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Temporal profiles of avalanches on networks
James P. Gleeson 1 & Rick Durrett2

An avalanche or cascade occurs when one event causes one or more subsequent events,

which in turn may cause further events in a chain reaction. Avalanching dynamics are studied

in many disciplines, with a recent focus on average avalanche shapes, i.e., the temporal

profiles of avalanches of fixed duration. At the critical point of the dynamics, the rescaled

average avalanche shapes for different durations collapse onto a single universal curve.

We apply Markov branching process theory to derive an equation governing the average

avalanche shape for cascade dynamics on networks. Analysis of the equation at criticality

demonstrates that nonsymmetric average avalanche shapes (as observed in some

experiments) occur for certain combinations of dynamics and network topology. We give

examples using numerical simulations of models for information spreading, neural dynamics,

and behavior adoption and we propose simple experimental tests to quantify whether

cascading systems are in the critical state.
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The dynamics of avalanches or cascades are studied in many
disciplines. Examples include the spreading of disease (or
information) from human to human1, 2, avalanches of

neuron firings in the brain3, and the “crackling noise” exhibited
by earthquakes and magnetic materials4. Of particular interest are
cases with dynamics poised at a critical point, where universal
scalings of avalanches are observed. The most commonly studied
feature of such systems is the distribution of avalanche sizes,
which has a power-law scaling at the critical point. The
observation of heavy-tailed distributions of avalanche sizes has
therefore been used to indicate whether a system is critical.
However, power-law distributions can also arise from mechan-
isms other than criticality5, 6, so recently attention has focussed
more upon the temporal aspects of avalanches, which also exhibit
universal characteristics at criticality.

The average avalanche shape is determined by averaging the
temporal profiles of all avalanches that have a fixed duration T. At
criticality, the average avalanche shape is a universal function of
the rescaled time t/T, meaning that the average avalanche shapes
for different durations can be rescaled to collapse onto a single
curve4. This feature has recently been used as a sensitive test for
criticality in a range of dynamics, from the Barkhausen effect in
ferromagnetic materials7 to neural avalanches3, 8 and electro-
encephalography recordings from hypoxic neonatal cortex9.
While average avalanche shapes are typically symmetric (e.g.,
parabolic) functions of time, nonsymmetric (left-skewed)
avalanche shapes have also been observed in experiments.
For example, early observations of nonsymmetric avalanche
shapes in experiments on Barkhausen noise4 raised doubts about
whether the theoretical model used in refs. 10, 11 was in the
correct universality class. Although this discrepancy between
theory and experiment was later resolved by a more detailed
theory for avalanche propagation12, 13, several instances of non-
symmetric avalanche shapes (e.g., the neural avalanches in ref. 3)
still lack explanation. Despite some progress in modeling
avalanche profiles using random walks9, 14 and self-organized
criticality models15–18, the factors that cause nonsymmetric
average avalanche shapes remain poorly understood.

The characteristics of avalanches that occur on networks
depend on both the network connectivity and the node-to-node
dynamics of the cascade19. Cascading models have been applied,
for example, to power-grid blackouts20, epidemic outbreaks21,
and to the propagation of memes (pieces of digital information)
through online social networks22, 23. The distribution of ava-
lanche sizes at criticality is known to depend non-trivially on the
degree distribution of the underlying network24, but the time
dependence of cascades has not been studied from this
perspective.

In this paper, we focus on the temporal profile of cascades, i.e.,
the average avalanche shape, and how it is affected by the network
degree distribution. Using a mathematical derivation of the
average avalanche shape for Markovian dynamics (in both critical
and noncritical cases), we demonstrate that—as in other
universality-breaking examples25—networks with heavy-tailed
degree distributions can give rise to qualitatively different
results from those found on networks with finite-variance
degrees. However, the dynamics of the avalanching process are
also important: we show that in fact it is the interaction between
the dynamics and the network topology that determines whether
average avalanche shapes are symmetric or not.

Results
Average avalanche shapes. To define the average avalanche
shape, we consider the set ST of all avalanches that are of duration
T (meaning that the avalanche has terminated at a time T after its

first event, with no further events occurring at any time t> T).
Each avalanche a in the set ST is described by a function Va(t),
which is the number of events that occur at time t in that
avalanche (so Va(t)= 0 for t> T). The avalanche shape for the
duration T is defined as the average of the functions Va(t), taken
over all the avalanches a in set ST, see Fig. 1.

Dynamics and networks. We consider networks that are
defined by their degree distributions, but are otherwise maximally
random (“configuration-model” networks26). For undirected
networks, the degree distribution pk is the probability that a
randomly chosen node has degree (number of neighbors) equal to
k. For directed networks, the joint degree distribution pjk is the
probability that a random node has in-degree j and out-degree k.
We denote the mean degree by z (so z ¼ P

k kpk for undirected
networks and z ¼ P

j;k kpjk ¼
P

j;k jpjk for directed networks).
Such configuration-model networks are locally tree-like, which
facilitates the use of the branching process approximations that
we employ. We assume that the networks consist of a single
connected component (a strongly connected component in the
case of a directed network26) and that they are large enough to
permit us to use infinite-size approximations.

