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Abstract

A waiting time without memory, or age-independent residual life-time, is a
positive-valued random variable T with the property that for any x, y >0, given
that T >x, the conditional probability of T>x +y is the same as the
unconditional probability of T >y in other words, the physical process
operates as if it has no memory concerning the successive occurrences of a
certain event. The paper investigates the consequences of defining the property
of lack of memory on more general time-domains than the positive reals. As a
side issue, there is discussion of a stochastic variation of Cauchy’s functional
equation.

WAITING TIMES: RESIDUAL LIFE-TIMES, LACK OF MEMORY:. CAUCHY FUNCTIONAL
FQUATIONS

1. Introduction

If T is a positive random variable which represents the waiting time till the
recurrence of a certain event in some stochastic process, it is said to be
‘memory-less’ iff

(1.1) Pr{T>s+1t|T>s}=Pr{T>1}.

This condition holds for all s, ¢ > () iff there exists a A > 0 such that Pr{T >t} =
e " for all t > 0; the condition holds only for all positive integers s, if T has a
geometric distribution on the positive integers. These are the only known
examples of memory-less waiting time distributions, each being unique on its
particular domain. Are there other domains for ‘waiting times without memory’
(or ‘age-dependent residual life-times’) and corresponding distributions?
This, of course, is a vague question without a general definition of the property
of lack of memory. We propose to fill this gap with the following definition.

Definition 1. A positive-valued random variable T will be said to be a
waiting time without memory iff there exists a measurable subset S of the
positive reals such that
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66 RICHARD T. DURRETT AND S. G. GHURYE

(1.2) Pr{TES}=1,and sE€S, t>0>Pr{T>s+1t|T>s}=Pr{T>1}.

In a considerable portion of literature in applied probability, the lack-of-
memory property of the exponential distribution has played a major role in
simplifying work. For example, in queuing theory, if inter-arrival times and/or
service times are not exponential, the problems can be almost intractable.
However, in some situations, it is physically impossible to schedule inter-
occurrence times to be exponentially distributed. As an example, we may
consider the problem of scheduling a night-watchman’s rounds through a
warehouse complex; to minimize the chance of burglary, it might be desirable to
achieve maximum unpredictability of the watchman’s presence at any location.
On the other hand, physical limitations permit only certain sets of time-points
for presence at a particular location. It might be of use to know whether, for any
given set of possible occurrence times, there is a probability distribution without
memory for inter-occurrence times. For reasons such as these, a question of
some practical interest is: What are all the possible sets § and distributions on
them that satisfy (1.2)? However, before proceeding to answer this question, if
we stop to take a second look at (1.2), we notice that the formal equation is
symmetric in the two variables, but the domain is not. Hence, it is natural to
inquire into the consequences of relaxing (1.2) and requiring it to hold only for
s,t € S. This suggests another definition.

Definition 2. A positive-valued random variable T will be said to be a
partially memory-less waiting time of Type A iff there exists a measurable subset
A of the positive reals such that

(13) Pr{T€EA}=1and s,t€EA D Pr{T>s+t|T>s}=Pr{T>1t}.

Referring to the night-watchman problem mentioned above, if A is the set of
possible times of appearance of a watchman at a certain location, and these
appearances are scheduled in accordance with a probability law satisfying (1.3),
then a potential burglar who is watching the situation will get little help from his
observations in determining how much safe time he has for his operation. Also,
the functional equation resulting from (1.3) is of some interest in itself, since it is
a variation on the classical Cauchy equation. Whereas in Cauchy’s equation, the
domain is predetermined to be the reals and different conditions are imposed on
the function, in the present problem, we are interested in functions of predeter-
mined type (tail-probability functions) and the domain is restricted only by a
stochastic condition.

Finally, there is another aspect of lack of memory of waiting times which
merits some attention. The following example will serve as motivation: Suppose
that two consecutive scheduled arrival times for buses at a bus-stop are 5:10 and
5:25; a person who is waiting for the 5:10 bus finds that the bus does not arrive
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Waiting times without memory 67

on schedule; there are then two possibilities, namely either the bus is late and
will arrive at some time later or it has been cancelled and there will be no arrival
till the next scheduled arrival time. This suggests a third definition.

Definition 3. A positive real-valued random variable T will be said to be a
partially memory-less waiting time of Type B iff there exists a measurable subset
B of the positive reals such that

(1.4) Pr{TEB}=1and s,tEB, s<t > Pr{T>t|T>s}=Pr{T>1—-s}.

It is obvious that if T is a waiting time without memory (Definition 1), then it
is partially memory-less of both Types A and B. The question of the converse
implication does not seem to be trivial.

In Section 2, we investigate Definition 2 in detail and consider the problem of
all possible domains and distributions having the required property.

