), (1, 0)} at time O is to use the following m (for the process of
Example 1):

time n(s)

[0, T4) {(0, 2), (1, 1), (1, 0)}

[Tq, T¢) {(0, 2), (1, 1), (0, 1), (1, O)} L
i 7o) (0, 2), (1, 1), (0, 1), (1, 0), (0, 0))

[To, t] {(0, 2), (0, 1), (1, 0), (0, 0)}.
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The reader should note that in the definition above we only require
&(v; u, m(u)) > n(v) and that in the example worked out above we could
have made 1 "smaller”. Given this state of affairs we will find it
convenient to restrict our attention to 1's which satisfy the additional
condition:

(12) m is minimal (that is, if 7'(u) € 1(w) for all u € [s, t] and if '
satisfies both (10) and (11), then n' = ),

and we call such a ©t a path from (A, s) to (B, t). For examples of paths,
we again turn to Figure 1. For the process of Example 1, the only two
paths from any (A, 0) to ({0}, t) are:

time nl(s) n(s)

[0, T4) {(0, 2), (1, 1), (1, 0)} {(0, 1), (1, 0)}
(T4, T1) {(0, 1), (1, 0)} {(0, 1), (1, 0)}
[tq, t] {(0, 0)} {(0, 0)).

We are now ready for the formal definition of our first kind of dual
process. Although we have been concentrating on the processes in
Examples 1 and 2 for illustrations, this definition works quite generally
for attractive processes: fors<tand B € lfd , let

x1(s; t,B) = {Ae Zfd : there is a path from (A, s) to (B, t)}.

Our insistence on defining the dual in terms of paths rather than just in
terms of functions which only satisfy (10) and (11) makes xi(s; t,B) a
collection of sets A which are minimal in the sense that if the process
starts at time s in a state A' which is strictly smaller than A, then B will
not be completely occupied at time t.

Comparison of Table 2 with the descriptions of the paths m! and 12
shows that for Example 1, ¥ 1(0; t, {(0, 0))) has the same state as the
previously defined Xg. The reader will find it a good exercise to work out
the paths to (t, {(0, 0)}) from different times s ¢ [0, t], and then check
from Table 2 that for all such s, x1(s; t, {(0, 0)) = X.. Another good
exercise is to check that in Example 2, x1(s; t, ((0, ) = X.. We :
recommend that the reader do these before proceeding further.

The process defined above is what we call the “occupancy dual” since
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it is obtained by asking the question “Is B completely occupied at time t?7”
Given this description it should be clear that we can also define a
"vacancy dual" ‘x,o(s; t, B) by asking the question "Is B completely vacant
at time t?7°, and that if we do this, then the result is just the occupancy
dual of the complementary process 1, where:

n(t; s, A) = E(t; s, A°)C.

If we use this definition and compute the vacancy dual of Example 2
for the outcome in Figure 1, we essentially get the occupancy dual again.
The only change is that the heading of the second column in Table 1 is
changed to "the answer is yes if all of these sites are vacant” or in terms
of the dual processes, X(s; t, {(0, 0)}) = (£}, that is, it is the set whose
only element is &, whereas the occupancy dual X (s; t, {(0, 0))) for
Example 2 is the collection of singletons whose union is E..

If we compute the vacancy dual of Example 1, however, what we
get looks quite different from the occupancy dual:

time 10(5; t, {(0, 0D
(T4, tl {(0, 0)}
(T2, T4l {(0, 0), (0, 1)}, {(0, 0), (1, O)}
(13, T2l {(0, 0), (0, 1)}, {(0, 0), (1, 0), (2, 0},
{(0, 0), (1, 0), (1, 1)}
(14, T3] {(0, 1)}, {(1, 0), (2, 0)}, {(1, 0), (1, 1)}
(15, T4l {(0, 1), (0, 22}, {(0, 1), (1, 1)}, {(1, 0}, (2, O)},
{(15:0), (110}
[0, T5] {(0, 1), (0, 2)}, {(0, 1), (1, )}, {(1, O)}
Table 3

The reader should note that the paths that go with the vacancy dual
are "minimal cut sets’ for the occupancy dual. In other words, if 70 is a
path corresponding to the vacancy dual then for all paths !
corresponding to the occupancy dual and for all times u € [s, t], n%(u) n
ni(u) = # and no smaller function satisfying conditions (10) and (11) has
this property. A little thought reveals that the vacancy dual of Example
1 evolves as follows:

(13) when a § occurs at site x at time s, x disappears from all the sets in
O¢e.
Xolgisi e )



(14) when a X occurs at site x at time s, all sets A € ¥%Gs; ¢ , + ) which
contain x are replaced by two sets, A U {x + e} and A U {x + e3}.

To prepare for the proof in the next section, the reader should note
that if in the outcome in Figure 1 there had been a § at the site (1, 0) at
some time Tg € (0, T5), then we would have (from Tables 2 and 3 and
the rules for computing duals):

{2, {(0, 1), (0, 2)}, {(0, 1), (1, 1)}
Z.

%9(0; t, {(0, 0)})
x1(0; ¢, {(0, )}

From the state of the vacancy dual, we see that the site (0, 0) will be
vacant at time t if the set & is completely vacant at time 0 (which is of
course always the case). On the other hand, the state of the occupancy
dual tells us that there is no set A whose total occupancy at time 0
would lead to the occupancy of the site (0, 0) at time t. In either case,
we conclude that (0, 0) is vacant at time t.