Our focus is on discrete-state dynamics, where each node of the
network can be in one of a set of discrete states at each moment in
time; transitions between states may occur continuously in time,
or only at discrete-time steps. Cascades occur when nodes
successively switch to one specific state, which we will call the
“active” state; we will generically refer to all other states as
“inactive.” Once a node is activated (i.e., once it transitions to the
active state), it affects its neighboring nodes by increasing the
probability that they will also become activated at a later time. We
focus on unidirectional dynamics, meaning that in the case where
a node activates some of its neighboring nodes and then
subsequently becomes inactive, the neighboring nodes cannot
directly reactivate it. One important class of such dynamics
includes cases where an activated node cannot subsequently
return to the inactive state, and so cannot be reactivated (this
class is called “monotonic dynamics” in ref. 27). Another class
takes place on tree-like-directed networks, which have negligible
numbers of loops, so that activation of node i can affect its out-
neighbors, but there exists no path for the out-neighbors to
subsequently affect the state of node i (even if node i returns to
the inactive state). Each cascade is assumed to be initiated by a
randomly chosen single node, called the “seed” node, which is
activated at the beginning of the process while all other nodes are
inactive; subsequent to the activation of the seed node, the
cascade of activation of nodes proceeds according to the rules of
the model under consideration.

Va (t )Va (t )

T

a b

t T t

Fig. 1 Examples of average avalanche shapes. In each panel, the black
curves show five examples of individual avalanches that all have duration
T. The average avalanche shape for the duration T (red curve) is found by
averaging the temporal profiles of all such avalanches. Typically, the
average avalanche shape is symmetric (e.g., parabolic) as in a, but
nonsymmetric avalanche shapes like b have also been observed (e.g., Fig.
S4 of ref. 3)
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One example of such dynamics is given by threshold models.
In a threshold model, each node i of an undirected network
possesses a positive threshold Ri that is assigned randomly from a
distribution. When an inactive node i of degree ki is chosen for
updating it considers the number mi of its neighbors who are
active, and makes a decision according to the rules of the specific
model. In the Watts threshold model28, for example, node i
becomes active if the fraction mi/ki is greater than, or equal to, the
node’s threshold Ri, i.e., the node activates if the fraction of its
neighbors who are active is sufficently large, otherwise the node
remains inactive. An alternative type of threshold model is that of
Centola and Macy29, wherein node i activates if the total number
of active neighbors (rather than the fraction of such neighbors) is
large enough: mi≥ Ri (see also the discussion of threshold models
and their relation to coordination games in ref. 27).

Cascades also occur in the neuronal dynamics model of ref. 3,
where each node in a weighted, directed network represents a
neuron. The weight ϕij on the edge connecting node i to node
j is chosen at random from a uniform distribution on the interval
(0, ϕmax), where ϕmax is a tunable parameter30, 31. (In ref. 3 the
values of ϕij are instead inferred from experiments on neural
networks). Using the same model parameters as ref. 3, the
neurons are modeled by binary-state elements as a very
simple approximation of integrate-and-fire dynamics: whenever
neuron i fires (becomes active), it causes neuron j to become
active (in the next discrete-time step) with probability ϕij. After a
neuron fires, it is returned to the inactive state in the next time
step. In ref. 3, exogenous input noise is added to the system to
ensure continuous neural activity. Since we focus purely on the
avalanche dynamics, we instead randomly select a node to be the
seed node of the cascade and activate it in the first time step, and
record the ensuing avalanche of activations.

A final example of cascade dynamics is given by the model of
ref. 32 for meme propagation on a directed social network (like
Twitter). In this model, each node (of N) in a directed network
represents a user of the social network. The out-degree ki of a
node i is the number of its “followers” in the network: these are
the users that receive the “tweets” (or distinct pieces of digital
information, generically called “memes”) sent by node i. Each
user also retains a memory of the last meme received from the
nodes it follows via a “screen” that is overwritten when a new
meme is received. (More realistic models that incorporate longer
memory are described in refs. 33, 34). In each time step (with Δt=
1/N), one node is chosen at random and with probability μ the
node “innovates” by creating a new meme, placing it on its screen,
and tweeting this meme to all its followers (where the new meme
overwrites any existing memes on their screens). Alternatively
(with probability 1 − μ), the chosen node “retweets” the meme
that is currently on its screen. A newly innovated meme can
therefore experience an avalanche of popularity as it is retweeted
multiple times before it eventually is forgotten by all users in the
network, at which time the avalanche terminates. The analyses of
refs. 32 and 34 show that the avalanche dynamics of the memes
are critical in the limit μ→ 0 and subcritical for μ> 0.

Other examples of unidirectional dynamics to which our
results apply include the zero-temperature random-field Ising
model4 and susceptible-infected-recovered disease-spread models
with fixed recovery times21, such as the independent cascade
model for information diffusion35.