In Section 3, we do the same for Definition 3 (an easier task). It is then easily
seen that if T has the properties required in both Definitions 2 and 3, then its
distribution is either exponential on the positive reals or geometric on a lattice of
the positive reals. It is thus shown that Definitions 2 and 3 together are exactly
equivalent to Definition 1.

2. Partial lack of memory (Type A)

Concentrating on the purely mathematical aspects of Definition 2, we
encounter a functional equation which is a variation on the classical Cauchy
functional equation. With the identification f(t)=Pr{T >}, we state the
following problem.

Problem. Let f be a right-continuous, monotone non-increasing function on
the reals, with f(x)=1 for x =0 and f(«) =0, and let P be the measure on
one-dimensional Borel sets which is uniquely defined by P((a, b]) = f(a)— f(b).
Let A be a Borel set such that

(2.1) P(A)=1 and s,t€ A = f(s +1)=f(s)f(1).

Then what are all possible pairs (A, f) satisfying these conditions?

In Cauchy’s functional equation, there is no probabilistic condition, A is the
real line and f has been shown to be of exponential form under quite weak
conditions on it. In our case, f(x) = e, x =0, with some A >0, is a possibility,
asis also A ={nh,n=1,2,---}and f(nh)=e¢*"; and A ={a}, f(a—)=1 and
f(a) =0 is another solution, the trivial one which will always be excluded.

While looking for solutions of the problem, repeated use will be made of the
fact that P(A) = 1, which implies, in particular, that every point of discontinuity
of f belongs to A; more generally. for all x and y such that x <y and
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68 RICHARD T. DURRETT AND S. G. GHURYE

f(x)>f(y), we have (x,y]N A # . Keeping this property in mind, we can
expect to effect some simplification by eliminating inessential points (such as
interior points of intervals of zero P-measure). So, in (2.1) we replace A by
A'=a—-U{(a,b):0<a<b,f(a)=f(b)}). This aspect can be illustrated by
looking at the geometric distribution: f(x)=a" for xE[n,n+1), n=
0,1,2,-- -, with some a € (0,1); here A can be any set such that {1,2,3,---}C
AC{1,2,3,-- - }Uk=1 [k, k +3), but A'={1,2,3,---}.

Further A’ can be augmented by throwing in limit-points, so that we are
dealing with the closed minimal support of P. That (2.1) is satisfied at right-limit
points of A’ follows immediately from the right-continuity of f. As regards
left-limit points, let {a.,n=1,2,---} A' and a., 1 a as n—>». Then
f(a.)— f(a —) and f(2a.) = [f(a.)]’, so that f(2a —)=[f(a =)’ If f(a —)>
f(a), then a€ A’, and so f(a +a.)=f(a)f(a.); taking limits, we have
f(2a-)=f(a)f(a-)<[f(a—)=f(2a—). Hence, it is impossible that
f(a—)>f(a); and so, if a is the limit of a bounded increasing sequence of
elements of A’, then f is continuous at a. Consequently, if {a,,n=1,2,---} A’
and a, — a as n » =, then f(a.)— f(a). Thus (2.1) holds with A replaced by the
closure A* of A’; note that A * is the minimal closed support of P. We have thus
established two lemmas.

Lemma 2.1. Without loss of generality, we may assume that A is closed and

that f(a)> f(b) if (a,b)N A#D.

Lemma 2.2. The following two properties are equivalent, and either implies
the existence of a A >0 such that f(x)=e™ for all x >0:

(I) f is continuous on [0, ),

(IT) there does not exist an x >0 such that f(x)=1.

Proof. (i)1 = II. Forif I 2 II, then f is continuous and there exists an x >0
such that f(x) =1, then there exists an a >0 such that f(a)=f(a—)=1 and
f(x)<1 for every x > a; hence, every right-neighbourhood of a has positive
probability and contains a point of A, so that a is a limit point of A and, by
Lemma 2.1, is in A; consequently, f(2a)=[f(a)]* = 1, which contradicts the
definition of a.

Note that the argument used here shows that if f satisfies (2.1) and there exists
an x >0 such that f(x)=1, then there exists an a >0 such that f(a—)=1>
f(a); this fact will be used later.

(ii) ITimplies that f is strictly decreasing on [0, ). To prove this, we start with
the observation that II implies that every right-neighbourhood of 0 is of positive
probability, and hence there exists {a,,n =1,2,---}CA such that a, | 0. Now
suppose that II holds but not the implication (ii); then there exist b, ¢ such that
0<b<ec 1>f(c)=f(b)<f(x)forx <b. Hence, every left-neighbourhood of b
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has positive probability, so that b is the left-limit of points of A and is therefore
in A consequently, f(b + a,) = f(b)f(a.) < f(b), which contradicts the assump-
tion that f(b) = f(c), since b + a, < ¢ for sufficiently large n.