We conclude this section with a sketch of the proof promised in
Section 1 that for the asexual contact process (Example 2),

if p>0, then Ef = £} ast - oo,
In terms of the occupancy dual of Example 2, we have
P(x € EL ) = lim, ,P(X1(0; t, x) = #) and

P(x e E,tp ) = P(%1(0; t, x) contains {2z} for at least one site z which
is occupied by the initial state E,(]f )

2 (1-(1- p)N) P( x1(o; t, x) contains at least N singletons)

A standard fact about transient Markov processes implies that

P( %1(0; t, x) contains at least N singletons) has the same limit as t = oo
as P(){I(O; t, x) = @), for all finite N. Thus P( x ¢ E,tp )2(1-(1- p)N)
P(x € e:: ) for all finite N, and the proof is completed by letting

N— e O



19

§3. Proof of Theorem 1. In this section we will prove Theorem 1.
To begin with we observe that

(15) P(x ¢ &(t; 0, Z2)) = P(Z € %°(0; t, {x})
= P(a vacancy path exists from (2,0) up to ({x},t)),

where by a “vacancy path” we mean the object one obtains by applying
the definition of a path in Section 2 to n(t; s, A) instead of E(t; s, A). For
an example of a vacancy path, we turn to the modification of the
outcome in Figure 1 which was made at the end of Section 2, namely the
one in which we inserted a new time T¢ at which a § occurred at the site
(1, 0). Then we have

time 1(s)

[0, T6) 2

[Te, T5) {(1, 0)}

[ts5, T3) {(1, 0), (2, 0)}

[t3, T2) {(0, 0), (1, 0), (2, O)}
[T, T9) {(1, 0), (0, 0)}

[Ty, t] {(0, 0)}

We are now ready for the steps outlined in the first section.

Step 1.
As we mentioned in the introduction, the first step in the proof is
defining a “contour” in such a way that

P(0 ¢ Cj ) < P(contour exists).

Start by extending the Poisson processes defined in the beginning of
Section 2 to all of R in the time direction (they were originally restricted
to [0, )). Thus the random variables Sy(x) and T,(x) are now indexed
by n € Z. This allows us to define E(t; s, A) for all real s < t. It is clear
from the homogeneity in time that

(16) P(x ¢ B(t; 0, Z2)) = P(x ¢ &(0; -t, 22

IS

= Plthere is a vacancy path from (&, -t) up to ({x}, 0))
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where now the last event is increasing in t. Introducing some obvious
notation for the union of all these events (over t > 0) we have

(A7) P(x ¢ El) = P(thereisa vacancy path from (&, -e) up to ({x}, 0)).

Let m(t), t < 0, be a vacancy path from (&, - ) up to ({x}, 0). We
have found that negative times are a nuisance, so at this point it will be
convenient for us to reverse time. (This is a small dilemma faced by all
who work with graphically defined dual processes) Let o(t) be the right
continuous modification of m(-t), t > 0. With each possible o we will
associate a contour which starts at ({(0, 0)}, 0), traces around the outside
of the set ¥ = {(x, t): x € o(t)), and returns to ({(0, 0)}, 0). (Note that X is
necessarily bounded since mni(t) = & for large negative values of t)

In describing a contour of length n, we will use

(i) a code consisting of an alternating sequence aj, by, 82, -.-, 8n, bay
an+1 of letters ap, taken from the two element set {u, d} (standing
for up and down) and numbers b, € {1, 2, 3, . . };

(ii) a sequence of nonnegative numbers tiy1<i<n+1, t; being the
amount of time we travel in the direction a;.

The contour for a given path is constructed according to the rules given
below. The numbers in the definition are the ones we will use to code the
types of turns made by the contour. Keep in mind that "up” and "down"
refer to directions associated with the "upside down" (time-reversed)
path . In particular, the contour will start out by moving up from the
point ((0, 0), 0).

Rules for constructing a contour: Starting at the point ((0, 0),
0) and moving upward, the contour moves according to the following
rules until it returns to the point ((0, 0), 0): If the contour is at (x, t)
and moving up, then it continues upward until the first time u > t which
is in one of the two sets D, = {S,(x), n € Z) (the deaths at x) or L=
{Tx(x), n € Z} (the births at x). If u € L,, then by definition the path o
must either already contain x + ey or x + ey, or it must expand to
include one of those two sites. In either case, o(u) contains either x + eq
or x + e (or both). ;

(Rule 1) lfuel, andif x + e; € o(u), then the contour Jumps to
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X + @4 and then continues upward;

(Rule 2) If u € Ly and if x + eq ¢ o(u), then the contour jumps to
X + ez and continues upward.

If, on the other hand, u € Dy, then by definition, x ¢ a(u). Thus
(Rule 3) If u € Dy, the contour stays at x and starts to move down.

Now suppose the contour is at (x, t) and starting to move downward.
If x = (0, 0) then it continues downward until it reaches ((0, 0), 0), and
the construction is then ended. Now suppose x = (0, 0). Then according
to a procedure which we will describe at the end of this section, we
choose a site y from the set {x - e4, x - eg} and a time s < t, such that y
¢ o(s”). The choice will be made in such a way that if s ¢ t, then s € Dy,.
Accepting for now that this is possible, the contour moves downward
from the point (x, t) to the point (x, s) and then jumps to y. There are
four possibilities.

(Rule 4) f s<tandy = x-eq,or (Rule 5) s<tandy = x - e, the
contour starts to move downward after the jump.

(Rule 6) f s=tandy =x-eq,or (Rule7) s=tandy = x - ep, then
the contour moves upward after the jump.

Notice that in the last two rules, the movement downward from (x, t) to
(x, s) has distance 0, since s = t. This is why we use the phrase “starts to
move downward" in rules 3 - 5. We will have more to say about this
when we define the code for the contour.

In order to complete the construction of the contour, we need to
discuss the procedure for choosing the site y and the time s in rules 4 - 7.
We had originally thought that it would be sufficient to choose s = sup {s
< t: 3y € {x - eq, x - ezlna(s7)}, and then to choose y arbitrarily from
the set (x - e, x - eg}Na(s™). Using this procedure we arrive at the
contour shown in Figure 2 (remember that we have reversed time, so
that up and down are reversed from the way they were in Figure 1).
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8 o
bt - $= [ - ;

(reversed)f‘_.--"'"" A

The coding sequence is:
uluilu2u2u3éu3d47u3dsd
(see text below for explanation of combined numbers such as 36 and 47)
Figure 2

Unfortunately there are certain exceptional situations in which such a
simple method gets the contour into a loop and the construction never
ends (see Figure 3, which is a meodification of Figure 2). To avoid this
problem, the choice of s and y must be made more carefully.
Fortunately, the details of how this choice is made have nothing to do
with the rest of the proof. Therefore, we will merely state here the facts
concerning the existence of an acceptable procedure and leave the
technicalities to the end of the section. It turns out that this more
complicated procedure leads to the same contour as the simple method
described above in many cases. In particular this is true of the example
in Figure 2, and the reader should not feel uncomfortable in using this
example as an illustration of the ideas in the main part of the proof of

Theorem 1.
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The coding sequence is ululu2u2(u37u3d5d46u2u2uiul)*

Figure 3

Proposition 1. In the construction of the contour, rules 4 through
7, there exists a procedure for choosing the site y from the set {x - e4, x
- ez} and a time s < t such that y € o(s”) and such that s € D, if s < t.
This choice has the property that the contour never passes over a point
in space-time more than once in a given direction.