The offspring distribution. The central quantity in our
branching process analysis is called the offspring distribution,
denoted by qk (k= 0, 1, 2,…). Roughly speaking, this distribution
gives the likelihood that if a cascade of activation reaches a node
(i.e., if one of the node’s neighbors becomes active), that the node

will activate and expose k other neighboring nodes to potential
activation (see Supplementary Note 1 for details of the branching
process approximation). For an undirected network, the offspring
distribution qk can usefully be expressed in terms of a simple
degree-dependent quantity q̂k that is defined as:

q̂ðundirÞk ¼ kþ 1
z

pkþ1vkþ1; ð1Þ

noting that the probability of reaching a node of degree k + 1 by
traveling along a random edge is kþ1

z pkþ1, and if this edge spreads
the activation to the node it has k remaining inactive neighbors.
The quantity vk is the probability that a node i of degree k is
vulnerable28, meaning that the activation of a single neighboring
node (at time t1) will lead to the activation of node i at some time
t> t1, assuming that no other neighbor of node i becomes active
by time t. Note that the sum r ¼ P1

k¼0 q̂k � 1 is the probability
that a node reached by traveling along a random edge is vul-
nerable. The relationship between q̂k and the offspring distribu-
tion qk is given by Eq. (5) below, but our main qualitative results
depend only upon the large-k scaling of q̂k (see Supplementary
Note 1).

For a directed network, the definition of q̂k is

q̂ dirð Þ
k ¼

X
j

j
z
pjkvjk; ð2Þ

where the factor j
z pjk represents the probability of reaching a node

of in-degree j and out-degree k by traveling along a random edge
of the network. The vulnerability vjk is the probability that
the activation of a single in-neighbor (at time t1) of a node i
(of in-degree j and out-degree k) will lead to the activation of
node i at some time t> t1, assuming no other in-neighbor of node
i becomes active by time t. The probability r is defined as for the
undirected case, and the relationship between q̂k and the offspring
distribution is again given by Eq. (5) below.

The branching number defines whether the dynamical process
on a given network is subcritical, critical, or supercritical. The
branching number is the mean of the offspring distribution, i.e.,
the expected number of “children” per “parent”, and it can be
expressed as:

ξ ¼
X
k

kqk ¼
X
k

kq̂k; ð3Þ

see Supplementary Note 1. The value ξ= 1 is the critical value,
separating the subcritical case (ξ< 1) from the supercritical case
(ξ> 1). In the critical case, power-law distributions of avalanche
sizes are observed32, 34 but in this paper we, focus on the temporal
profiles of the avalanches.

Average avalanche shape. The detailed derivation of our results
from the theory of Markov branching processes is given in
Supplementary Note 2. For models with continuous-time
updating, a particularly simple result is found: the average
avalanche shape A(t) for avalanches of duration T can be
expressed as:

AðtÞ ¼ QðT � tÞ f 0 QðTÞð Þ � f 0 QðT � tÞð Þ½ �
f QðT � tÞð Þ � QðT � tÞ ; ð4Þ

where f(s) is the generating function for the offspring distribution,

f ðsÞ ¼
X
k

qks
k ¼ 1

r

X
k

q̂k 1� r þ rsð Þk ð5Þ

and Q(t) is the fraction of avalanches that are extinct by time t,
which is given by the solution of the ordinary differential
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equation

dQ
dt

¼ f ðQÞ � Q; withQð0Þ ¼ 0: ð6Þ

Thus, the average avalanche shape for a given offspring
distribution qk and duration T can be calculated by solving only
one ordinary differential equation, Eq. (6), and then using the
solution function Q(t) in the explicit formula of Eq. (4). We also
show (in Supplementary Note 5) that the average avalanche shape
for discrete-time updating can be found in a similar fashion, but
the resulting expression is less amenable to analysis than the
continuous-time case. However, qualitatively similar results
are found for both continuous-time and discrete-time updating
(see Supplementary Fig. 2), so we focus mainly on the solution
given by Eqs. (4) and (6).

In Fig. 2, we show the avalanche shapes that are given by
Eq. (4) in the case where the offspring distribution qk is a Poisson
distribution with mean ξ. In the critical case (ξ= 1), we see from

Fig. 2a, b that a rescaling of time and of avalanche height causes
the avalanche shapes for different durations to collapse onto a
single symmetric curve: this scaling collapse (although not the
shape of the curve) is predicted by the universality arguments of
ref. 4. Note that a case where Eq. (6) is exactly solvable (binary
fission) is examined in Supplementary Note 3 and is shown to
give symmetric avalanche shapes, which are parabolic at the
critical point. For subcritical (ξ< 1) avalanches, the profiles are
symmetric but non-parabolic (Fig. 2c) and do not collapse onto a
universal curve (Fig. 2d). For supercritical (ξ> 1) avalanches
(where we only consider those avalanches which terminate at a
finite time T: a non-zero fraction of avalanches also exist that
never terminate), very similar symmetric shapes are observed to
the subcritical case (Fig. 2e, f).