(1) Finally, if f is strictly decreasing on [0, ®), then A = [0,>) by Lemma 2.1;
it is well-known that if f is a monotone solution of Cauchy’s functional equation,
then f(X)=e ** for some A >0 (which implies I).

Lemma 2.3. If there is an additive semi-group S C A, then there exists a
A >0 such that f(s)=e ™™ for all s €S. (This is undoubtedly a well-known
result, and we give a proof only because we do not have a reference.)

Proof. Leta,b €S with()<a <b, and let n be a positive integer. Choose N
such that Na =nb <(N +1)a. Since f is monotone, f(Na)=f(nb)>
fI[(N+1)a]. Now, for each s €S and each positive integer k, we have
f(ks)=[f(s)]*, so that [f(a)]™" = f(b)=[f(a)]™*"". Letting n—>x, we get
f(b)=[f(a)]*"*, which leads to the conclusion.

Lemma 2.4. If f satisfies (2.1), then the range of f =e > where T is an
additive semi-group with inf 2 =0; conversely, if £ is any closed additive
semi-group with inf = (), then there exists a pair (A, f) satisfying (2.1) such that

the range of f=¢ .

Proof. First of all, the converse is the immediate consequence of the
construction: A =2, f(o)=e 7 for all o € A.

So now suppose f satisfies (2.1), and for x>0 define m(x)=
sup{a:a € A,a = x}. Then m(x) E A by Lemma 2.1; also, (m(x),x)N A =,
so that P(m(x), x)=0, or f[m(x)] = f(x). Hence, to each point 7 in the range
of f, there corresponds a point t of A such that f(r) = 7; i.e. the range of f is
f(A).

If 7,72€f(A) and 1,,1,E A such that f(t)=17, i =1,2, then f(t,+1,)=
f(t)f(t:) = 71725 but f(t,+1;)E f(A). Thus the range of f is closed under
multiplication.

Theorem 2.1. Let X be any closed additive semi-group other than the
singleton {0}; let inf £=0 and §(2)=inf {|oc—7|:0,7EZ, 0 # 7}.

(I) If 8(2)=0, and if (A, f) be any pair which satisfies (2.1) with range of
f=e* A closed, f(a)>f(b) if (a,b)N A # O, then there exists a A >0 such
that \A =2 and a €A > f(a)=e*.

(I) If 8(X)=8>0, then there exists an additive semi-group J=
{jmn =1,2,-- -} of positive integers such that T = {0} U (8J); further, there exists
a continuum of countable discrete sets A ={a,,n =1,2;---} such thatif f is a
pure jump-function whose discontinuity points are {a.} and if f(a,)= e %,
n=1,2,---, then (A, f) satisfies (2.1); in particular, there always exists an A for
which there exists no A such that if (A, f) satisfies (2.1), then f(a,)= e ** for
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70 RICHARD T. DURRETT AND S. G. GHURYE

two or more n. The possible choices for A are subject only to the constraints
described below.

Choose b, >0 arbitrarily, and the successive b's arbitrarily subject to the
following sequential constraints:

Let m, and M, be respectively the minimum and the maximum of S, =
{bi+ ba_r,by+ byz, -, byy+ b}, n=2,3,---. Then

2.2) M, <b,=m., n=2,3,---, (Mi=b),

and a,.=b,,n=1,2,---.

Proof. Since Lemma 2.2 has already disposed of the case in which f(x) <1
for every x > 0, we may now assume that there exists an x > 0 such that f(x) =1,
and let a be the supremum of all such x’s; then, by the note at the end of the
proof of Lemma 2.2, f(a —)> f(a),a € A anda = inf{A}. Let @« = —In f(a).

(I) 8(2)=0. For 0 €EZ, o > a and any positive integer n, let N be such that
noec =Na <(n+1)oandlet s(n)=inf{x:f(x)=e™},n=1,2,---,and a(N) =
inf{x:f(x)=e™}; then a(N),s(n)EA. Now, f[s(1)+s(n)]=e "™ =
fls(n+1)]; and by the monotonicity of f, we then have s(n)=a(N)<
s(n+1)=s(1)+s(n), so that, in particular, s(n)=ns(1)<s(n +1). Conse-
quently, we see that (n —1)s(1)<s(n)=a(N)= Na(l), and as n = », we get
a/a(1) = a/s(1). Now, by definition, a(1) = a, and writing s for s(1), we get, for
all o € Z, the inequality o/s = a/a = A, say.

Next we note that 2 being closed under addition and 8(Z) = 0 imply that  is
dense in the reals at + . This is seem by observing that, given any h > 0, there
exist o, 7 €EZ such that 0<rt -0 =h'=h; and if N is such that Nh'= o, then
forevery nZN, no+jh'=(n—jlo+jr€Z for j=0,1,---, n; that is to say,
for each h > 0, there exists a o, € Z such that, to the right of o, the elements of
Z are at most distance h apart.