Having constructed the contour, we are ready to define the code
used in its description. Looking back through the rules above, we see
that in the sequence of alternating letters and numbers which codes the
turns made by the contour, there are only seven possible values for any
triple of the form (ag, bk, ak+1), with the code letters representing a
direction, followed by a rule number, followed by another direction:

ulu d4d
u2u d5d
uld d6u
d7u.

For future calculations, it will be useful to remove any letter "d™ which
corresponds to a downward segment of length 0 in the contour (see rules
6 and 7). Thus we remove any “d” which precedes either a "6” or a "7".
Once this is done, combine any "6" or “7" with the number before it in
the sequence to form a two-digit number. This produces an alternating
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sequence of letters and numbers in which the possible values of a triple
(ax, bk, ak+1) are:

ulu d4d u36u u3Z7u
u2u d5d d 46 u d 47 u
uld d 56 u a 57 u..

The resulting sequence of alternating letters and numbers is the code for
our contour. As described earlier, the contour is completely determined
by this code together with the sequence of (strictly positive) distances t;
travelled by the contour in the direction ay.

Remark. Before we move on to the next step, it may be helpful to
the reader to see what our contour would look like for the one-sided
contact process on Z. This process is built from the same ingredients as
the model we are working on (ie., independent Poisson processes {Sp(x)}
and {T,(x)} for each x € Z with rates 1 and respectively), but now the
points Ty (x) are interpreted as “there will be a birth at x at time T(x) if
at time Tp(x)™ x + 1 is occupied and x is vacant (see Griffeath (1979) for
more explanation and a survey of what was known then about this
process).

We now imitate the contour construction given above in this new
context. The contour starts at the point x = 0, t = 0, and moves
according to the following rules until it returns to its starting point:

If the contour is at (x, t) and moving upward, then it continues
upward until the first time u > t which is in Dy or Ly, where these two
sets are defined as before. (Rule 1) If u € L,, then it must be that x + 1
€ o(u). The contours jumps to x + 1 and continues upward. (Rule 2) If
u € Dy, then the contour stays at x and (starts to) move downward. If
the contour is at (x, t) and moving downward, then it continues
downward until the first time s < t at which x - 1 is in a(s”). (Rule 3)
If s < t, the contour jumps to x - 1 and continues to move down. (Rule
4) If s = t, then the contour Jumps to x - 1 and moves upward. As
before, if the contour is at x = (0, 0) and moving down, then it continues
down until it reaches time 0 and then ends. The example drawn in
Figure 4 should explain the definitions. Those readers that have seen
contour methods before will note that our new contours are in this case
Just shrunken versions of the ones found in Gray and Griffeath (1 982).
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The coding sequence is: ulululuiu24u2d34uilu2d3d3d
Figure 4

Step 2.
Let w be a realization of the system of Poisson processes that

underlie our model, and assume that ® is such that there exists a
vacancy path from (&, -e) up to ((0, 0), 0). Let

N(w) = the length of the corresponding contour = number of turns
A(w) = (ag, by, a2, .. ., by, aN+1) = the corresponding coding
sequence, with N = N(w)
T(w) = (t1, tz, . . ., ty) = the lengths of the time segments
travelled by the contour; in particular, t; is the
length of the segment covered by the contour which
is associated with the direction a;.

In the definition of T we left out the last time segment ty,4 since its
length can be determined from the others: if we set €; = 1 if a; = u and
g = -1 if a; = d, then ety = 0 if the summation is taken fromi = 1 to

N + 1. We are now ready for

The Basic Estimate. Let A be a coding sequence of length N and
let A be any Borel subset of RN. Define pa(A) = P(A(w) = A, T(w) € A).
Then Wy is absolutely continuous with respect to N-dimensional Lebesgue

measure VN and
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dp N, +N
(18) A, 2exp(—2’ti(?\+1))

where Ny= [{i: by = j}, j = 1, 2, and U = {i: a; = u).
Proof. The result is easy to explain but tedious to prove. To see
why (18) is true we observe that

if bjisin_ the turn is due to
{1,2) birth at x

{3, 36, 37} death at x

{4, 46, 47} death at x - eq
{5, b6, 57} death at x - ep

and if we are going up then we are forced to move or change direction if
we encounter a birth or a death.

The first task in proving (18) is to check that the contour cannot
make two different turns that are both associated with the same Poisson
point. We will use the fact (Proposition 1) that the contour never
traverses the same segment twice travelling in the same direction. Since
the contour only makes turns involving births when it is travelling
upward, we do not need to worry about using the same birth twice.
Similarly, since the contour always starts to travel down after making a
turn involving a death, our assumption also rules out using the same
death twice.

The argument in the preceding paragraph shows that each turn in
the contour is associated with a unique point. Therefore, the coding
which describes a contour of length n determines the locations of n
distinct Poisson points. This fact accounts for the absolute continuity
with respect to Lebesgue measure and for the factor AN1*N2 in (18). The
exponential term follows from the fact that, according to the rules that
define the contour, no Poisson points can be located within any of the
segments along which the contour travels in an upward direction. For
more details, we refer to Gray and Griffeath (1982), Lemma 8, where a
similar estimate is proved. O

We are at last ready for the (trivial) observation which makes the
proof of Theorem 1 work:

(19) there exists € > 0 such that Ng+ N3 < (1 - €)N.
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It is clear that in our attempts to control the estimate in (18), the type 1
and type 2 turns are our enemies, while the other types are our friends.
The statement in (19) is just what we need to ensure that our friends
are more powerful than our enemies (see Step 3 below).