Next, we consider the case where the offspring distribution has
a power-law tail:

qk � Ck�γ as k ! 1; ð7Þ

20a b

c d

e f

1.2

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

T = 20
T = 40
T = 80

T = 20
T = 40
T = 80

T = 20
T = 40
T = 80

T = 20
T = 40
T = 80

T = 20
T = 40
T = 80

T = 20
T = 40
T = 80

15

10

A
vg

. a
va

la
nc

he
 s

ha
pe

S
ca

le
d 

av
g.

 a
va

la
nc

he
 s

ha
pe

S
ca

le
d 

av
g.

 a
va

la
nc

he
 s

ha
pe

S
ca

le
d 

av
g.

 a
va

la
nc

he
 s

ha
pe

5

0

3.5

3

2.5

1.5

0.5

2

A
vg

. a
va

la
nc

he
 s

ha
pe

A
vg

. a
va

la
nc

he
 s

ha
pe

1

0

0

1

2

3

4

0 20 40
t t /T

60 80

0 20 40
t

60 80

0 20 40
t

60 80

0 0.2 0.4 0.6 0.8 1

t /T
0 0.2 0.4 0.6 0.8 1

t /T
0 0.2 0.4 0.6 0.8 1
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with exponent γ in the range 2< γ< 3, so that the second
moment of the offspring distribution is infinite. (Here, and
throughout the paper, we use C to denote a constant prefactor in
an asymptotic scaling relation). Such cases are of practical interest
because scale-free degree distributions are well known25, 26, 36 to
strongly affect dynamics on networks, and (as we discuss below) a
scale-free degree distribution can, for certain dynamics, lead to
offspring distributions such as Eq. (7). Note that the second
moment of the offspring distribution is related to the second
derivative of the generating function of Eq. (5) evaluated at s= 1,
so this case corresponds to f ′′(1)=∞.

Using offspring distributions of the form (7) in Eqs. (4) and (6)
gives the avalanche shapes shown in Fig. 3. Clearly, the avalanche
shapes—both critical and noncritical cases—are nonsymmetric,
with a leftward skew. (This contrasts with the right-skewed
avalanche shapes found from random-walk models with long
memory14). A detailed asymptotic analysis of the governing
equation (Supplementary Note 6) enables us to conclude that, in
the critical case as T→∞ (and T − t→∞), the average avalanche

shape scales as:

A tð Þ �
C t

T T � tð Þ if 00 f ð1Þ is finite;
C t

T T � tð Þ 1
γ�2 if qk / k�γ as k ! 1;with 2<γ<3;

(

ð8Þ
where the constant prefactor C is independent of T. Note that
parabolic avalanche shapes (with peak at t= T/2) are seen in the
large T limit whenever the offspring distribution qk has
finite second moment, but the shape is nonsymmetric (with peak
at t= (γ − 2)T/(γ − 1)< T/2) for power-law distributions with γ
between 2 and 3.

True power-law tails are never seen in real networks, due to
finite-size effects. If the offspring distribution instead has a
truncated power-law form, with an exponential cutoff for k � κ:

qk � C k�γe�
k
κ as k ! 1; ð9Þ

and with 2< γ< 3, then the avalanche shapes for all durations T
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do not collapse onto a single curve, even at criticality. As the
asymptotic analysis of Supplementary Note 6 reveals, the shape
for large T is determined by the survival function 1 −Q(t): this is
the fraction of avalanches that remain alive at a time t after they
begin. For the offspring distribution of Eq. (9), the survival
function 1 −Q(t) scales as t�

1
γ�2 for early times, but as t−1 for later

times; the crossover from one regime to the other is determined
by the exponential cutoff κ in the offspring distribution (see
Fig. 4a). Therefore, it is possible to observe nonsymmetric shapes
for avalanches with relatively short durations T, but the longer-
duration avalanches (the T→∞ limit) revert to the parabolic
shape typical of offspring distributions with finite second
moment, see Fig. 4b.

Other characteristic temporal shapes. The Markov branching
process approach that we use to derive the average avalanche
shape in Eq. (4) can also be applied to calculate other temporal
characteristics of avalanches. In Supplementary Note 2, for
example, we derive a formula for the variance of the avalanche
shape (i.e., the variance of the set of functions {Va(t)|a ∈ ST}, see
“Methods” section). The overall shape of the standard deviation is
found to be similar to the average avalanche shape: The asymp-
totic result for the critical case (in the limit T→∞ and T − t →
∞, see Supplementary Note 6) is that the coefficient of variation
at time t for avalanches of duration T is

CVðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance

p

AðtÞ �
1ffiffi
2

p if f 00ð1Þ is finite;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�γþðγ�2Þ tT

ðγ�1Þ tT

q
if qk / k�γ as k ! 1;with 2<γ<3:

8<
:

ð10Þ

Note that the coefficient of variation is constant (independent of t
and T) for the case where parabolic avalanche shapes occur, so
the standard deviation also has a parabolic profile. However, in
the power-law case with γ< 3, the shape of the standard deviation
is even more skewed than that of the average avalanche shape
profile: the coefficient of variation limits to a constant as t→ T,
but it diverges like 1=

ffiffi
t

p
as t→ 0.