To prove (19), we use the simple fact that if the contour exists, it
begins and ends at the same point. Since each type of turn is associated
with a jump of a specific size and direction , this fact leads to the some
equations involving the N; 's. We tabulate the jumps associated with
each type of turn in the next table:

Type of turn Jump made by contour
uiu (1, 0)
u2u (0, 1)
u3d (0, 0)
d4d (-1, 0)
dod (0, -1)
u3bu (-1, 0)
u37u (0, -1)
d46u (-2, 0)
d47u (-1, -1)
d56u (-1, -1)
db57u (0, -2)
Table 4
Then
Ny - Ng-Nzg - 2Nge -~ Ng7 -Ngg =0
N2 - Ng - N37 - Ng7 - Ngg - 2Ng7 = 0.

It follows that
N1 + Nz = N4 + Ng + N3g + N37 + 2(Ngg + Ng7 + N5g + N57) ,

and since EZN; = N it follows that (19) holds with € = 1/3. We can
improve this slightly by noting that each turn of type 3 reverses the
direction of the contour from up to down, while turns of types 46, 47, 56
or 57 reverse the direction of the contour from down to up. Since the
contour starts in the upward direction and ends downward, it follows
that
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N3 = Ngg + Ng7 + Ngg + Ng7 + 1,
implying that

N1+N2‘|'1=Z N;
123

Therefore (19) holds with € = 1/2:
(20) Ny +Np < N/2.

Step 3.

The last step in the proof is to integrate the basic estimate and sum
over all possible coding sequences A. We define D(A) to be the domain of
Integration associated with A. In other words, D(A) is the subset of RN
consisiting of all sequences of lengths (g, .. ., tn) which are possible for a
contour with coding sequence A. Then

(21) P(A(w) = A) = (RN

N1+N2
A J dtlo . dtN exp ( —% (A+1) ti) .
D(a) e

1A

Let V = {1,..., N} \ U and observe that since we have left out tN+1

(22) 2 t; 2t
ieU ieV

v

Let k = |Ul. Now we make a change of variables: change t;,i € V, to vy, .
-» VN-k; changet;,i€ U\ {max U}, touy,..., ug-q;andlet r = ugt ..
-+ ug  Then by the definition of r and (22), the domain of integration of
the following multiple integral contains D(A):

(23)

I dr exp (-r(1 + 2)) J dui- .o duk_1 l dvl- .o dVN-k :
0 Iy sr Ivisr
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It follows that the quantity in (23) is an upper bound for the right side of
(21). Using elementary calculus, the reader can check that the multiple
integral in (23) equals

a+NEV Y
which is bounded above by 2N71 (1 + A)™N, 50 we have shown that if A>1,

(24) P(A(w) = A) oN-1 \Ny+N2 (1 4+ )N

IA

IA

2N-1 3N/2 (1 + )N (since Ng + N3 < N)

1/2 b()N

where b(A) = 2 A1/2(1 + A)™L. The last detail is to compute a bound on
the number of different possible codings of length N. Since there are 11
different types of turns, a trivial bound is 11N If we multiply the right
side of (24) by 11N and sum on N, we obtain a bound on the probability
that a contour of any length exists, and hence by (17) a bound on P(x ¢
5& ). Since b(A) = 0 as A = e, Theorem 1 follows. O

The estimates made at the end of the proof show that A > A; if b(}) is
small enough that £ (11b(A\))N ¢ 2. This leads to an upper bound on A,
somewhere between 4000 and 5000. We can improve this by using two
standard tricks. The first is to note that it is not the series £ (11b(A\)N
itself which is so important, but instead its tail. The reason is that in
order to prove that the distribution g 01. is non-trivial, it is sufficient to
prove that P( &2 contains no site in {(0,0), (-1,0)...,(-M+1,0)}) <1
for some M. If this event occurs, then a contour of length at least M
exists (it will start at (0, 0) and end at (-M + 1, 0), a difference which
does not affect the estimate), so the probability is bounded by summing
(11 b(\))N over N > M. It follows that A Ac if b(}) < 1/11, or in other
words, Aq < 482.

The second improvement involves the quantity 11N 1t is easy to see
that many of the coding sequences that we have counted are impossible
since certain types of turns cannot follow certain other types of turns.
For example, a type 4 turn, which ends with the contour heading down
can only be followed by types 4, 5, 46, 56, 47, or 57 turns, which are the
only ones that follow a downward direction. If we group the types of
turns according to the associated directions,
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ulu u3d d4d d46u
u2u dbd d56u
u3éu d47u
u37u d57u

we see from standard graph theory ideas that the number of coding
sequences of length N that respect these restrictions is equal to the sum
of the entries of the matrix
N
4 1
b

which is bounded by a constant times (the largest eigenvalue)N. The
largest eigenvalue is 3 + /5 . Therefore, we can replace 11 by 3 + /5,
leading to our final bound

Ac ¢ 108.

Proof of Proposition 1. The construction will be in two stages.
First we will define a temporary procedure for choosing the site y that
ensures that the contour will have a finite length. This procedure will
sometimes result in a contour that visits the same point more than once
while travelling in the same direction, but it will avoid infinite loops. The
second stage will be to simply cut out repeated portions of the temporary
contour. This last modification will produce the desired contour and
determine the procedure for choosing the site y and the time s in rules 4
=7

We will now give the temporary method for choosing the site y and
the time s in rules 4 - 7. Assume that the contour has been formed up
until it has reached a site x = (0, 0) at time t and that from there it has
started to move downward, as in rules 3 - 5. Assume further that
somewhere in the part of the contour that has already been formed,
there has been a jump from one of the sites x - e; or x - e3 to the site x.
Let (y, s’) be the point in space-time from which such a jump most
recently took place in the formation of the contour. (The expression
"most recently” does not have reference to the time parameter in the
dual process, but instead to motion along the contour as it is
constructed.) Nowlets =t A min{u?s:uce Dy}, and let the contour
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move downward from (x, t) to (x, s) and then jump to (y, s). If s = t,
then the contour moves upward from (y, s) as in rules 6 and 7,
otherwise the contour starts to move downward from (y, s). It can be
easily checked inductively that if this procedure is always followed, the
contour will only visit sites x such that either x = (0, 0), or x was
previously jumped to from one of the sites x - eq or x - e2. Thus the
procedure can be applied throughout the construction and determines
our temporary choice of the site y and the time s. Qur temporary
contour is now well-defined in a manner that is consistent with the
rules. It has the property that in rules 4 - 7, if s < t, then s € Dy.

It remains to modify the temporary contour to avoid visiting the
same point twice while travelling in the same direction. Before we can
do this, we will need to know that s' < s in the construction given in the
preceding paragraph. Suppose that the contour has been constructed up
to the point (x, t) where it starts to move downward, and assume
inductively that the procedure for choosing the site y and the time s in
rules 4 - 7 has satisifed the condition that s’ < s in all previous parts of
the contour where downward motion was involved (it is not necessary to
our argument that any such previous parts exist, so this is a case where
the inductive step and the initial step in the induction can be handled
together). The contour consists of three types of components: the first
type of component is an upward segment at some site z, ending in a
Jump to z + eq or z + ep; the second type of component is an upward
segment which ends when the contour reverses direction and starts
downward, and the third type of component is a downward segment at a
site of the form z + e4 or z + ej, followed by a jump to z. By the
inductive hypothesis, any components of the third type must end at a
time which is upwards (larger than) the time at which a previous
component of the first type ended. Consequently the journey made by
the contour between (y, s’) and (x, t) has resulted in a net upward
movement in the time direction, so that t > s". It follows thats 2 s'.

We will now show that the temporary contour, as defined above,
can never get into an infinite loop. First note that it follows from the
construction that if the contour jumps from a sitey toasitex = y + e
or y + @ at the time point s', then the next time the contour visits y, it
will do so by jumping from (x, s) to (y, s) at some time s; as shown in the
preceding paragraph, s 2 s". After this last jump, the contour will move
upward. If the next jump is another jump to one of the sites y + e or y
+ e , then of course, this will occur at some time s® > s 2 s'. It can be
deduced from this fact that an infinite loop is impossible, since such a
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loop would have at least one site (for example, the one closest to the
origin) where this behavior would be violated. The reader is invited at
this point to try out the temporary procedure on the situations shown in
Figures 2 and 3.

The last step is to remove some parts of the temporary contour so
that the same point will not be visited twice while travelling in the same
direction. Let (x, t) be such a point in the temporary contour. Consider
the first and last visits made by the contour to (x, t), both travelling in
the same direction. If the piece of the contour that runs between those
two visits is removed, we are left with a new contour which still
conforms to the rules, but which now visits (x, t) only once in the given
direction. It is not hard to see that such a procedure can be carried out
in a systematic way to obtain a new contour which visits each point
only once while travelling in a given direction. Since it is only important
that we obtain some contour which follows the rules and which satisifies
the conclusions of Proposition 1, we will not spend any time choosing a
specific method. The construction is now complete. O
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§ 3. Proof of Theorem 2. In this section we will prove Theorem
2. Before we can begin, we need to augment the construction in Section
2 to allow for spontaneous births. For each x ¢ 72 we let Up(x), n21, be a
Poisson process with density p, independent of the processes S,,(x) and
Tn(x). There is now a third rule in the description of the process,
corresponding to spontaneous births at rate p:

(7) we mark the points By = {(x,U,(x): n21} with p's (for birth) and
interpret the p as telling us that there will be a birth at x if x is vacant.

Thus there are now two different ways in which births occur: (7)
describes births that only occur when certain neighboring sites are
occupied, and (7°) describes births that occur without any conditions on
the neighboring sites. It is clear from the remarks in Section 2 that we
can use this new graphical representation to define a process E(t; s, A),
t2s, for each starting set A C Z2 and each starting time s. This process
satisfies &(s; s, A) = A and evolves according to rules (6), (7) and (7).

Now that we have constructed the process, we can define its 1's dual
% 1(s; t, {2}) by the recipe given in Section 2. This gives us the following:

(25) P(z € E(t; 0, &) = P(Z e x1(0; t, {z))

P(there is a path from (&, 0) up to ({2}, t)).

Step 1.

As in Section 3, it will be convenient for us to turn the picture
upside down (reverse time) when we define the contour. Thus, as before,
we extend our graphical construction to t < 0 and note that

(26) P(z € E(t; 0, &)) = P(z € E(0; -t, &)

= P(there is a path from (&, -t) up to ({2}, 0)).

and

(27) P(z € 5,2) = P(there is a path from (&, -es) up to ({2} ,0)).

S

Let n(t), t<0, be a path from (&, -<) up to ({2}, 0), and let o(t) be
the right continuous modification of m(-t), t20. Again we will define the
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contour by specifying

(i) an alternating sequence aj, by, a3, . . ., by, an+q of letters ay, € {u, d}
and numbers b, .

(i) a sequence of nonnegative numbers t;, 1 < i < n+1, where t; is the
amount of time we travel in direction ay.

This time the contour is described by the following four rules: if the
contour is at (z, t) and moving upward, then it continues upward until
the first time u = t at which x ¢ o, and

(Rule 1) if u ¢ By, then we know that u € L, (since deaths are never
part of the path of a 1's dual), and hence both x + e; and x + e3 € o(u).
The contour jumps to x + eq and continues to go up.

(Rule 2) If on the other hand u € By , then the contour stays at x and
starts to go down.

Important Remark. It will be convenient for us to allow paths
which may ignore several points in B, before reaching a time u at
which x ¢ o(u). This actually viclates our minimality condition (12) for
paths. However, there are two places in the remainder of this paper in
which we will want to include some paths which ignore one or more of
the points marked with p's. Thus we will be counting some contours that
travel around non-minimal paths m in our computations. This increases
our upper bounds for the probability that a contour exists, so these
bounds remain valid. We will alert the reader to the two places in which
this remark is used when the time comes.