The universality of the average avalanche shape has been used
in analyzing experimental data; specifically, the collapse of shapes
for avalanches of different durations can help identify whether the
dynamics is critical or not3, 4, 7, 9. However, one drawback of the
average avalanche shape is that it requires an accurate assessment
of the time T at which each avalanche terminates. Pinpointing
such termination times can be difficult in empirical data,
especially for avalanches of information on social networks,

many of which exhibit very long lifespans34, 37, 38. Another
characteristic temporal shape that we can calculate analytically is
the average shape of all avalanches that have not terminated by a
given observation time T: such a characteristic may prove easier
to calculate for empirical data than the standard avalanche shape.
In Supplementary Note 4, we show that the average non-
terminating avalanche shapes at various observation times T
collapse onto a single curve when the dynamics are critical. The
universal curve is again found to have a parabolic form (but with
peak at t= T) if f″(1) is finite, and to have a skewed (non-
parabolic) shape if the offspring distribution is power-law.
Moreover, the calculation of the average non-terminating
avalanche shape requires less data than that of the average
avalanche shape (see Supplementary Note 7), which may make it
a useful diagnostic tool in experimental studies.

As we demonstrate with our numerical simulations below, an
even simpler temporal profile can provide a very sensitive
measure of whether an avalanching system is critical or not. The
average number of events observed at a time t after an avalanche
begins is given by the average of Va(t) over the entire set of
avalanches, regardless of the duration of the avalanche. (Note
avalanches that terminated at a time T with T< t contribute zero
to the measure at time t). In Supplementary Note 4, we show that
the average number of such events at time t is an exponentially
decaying function of t if the dynamics is subcritical, an
exponentially growing function of t for supercritical dynamics,
and is a constant (independent of t) for the critical case. This
temporal characteristic is particularly useful in understanding the
numerical simulation results below, and it can equally well be
applied to experimental data.

Numerical simulations. In this section we report on numerical
simulations of unidirectional dynamics on networks, to assess the
applicability of the branching process theory developed above.
We run numerical simulations of example dynamics on synthetic
(configuration-model) and real-world networks, recording aver-
age avalanche shapes (and other temporal characteristics) for
comparison with our theory. The branching process paradigm is
only an approximation for dynamics on networks, as its
assumptions are invalidated by the existence of loops in the
network and by the finite size of the networks26. We demonstrate
that while such features indeed impact upon the agreement with
theoretical results, the main qualitative feature of critical
dynamics that we have identified—the appearance of nonsym-
metric avalanches shapes when the offspring distributions defined
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by Eq. (1) or (2) have sufficiently heavy tails—is indeed obser-
vable in numerical simulations of cascade dynamics on networks.

Figure 5 shows results from simulations of the continuous-time
(Markovian) meme propagation model of ref. 32. Memes are
tweeted from user to user according to the rules of the model;
the popularity of each meme is tracked in the simulations, and the
number of events in the avalanche profile of a meme is the
number of times it is tweeted within a time interval. We record
the average avalanche shape determined by all memes whose
avalanches terminate at time T (using a bin of duration 0.5, so
T = 9, e.g., includes all avalanches that terminate at times in the
range (8.5, 9)). Two network structures are compared (see
“Methods” section): the panels in the left column of Fig. 5a, c, e
present results for a network with scale-free out-degree distribu-
tion pk ∝ k−α with α= 2.5, while the panels in the right column
(Fig. 5b, d, f) are for a network where every node has exactly z=
10 followers (note the mean degree of the two networks are
approximately equal). In both cases, the in-degree distribution is

Poisson, and in-degrees and out-degrees of nodes are indepen-
dent. We set the innovation parameter μ to zero, so we expect the
dynamics to be critical (from Eqs. (2), (3), and (13)).

According to our theory, the rescaled average avalanche shape
curves for different (and sufficiently large) avalanche durations
T should collapse onto a single curve. We see good agreement
with this prediction in Fig. 5a: note the distinctively nonsym-
metric shape of the collapsed curve. Although the average
avalanche shapes for the z-regular out-degree network in Fig. 5b
are not fully converged by T= 9, they are evidently approaching
the parabolic profile expected for the case where the offspring
distribution has finite second moment. Figure 5c, d contrast the
average non-terminating avalanche shapes that are found on the
two networks. On the power-law network, the shape is clearly
non-parabolic (Fig. 5c), while the match to the asymptotic
expression found in Supplementary Note 6 is very good for the
case of finite f ′′(1) (Fig. 5d). On both types of network, the error
bars (see “Methods” section for definition) are smaller than in
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Fig. 5a, b, reflecting the fact that the set of avalanches that have
not terminated by time T is typically much larger than the set of
avalanches that terminate exactly at T, so the average shape is
better estimated using the larger data set. Figure 5e, f shows the
average number of events (tweets) per unit time. The criticality of
the process on both networks is reflected in the fact that this
measure remains constant over time.