If the contour is at ((0,0), t) and moving downward, then it continues
downward until it reaches time 0 and then ends. If the contour is at a
site x = (0,0) and moving downward, then it continues downward until
the first time s < t at which the contour jumped from either x - eq or x
- ez , and

(Rule 3) if the jump was from (x-eq,s) € Ly - ey (Rule 1), the
contour jumps first to x - eq and then to x - e4 + e and then moves
upward.
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(Rule 4) If instead, the jump was from (x - @3, s) € Ly - e, (Rule 3),
the contour Jumps to x - ep and then continues downward.

Note the lack of symmetry between rules 3 and 4. The example shown
in Figure 5 should help explain all the rules given above. From the
picture it should be clear that the contour cannot traverse the same
segment twice going in the same direction, so we won't need to make any
modifications such as were needed in Section 3.

Kevy to Poisson 2
points: 2 2 dl—ju e
¢ 4 3 d a
B I b ﬁ d u
4 3 d =
i

F2
Al
N u
¥

\
(4]
(=

[
A4

The coding sequence is:
ulululu2d3u2d4d3uiuiu2d3du2d4d3u2d4d3u2d4d4d

Figure 5

Looking back through the rules we see that the only possible values
for the triple ay, b;, aj44 are

ulu

u2d

d3u

d4d
and that, in contrast to the contour defined in Section 3, all the a
movements have positive length. That's the good news. The bad news,
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which we will encounter in Step 2, is that two different turns may
possibly correspond to the same Poisson point (see Rules 3 and 4). This is
inconvenient but not fatal (something similar happened in the contour
arguments for oriented percolation in Durrett (1984)).

Step 2.

Let w be a realization of the Poisson point locations and define N(w),
A(w), T(w) and pp as in Section 3. Because of the fact that more than
one turn in the contour can be associated with the same Poisson point,
this measure is not absolutely continuous with respect to N-dimensional
Lebesgue measure. To cope with this, we need some notation. Let

g = 1 ifaj=u
pa b if a3 = d;

[}

§ = Zei t; = the time corresponding to the end of the ith
j:

vertical movement.
J(w) = {j: for some i< j, s; = s;).
If j € J, then the turn aj, b;, aj41 corresponds to a Poisson point the
contour visited previously (we are relying on the fact that except on a
null set, no two Poisson points occur at exactly the same time). Let

Ha,J (A) = P(A(w) = A, J(w) = J, T(w) € A},

where T(w) € RN"M is the vector obtained by listing the t;,i € (1, ..., N}
\ J in order. With this notation introduced, we can state

The Basic Estimate. If M = N - |J| then pp j (A) is absolutely
continuous with respect to v (i.e, M-dimension Lebesgue measure), and

(27)
du N, M-N
5
d”M icU

where Nj = |{j: by = i}l and U is the set of indices of upward segments.



37

Proof. To prove this we only need to observe that when

b= this is due to a
1 Aat x
2 patx
3 Aatx-eq
4 Aat x - ey

and that (i) if we want the contour to have a given sequence of lengths,
then the Poisson points corresponding to the t; for i ¢ J must occur at
specified times, (ii) {j: bj = 2} N J = &, since we can only hit p's once, and
(iii) there must be no 8's at x along any of the upward segments. The
reader should not have much difficulty in matching up these
observations with the various terms that appear on the right of (27). o

Having proved the Basic Estimate we come at last to the trivial
observation which makes the proof work:

(28) N2 > N/4 and M- Ny < 3N/4.

To prove this fact we begin by observing that according to the list of
possible values of aj, by, aj+1 given earlier, the only possible transitions by
— bj+1 are given by the graph drawn in Figure 6.

Start 5> 1 o — 5, 2

>l

End {—40——-__}03

Figure 6
As we have indicated in the drawing, except for the short contour with
coding u2d, all contours always begin with by = 1 and end with by = 4.
We see immediately that (i) starting from 1 we must visit 2 before 3, (ii)
between any two visits to 2 there must be exactly one visit to 3, and (iii)
after the last visit to 2, there can be no more visits to 3. These three
observations imply that i

(29) Ny = N3 +1.
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Now we list the vectors associated with each kind of Jjump made by
a contour:

Type of turn Jump made by contour
uiu (1, 0)
u2d (0, 0)
d3u (-1, 1)
d4d (0, -1)
Table 5

Since any contour which exists must begin and end at the same point, it
follows that Ny = Nz and N3 = N4, so

Nz2-1=Nj=Nz=Ng.
It is now easy to deduce (28). O

Step 3.
The last step in the proof is again to integrate the Basic Estimate and

sum over A and J. The details are almost the same as in Section 3, but
some minor changes occur because the Basic Estimate has a slightly
different form. If we let D(A, J) = the domain of integration associated
with coding A and “excluded set” J then (27) implies

(30) P(A(w) = A, J(w) = J) = pp g (RNY

N2 M"Nz
<SP A I dt 1...dtM exp(-%ti)
D(A, J) i€

If we let V be the indices corresponding to downward segments, then
since we have left out some of the downward segments (the set J only
includes indices corresponding to downward segments) , we have

Zt 2 ;t
icUi ie-J1

Let k = |[Ul. Now we make the following changes of variables: change t, i
€U ,touy,...,u changet;,ie V\J, tovy,...,VM-k,and letr =
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uq +...+ uk. Then the integral in (30) is less than

(31)
(! dr exp(-r) ] du1 - ] cluk_1 1(511: <) I dv1 - J dVM-k 1(2": <v)

which by calculations similar to those in Section 3 is

< 2M-1
At this point we have shown
(32) P(A(w) = A, J(w) = J) < pNz \M-N2 pM-1

and we know that N2 2 N/4 and M - Np < 3N/4. If we substitute these
bounds and sum over all J C {1, 2, ..., N}, we can use the facts that p <
1 and that

> M(N) - 5V

M=0
to convert (32) to
(33) P(Alw) = A) < pN/4(av1)3N/43N
Now recall that in the coding of A, each number can only be
followed by two possible numbers, so |Cyl = 2N-1 with N ranging over
the possible values 1, 3, 5, .. .. Thus when we sum (33) over all A we

have

(34) P(contour exists)

&
- N
. ; 2N 1 gNM ()\vl)SNM 3
=1

= (6 pM40v1)34) /7 2 (1 - 6 p140\v1)374

provided that 6 ﬂlm(lv:l)y 4¢1. As p—0, the right side of (34) goes to 0



like a constant times p.“ 4 and Theorem 2 is proved. O
We now want to obtain the estimate in Corollary 1. For this we

need an estimate on the probability that there exists a contour with
total upward travel time 2 T for values of T > 0. Let

L(w) = z t, = total upward travel time.
ieU

If we restrict the integration in (31) to values of r 2 T, we get

(35) P(A(w) = A, J(w) =J,L{w) 2T)

N, M-N, ¢ M-1
$p . X I dr exp(-r ) r' '
T (k-1)! (M-k)!