Figure 6 shows results obtained from simulations of the
neuronal dynamics model of ref. 3, where the parameter ϕmax is
tuned so as to poise the dynamics near to criticality. As in Fig. 5,
the left column of results is for a network with power-law
out-degree distribution of exponent α= 2.5, while those in the
right column are for a z-regular out-degree network. All
neurons are synchronously updated in each discrete-time step
and we record the number of activated neurons at each step
as the “events” of the avalanche; the avalanche terminates when
no new neurons are activated. Although the details of this
discrete-time case differ from the continuous-time case of Fig. 5,
the results again qualitatively agree with theory. As expected (see
“Methods” section), we see nonsymmetric average avalanche

shapes and non-parabolic average non-terminating avalanche
shapes in Fig. 5a, c, while the corresponding results on the finite
second moment network (Fig. 5b, d) agree closely with the
parabolic asymptotic shapes of Eq. (8) and Supplementary
Note 6.

In Fig. 7, we consider threshold dynamics on an undirected
network. Specifically, we show results for a Centola–Macy
threshold model, with a uniform distribution of thresholds on
the interval (0, θmax), where the parameter θmax is tuned to place
the dynamics close to criticality. The updating is synchronous,
i.e., all nodes are updated at each discrete-time step, and the
number of avalanche events at each time step is the number of
nodes that are newly activated. For the Centola–Macy dynamics,
we expect (see “Methods” section) nonsymmetric average
avalanche profiles when the power-law exponent α of the
network degree distribution lies between 3 and 4; note we use
α= 3.3 in the left column of Fig. 7. It is noteworthy that the
network degree distribution has finite variance in this case: it is
the interaction between the network topology and the
Centola–Macy dynamics that leads to nonsymmetric avalanche
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shapes. (In contrast, for the Watts threshold model with
uniformly distributed thresholds, nonsymmetric profiles appear
only for networks with degree exponents α in the range 2< α< 3,
i.e., for degree distributions with infinite variance).

In this case, we can clearly see one of the limitations of the
branching process approximation: the seed node for each cascade
is chosen uniformly at random from all the nodes, but
subsequently activated nodes in the cascade are reached with a
probability proportional to their degree, as in Eq. (1). Therefore,
the branching process picture does not correctly capture the first
step of the cascade and this discrepancy can be seen in the early
time shape of the avalanches, particularly in Fig. 7a, b. The theory
could be extended to deal with this issue (as in ref. 39 for
example), but the effects on the average profiles diminish as
longer-duration avalanches are considered.

A more serious limitation of the theory’s accuracy is presented
by Fig. 7e, where we see the deviation of the average number of
events away from the constant value that indicates critical
dynamics. In fact, the finite size of the network and the heavy-

tailed degree distribution mean that the activated nodes are
quickly (within about 10 time steps) replacing inactive nodes
throughout a significant fraction of the network, so that some of
the “new branches” emanating from an activated node are in fact
connected to previously activated nodes, contrary to the
branching process assumption of independence. As a result, the
spreading efficiency decreases over time, and the branching
process—despite initially being at criticality—becomes subcritical.
Nevertheless, as Fig. 7a shows, the average avalanche shapes still
collapse quite well, and clearly are nonsymmetric; the average
shape of non-terminating avalanches (in Fig. 7c) is a more
sensitive indicator of the loss of criticality due to the finite size of
the network.

All networks used in the simulations above were configuration-
model networks. However, real-world networks are known to
differ significantly from configuration-model networks with the
same degree distribution26. For example, degree–degree correla-
tions and closed triangles of nodes (“clustering”) are common in
many social networks, but are relatively rare in the corresponding
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configuration-model networks. In our final example, we therefore
use the sample of the Twitter network that is made available for
download by the authors of ref. 40. Unlike a configuration-model-
directed network, this data set contains a high proportion of
reciprocated links (i.e., instances where node i follows node j and
node j also follows node i); in fact, 48% of all links in the network
are reciprocated. This feature means that the network is not tree-
like, and the branching process assumptions are not strictly true.
Nevertheless, Fig. 8 shows that results from numerical simula-
tions of the critical meme propagation model of ref. 32 are in very
good qualitative agreement with the predictions of our theory:
a good collapse of the average avalanche shapes for different
durations T is found (Fig. 8a), with a clear left skew that is
consistent with the heavy-tailed distribution of number of
Twitter followers found in empirical data34, 41. By randomly
rewiring the original network42, we confirm that the left skew

is due to the degree distribution of the network, and not to
any meso- or macro-scopic structure of the network, see
Supplementary Note 8. As in other examples, where tree-based
theory is more accurate than expected on real-world networks43,
this result demonstrates that the predictions of the theory are
quite robust to violations of the assumptions used in
the mathematical derivation.

Another important assumption of the mathematical derivation
is the Markovian nature of the dynamics. In Supplementary
Note 9, we generalize the meme propagation model to include
non-Markovian dynamics39, 44, so that the inter-event times
between successive tweets of a user need not be exponentially
distributed. Although we are limited to simulation results in this
case, the qualitative predictions of the Markovian theory
presented here again appear to be robust even to quite strongly
non-Markovian dynamics.
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Discussion
In this paper we have examined the link between Markov
branching processes and unidirectional cascade dynamics on
networks, with a focus on the temporal profile of avalanches. Our
main result is Eq. (4), which gives the average avalanche shape for
avalanches (both critical and noncritical) of duration T, and
requires only the solution of a single ordinary differential equa-
tion (Eq. 6). The input to this equation is the offspring dis-
tribution of the branching process, which is determined from the
network structure and the dynamical system of interest by Eq. (1)
or (2). In our analysis of the avalanche shape given by Eq. (4), we
have demonstrated that nonsymmetric avalanche shapes can arise
at criticality when the offspring distribution has a power-law tail.
Using numerical simulations of threshold models, neuronal
dynamics, and online information-sharing, we show that
nonsymmetric shapes can occur for common models running on
networks with power-law degree distributions. However, it is
important to note that a heavy-tailed degree distribution is not
sufficient to guarantee nonsymmetric avalanche shapes: It is
the interplay between the cascade dynamics and the network
topology (as can be seen from the formulas in Eqs. (17) and (20)
for the exponent of the offspring distribution) that determines the
symmetry of the average avalanche shape. The results of
numerical simulations verify the qualitative predictions of the
branching process theory, despite finite-size effects and other
violations of the assumptions of the theory. Further simulation
studies (Supplementary Note 9) indicate that the qualitative
results remain valid even for non-Markovian dynamics, although
further theoretical investigation is clearly required to verify the
regimes of validity.

In addition, our theoretical approach enables us to identify
other characteristic temporal shape functions (e.g., the average
non-terminating avalanche shape, see Supplementary Note 4)
that may prove useful when experimentalists seek to identify
critical behavior from the temporal signatures in a data set with a
limited number of avalanche time series. Given the relevance of
branching process descriptions to cascades in a range of fields
(e.g., neuroscience45, social networks34, crackling noise4, etc.), it
is hoped that these insights may find many applications.
We anticipate several possible directions for extensions of the
methodology introduced here; notably, removing the Markovian
assumption to apply a similar analysis for non-Markovian
cascades34, 39, and extending the theory to multilayer
networks46, 47.

Methods
Vulnerabilities. Here we give examples of how the vulnerabilities vk and vjk are
calculated for the models introduced in the main text. Inserting these vk and vjk
functions into Eqs. (1) and (2), respectively, defines the offspring distribution for
each of the models.

The vulnerability vk for a threshold model on an undirected network is the
probability that a node i, of degree k, activates when exactly one of its neighbors is
active, i.e., when mi= 1. According to the rules of the Watts threshold model, for
example, node i will become active if its threshold Ri is less than, or equal to, 1/k,
which is the fraction of its neighbors that are active when mi= 1. The probability
that the node’s threshold is less than this value is given by:

v Wattsð Þ
k ¼ F

1
k

� �
; ð11Þ

where F is the cumulative distribution function of the thresholds. In the
Centola–Macy threshold mode, a node with one active neighbor will activate if its
threshold is less than or equal to 1, and so the vulnerability in this case is

v C�Mð Þ
k ¼ F 1ð Þ: ð12Þ

In the neuronal dynamics model of ref. 3, a node is vulnerable if it becomes
active when one of its in-neighbors fires. According to the rules of the model, this
occurs with a probability that depends on the edge between the two nodes, but is
chosen from a uniform distribution on (0, ϕmax), independently of the degrees of

the nodes. The probability that a random node with in- and out-degrees j and k is
vulnerable is therefore the average of this uniform distribution, i.e., vjk= ϕmax/2.

In the model of ref. 32 for meme propagation on a directed social network, we
focus on a chosen meme and assume that this meme has been tweeted by an in-
neighbor of node i (i.e., by one of the j users followed by user i). The probability
that node i will subsequently retweet this meme (before user i's memory is
overwritten by other tweets it receives from the j users it follows) is given, for
j � 1, by:

vjk � 1� μ

j
; ð13Þ

where μ is the innovation probability and k is the number of followers of node i, see
Sec. IVA of ref. 34.

Power-law offspring distributions from network dynamics. In Supplementary
Note 6, we show that nonsymmetric average avalanche shapes occur within
Markovian branching processes when the offspring distribution qk has a power-law
tail with exponent γ between 2 and 3. Here we examine how such offspring dis-
tributions might arise from unidirectional dynamics on undirected and directed
networks, using the relationships given by Eqs. (1) and (2).

In the case of an undirected network, we suppose that the vulnerability vk
depends on the node degree k as:

vk � C k�ν as k ! 1: ð14Þ

Then, if the degree distribution of the network has a power-law tail:

pk � C k�α as k ! 1; ð15Þ

the large-k asymptotics of q̂k (and hence of the offspring distribution qk, see
Supplementary Note 1) are given by Eq. (1) as:

qk � C k1�α�ν ð16Þ

and so we write

γðundirÞ ¼ �1þ αþ ν ð17Þ

for the power-law exponent of the offspring distribution. Note that in general, the
value of γ will be different from the power-law exponent α of the network’s degree
distribution.