Again using elementary calculus and simple estimates as in Section 3,
the reader can check that for ¥ > 0 such that

l dr exp(-r) rM < exp(-b"[')l dr exp(-(1-¥)r) rM >
T 0

< exp(-¥T) M! / (1-9)
Substituting this estimate into (35) gives
(36) P(A(w) = A, J(w) = J, L(w) 2 T)

< exp(-¥T) pN2 \M-N2 oM-1 , (4 _ )M

As in the end of the proof of Theorem 2, we can sum over J and A, this
time using the fact that

M
2" (N 2 N 3-y.N
5} R R DR
] (M) 1-¥ 1-¥

to obtain
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(37) P(there exists a contour with L(w) 2 T) < exp(-¥T) a / 2(1-a) ,

provided that a = p}/4 (Av1)3/4 (6 - 29) /(1 - ¥) < 1. This last
condition can always be fulfilled by choosing ¥ > 0 sufficiently small if
6pl/4av1)3/4 ¢ 1.

To get from (37) to the Corollary, we first note that since our
current graphical representation is an augmentation of the one used in
Section 3, we can still use it to construct the process without
spontaneous births (simply ignore the points labelled with p's). Let X! be
the 1's dual of the process without spontaneous births, and let X 1P be
the 1's dual of the process with spontaneous births at rate p. If we fix A
> Ag, then the event

A={x-t;0,(z) = & forall t 2 0)

has positive probability, since
P(A) = P(z ¢ ai)mtorxnc.

We also define two more events. Fix T » 0, and define
B = {no contour exists with length L(w) 2 T}
C = {no contour exists with length L(w) < T}.

These two events refer to the contour constructed in this section in
terms of the 1's dual X1:® . All three events are in the same probability
space determined by the graphical representation of this section. By
(37), P(B) = 1 as T — <o, so it is legitimate to assume that T is large
enough so that P(ANB) > 0. We claim that for such T,

(38) P(ANBNC) > 0.

Before proving (38), let us first see how Corollary 1 follows. On BNC, z ¢
E(0; -t, &) for all t > O for the process with spontaneous births at rate p.
On A, z € E(0; -t, Z2) for all t 2 O for the process without spontaneous
births, so the same statement holds true a fortiori for the process with
spontaneous births at rate p. Therefore, by letting t — e, we can
conclude that
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P(z € E}P) - Pz € EOP) > P(ANBNO).

Corollary 1 follows from this and (38).

To prove (38), we will need to first condition on the locations of all
the A's and &'s. Let § be the o-algebra determined by these locations.
Note that A € §, since we do not need to know the locations of the p's in
order to determine whether or not A occurs. Further note that once we
condition on §, the indicators of the events B and C become decreasing
functions of the points associated with the p's in the sense that adding p
points never increases the values of these functions. This is the sense
needed to apply a slightly generalized form of Harris' (1960) correlation
inequality (which was the forerunner of the well-known FKG inequality).
That inequality implies that B and C are positively correlated,
conditioned on 4, so we have

(39)  P(ANBNC| Q) = 14 P(BNC| Q) > 14 P(B| Q) P(C| Q) as.

(This is the first place in which we use the fact, mentioned in the
“Important Remark” towards the beginning of this section, that contours
are allowed which travel around non-minimal paths. The indicator of B
would not be a decreasing function of the p points if we restricted our
attention to minimal paths.)

We claim that the quantity P(C | §) which appears on the right side
of (39) is strictly positive a.s. This claim relies on the fact that for almost
all realizations of the locations of the A's and the §'s, there exists a
bounded region of the space-time graph such that C occurs if this region
does not contain any points labelled with a p. (The proof of this last fact
is very similar to the proof given in Section 2 that the state of the
process E(t; s, A) at a site z can be determined for almost all w by looking
at a bounded region of space-time). Since the locations of the p's are
Poisson distributed, independently of §, our claim follows.

Thus the expected value of the right side of (39) is strictly positive iff
E(AAP(BI19))>0. But E(14 P(B| @) ) = P(ANB) since A ¢ §, so (38)
follows from the fact that T has been chosen to make P(ANB) > 0. O
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§ 5. Proof of Theorem 3. In this section we will outline the proof
of Theorem 3. The details are very similar to those of Section 4, so we
will only cover the main points.

First, we must once again augment the graphical construction to
allow for the new types of births. For each x € Z?, let A, be a collection
of points which is Poisson distributed with parameter a ("ot” for asexual
reproduction), with the usual independence assumptions, and add the
following rule to the description of the process:

(7") we mark the points in A, with a's and interpret the o as telling us
that there will be a birth at x if x is vacant and at least one of the
neighbors x + e; or x + ep is occupied.

As before, this rule, together with our previous rules (6), (7) and (7,
allow us to define the process E(t; s, A) and its two dual processes ¥ 1s; ¢,
B) and %X (s; t, B). Note that we are still allowing spontaneous births at
rate p. This will be convenient for us in the proof of Theorem 3. The
process in Example 3 is obtained by setting p = 0.

As in Section 4, we will be looking at contours which travel around
paths (not necessarily minimal -- recall the “Important Remark” from
Section 4) of the I's dual % 1. With the length of the contour L(w) defined
as before, we will show that

(37)if A 21, o < 1/144), and p < o>, then there are constants C and ¥ in
(0, o) such that for all T 2 0,

P(there exists a contour of length L(w) 2 T) < C exp( -¥T ).