The case of a directed network is complicated by the existence of the joint
distribution pjk of in-degree j and out-degree k. If we assume the simplest case of
nodes having independent in- and out-degree, then the joint distribution factorizes:
pjk ¼ pinj pk , and the large-k behavior of the vulnerability can be specified by the
weighted sum over in-degrees as:X

j

j
z
pinj vjk � C k�ν : ð18Þ

Assuming a power-law out-degree distribution, as in Eqs. (2) and (15) and the
equivalence of the power-law exponents of qk and q̂k yields

qk � C k�α�ν as k ! 1; ð19Þ

so that the power-law exponent of the offspring distribution is

γðdirÞ ¼ αþ ν: ð20Þ

Details of numerical simulations. Each of Figs. 5–7 consists of two columns of
panels. The left-hand column (i.e., Figs. 5a, c, e and 7a, c, e) show results for a
network with a power-law degree (or out-degree) distribution pk ∝ k−α for k≥ kmin

(with pk= 0 for k< kmin). The right-hand column (Figs. 5b, d, f and 7b, d, f) are for
random regular networks, where every node has the same (out-)degree z. In each
experiment, nA individual avalanches are simulated to calculate the average ava-
lanche shape and other measures (see Supplementary Note 7 for a study of how the
value of nA impacts upon the results shown). For each avalanche, the seed node is
changed and the order of node updates (for Figs. 5 and 8) or the dynamical
parameters (the edge weights ϕij for Fig. 6 or the node thresholds Ri for Fig. 7) are
randomized. In order to quantify the robustness of the results, the complete
experiment that results in the average avalanche shape is repeated a total of nR
times and the error bars in the figures denote the standard deviation of the
measures over the set of replica experiments.

Figure 5 shows results for the meme propagation model of ref. 32 at criticality
(the innovation parameter μ is zero), using nA= 106 avalanches and nR= 12
replicas, on networks with N= 105 nodes. The directed network with power-law
out-degree distribution (Fig. 5a, c, e) has exponent α= 2.5 and minimum out-
degree of kmin= 4, giving a mean degree of z= 10.6. The panels in the right column
are for a directed network where every node has exactly k= 10 followers. In each
case, the followers are chosen uniformly at random from the set of all nodes, so in-
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degrees and out-degrees are independent. Using the vulnerability from Eq. (13) in
Eq. (18) gives a ν value of 0 for this model, so Eq. (20) predicts nonsymmetric
avalanche shapes for values of α, the tail exponent of the network’s out-degree
distribution, between 2 and 3; note we use α= 2.5 in the left column of Fig. 5.

The neuronal dynamics model of ref. 3 is used for the simulations of Fig. 6, with
the parameter ϕmax set to its critical value of 2/z. Here the vulnerability vjk= ϕmax/2
is independent of node degree k, and so ν= 0 in Eq. (18), giving γ= α= 2.5 from
Eq. (20) for the power-law network. We use nA= 107 avalanches and nR= 24
replicas, on the same directed networks as used in Fig. 5.

Figure 7 is for the Centola–Macy threshold model with thresholds uniformly
distributed between 0 and θmax ¼ k2 � kh i=z. Using nA= 106 avalanches and nR=
24 replicas, we run simulations on scale-free undirected networks with α= 3.3,
kmin= 2, z= 2.9, and N= 106 (left column panels) and on random z-regular graphs
with z= 3 and N = 105 (right column panels). The vulnerability vk of Eq. (12) is a
constant in this case, so ν= 0 in Eq. (14). As a result, Eq. (17) gives γ= −1 + α as
the exponent of the offspring distribution, and so nonsymmetric avalanche shapes
are expected for power-law networks with exponent α between 3 and 4 (as in the
left column of Fig. 7). However, note that if we instead consider the Watts
threshold model with uniformly distributed thresholds, Eq. (11) gives ν= 1, hence
γ= α, meaning that nonsymmetric avalanche shapes occur only for networks with
degree exponents α in the range 2< α< 3. The differing conditions for the two
threshold models provide a good example of how the node-to-node dynamics and
the network topology interact in a nontrivial fashion to generate nonsymmetric
average avalanche shapes.

The green dashed lines of Fig. 7e, f show the expected number of “children”
events triggered by a seed node that is chosen uniformly at random (not with
probability proportional to its degree, as in Eq. (1)). The seed node has an average
of z neighbors, each of which activates with probability F(1)= 1/θmax, giving an
expected number of events (after the seeding event at t= 0) equal to z2= k2 � kh i.

In Fig. 8, we use the same meme propagation model as in Fig. 5 (with μ= 0),
running nA= 1.4 × 106 avalanches in nR= 6 replicas. The network substrate is the
sampled Twitter network of ref.40, which has mean degree z= 21.75 and N=
81,306 nodes.

Code availability. Matlab/Octave simulation codes for the examples used in this
paper are available from http://www.ul.ie/gleesonj/avalanches.

Data availability. Network data for the examples used in this paper are available
from http://www.ul.ie/gleesonj/avalanches. The empirical Twitter network used in
Fig. 8 is available from the SNAP repository http://snap.stanford.edu/data/egonets-
Twitter.html.
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