(Throughout this section, we will use a numbering system for displayed
statements that parallels as much as possible the numbers used in
Section 4. We hope this will help the reader to make comparisons. In
some cases, it will lead to numberings which are out of sequence))

Let us first see how Theorem 3 follows from (37°). Consider a sort of
hybrid process with starting time tg < 0 and initial state &, in which we
only allow spontaneous births to occur at times t < 0 and then set p = 0
for times t > 0. Thus, if we restrict our attention to times t > 0, we
simply have the process in Example 3, with an initial state at time t = 0
which is determined by what happened in the hybrid process at negative
times. Since we are allowing spontaneous births at negative times, the
state at time 0 dominates product measure with density p for some p »
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0. It is not hard to see that as tg — -, we can allow p to go to p/(p+1).
Now consider the state of the hybrid process at time T > 0. We can
define its 1's dual in the usual way. If a site x is occupied at time T, then
there must be a path from (%, s) to ({x}, T) for some time s < 0 (there
cannot be such a path for s 2 0 since spontaneous births are not allowed
at non-negative times). The contour around such a path must have
length L(w) 2 T. Since any such path will also be a (not necessarily
minimal path) for the process in which we allow spontaneous births at
all times, it follows from (37') that if o , p and A satisfy the stated
conditions, P(x € EF ) < C exp( -¥t), for all x. Theorem 3 follows. O

To prove (37°), we use the by now familiar three-step procedure. As
stated earlier, we will economize on space and only indicate the
modifications needed to make the argument of Section 4 suit the current
situation.

Step 1.

The addition of the points marked with o's leads to four new types of
turns in the contour. Recall that if the contour is at x and moving
upward, it continues until the first time u such that x ¢ o(u). It may
now happen that u € A,. In this case,

(Rule 5) if x + e4 € o(u), the contour jumps to x + e; and continues
going upward; otherwise (Rule 6) if x + e; ¢ o(u), then the contour
jumps to x + ez and continues upward.

If the contour is at x and moving downward, as before it moves
downward to a time s at which a jump was made by the contour to x
from either x - eq or x - e3. This birth may possibly be due to the new
kind of Poisson points, so we have the following new rules:

(Rule 7) if the jump was due to rule 4, so that (x - e ,s) € A, _ ey
then the contour jumps to x - e1 and continues downward; otherwise
(Rule 8) if the jump was due torule 5, so that (x - e3 ,s) € A, - ey
then the contour jumps to x - e2 and continues downward.

The reader should try modifying the example in Figure 5 by changing
- some of the A's to a's. It is again easily checked that the contour cannot
traverse the same segment twice while going in the same direction.

If we look at rules 1-4 in Section 4 and rules 5-8 above, we see that
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the only possible values for the triples a;, b;, aj+1 in the coding sequence
are

ulu u2d d3u d4d
ubu d7d
ubu dsd

The contour can start with a 1, 5, or 6, and each number can have
exactly four followers, so the number of codings of length N is bounded
by 3.4N-1,

Step 2.
Using the notation introduced in the last section we can state the

new

Basic Estimate:

(27)
d N, Ngg M-(Np + Ngg)
ﬂd < pzasa'.\ s 2, -exp(-zti)
de ieU

where Ngg = | {j: bj € {5, 6, 7, 8}, j £ J}|. The proof of the Basic Estimate
is the same as in Section 4 and is left to the reader.

The form of the estimate above shows that we need to control the
number of 1's, 3's and 4's. As in Section 4, we can argue that

(290 Np=Nz+1.

(Use Figure 6 again, but this time, the point labelled with a "1" should be
labelled with "1, 5 or 6°, and the point labelled "4" should be labelled "4, 7,
or 8") This equation gives us control over Nz.

To control Ngy and N4, we will use the “conservation equations” which
express the fact that the contour must begin and end at the same point.
Consider the following table, analogous to Table 5 of the last section:



Type of turn Jump made by contour

ulu (1, 0)
u2d (0, 0)
d3u (~1.1)
d4d (0,-1)
ubu (1,0)

ubu (0,1)

d7d (-1,0)
d8d (0,-1)

Table 5

We see from the table above that

Ny -Nz+Ng-N7 = 0 and Nz-Ng+Ng-Ng = 0.
Substituting in (29), we get

Ny +Ng = Np+Ny -1 and Ng+Ng = Np+Ng-1.
Combining all these equations yields
(28) M - (Nz + Ngg) < Ny + N3 + Nyg
< Nq + Nz + Ng + Ng + Ng
s 3N + Ng + Ny
(28") N =Nq +...+Ng< 4Ny + 2Ng + 2N7.
We also have the observation that
(28"™) Ngg 2 Ng + N7.
which follows from the fact that (i) turns of type 6 always involve
Poisson points that have not been previously visited; (i) turns of type 7

either involve Poisson points that have not been previously visited, or
ones that were first visited during a turn of type 5.
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Step 3.
Computations similar to those in Section 4 show that when we
integrate the Basic Estimate we get

(32) P(A(w) = A, J(w) = J)

Nz Ny M-(N; + Ngg) -1
S [ S § 2

If we assume that 1/a 2 X 2 1, it follows from (28') - (28™) that the right
side of (32') is bounded above by

N; Ng+N; 3N;+Ng+N; M-1
p o A 2

Now we sum over J as in Section 4 and use (28™) and the hypothesis
that psa3:

(33) P(A(w) = A)

3N Ng+N; 3N;+Ng+N; N N/2 _N
< o o A 3 < (o) & TS

Now recall that there are at most 3.4N-1 codings of length N. Thus if we
sum (33') over N, we obtain

(34) P(contour exists) < 3 (12/aA)/4(1- 12/ ),

provided 12/ax ¢ 1, ie. o ¢ 1/144).

Getting from here to the exponential estimate (37°) is analogous to
getting from the proof of Theorem 2 to the exponential estimate in
Corollary 1. The relevant inequalities are found in (35) - (37). The
details are left to the reader. O
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