An immediate consequence of these results is that 3¢, d. EA, n=1,2,- -,
such that c,, d, =~ and | ¢, — d. | — 0 as n — =, which is seen as follows: to every
positive integer k, there corresponds a o (k) € X such that, to the right of o (k),
the points of X are at most distance 1/k apart. Hence, between o (k) and 20 (k),
there are more than ko (k)—1 points of Z; but f[s(k)] = e °* and f[2s(k)] =
e ™ imply that between s(k) and 2s(k ) there are more than ko (k) — 1 points
of A, and thus more than Aks(k)-—1; consequently, the minimum distance
between points of A N [s(k),2s(k)] is at most s(k )/{Aks(k)— 1}, which goes to
zero as k — »,

Actually, we can now conclude that A is dense in the reals at + o: If possible,
assume the contrary, so that there exist an h >0 and sequences {a.}, {b.} in A
such that a, + h = b,,a, 2> and (a.,b.)N A =. Then f(a.)=e ™, f(b.)=
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e P (an B.)NZ =0, and hence a, — B, —0 as n > x; i.e., f(a,)/f(b.)—1 as
n — x, By the previous paragraph, we can choose ¢,d € A such that c <d <
¢ + h. Now we have a, +d < b, + ¢, so that f(a.)f(d)= f(a, +d)> f(b, + c) =
f(b.)f(c); i.e. f(a,)/f(b.)> f(c)/f(d)>1, for all n, which contradicts the earlier
conclusion that the limit of the left-hand ratio is 1.

Now, for the final step, let b > a be an arbitrary element of A, and for each
positive integer n, let N be such that Na = nb < (N + 1)a. Having chosen an n,
let us choose a positive h <a —nb/(N + 1), and observe that there exists an
M€ A such that x >M implies (x —h,x] N A# . In the argument that
follows, we shall obtain a relation satisfied by f for every n and then let n — .

Let f(b) =B, f(M) = pu, and for any ¢ € A, let f(c) = y. If k is any integer in
(0, N + 1], we observe the following:

f(M +c)=f(M)f(c)= pny.

If M +cZ A, there exists a nearest left-neighbour M + ¢ — h, of M + ¢ in A, so
that f(M +c)= f(M + ¢ — h,) where h, € (0, h), so that

f(M+2c—h)=f(M+c—h+c)=f(M+c—h)f(c)=f(M+c)f(c)= uy>
Proceeding in this fashion, we obtain
(2.3) !.L'Yk = f(M + C— Hk ), Whel‘e H]( — h| + hz‘l" s wfe hk—l =2 kh.

Now let r, 5,1 € A be such that f(r) = we ™" f(s)=uB" and f(t) = e N*"=
Substituting in (2.3) successively (e “, N —1), (8,n) and (e °, N +1) for (y, k),
and noting that the maximum H, involved is less than (N + 1)a — nb, we obtain

24) r=M+(N-1)a=M+nb—-a<s=M+nb<t=M+(N+1)a,
and hence
(2.5) pe N < B < pe N

from which, as n — x, we see that ¢ ** = g°.
Thus, for each b € A, f(b)=B =e ' =¢ ™,

(IT) 8(2)=6>0. Since X is closed under addition, therefore all integer
multiples and sums of integer multiples of elements of  are in . From this, we
see that there is a pair of elements of £ which are a distance & apart; for
otherwise, there would have to be a sequence of pairs of points of = such that the
distance between the nth pair decreases to § as n — «; hence there would have
to be a,, by, a,,b,EZ such that b,=a,+8,, b,=a,+8, and § < 8,< 8§, <26,
which would mean that 2 contains the points a, + b, = a,+ a,+ 8, and a,+ b, =
a, + a,+ 8, whose distance apart, 8,— 8, is positive but less than 8. Thus there
exists a pair a, b € 2 such that b = a + 8. Next we conclude that the distance
between any pair of elements of Z is an integral multiple of §; for if there exists
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an integer k and points ax, b« € 2 such that k8 < b, — ax < (k + 1)8, then ka + b,
and ax + kb would be distinct points of £ whose distance apart is less than 8.
Finally, if follows that a = inf{o : 0 C Z, o >0} is an integral multiple of §,
since it is the distance between a and 2a which are in Z. Hence, we see that
2 ={0}U{8J}, where J is an additive semi-group of positive integers.

Consequently, f is a pure jump-function whose points of discontinuity are
A={a,n=1,2,---},with0<a,<a,<---,and f(a,)=e ¥, n=1,2,---. We
shall first resolve the problem when J is the whole set of positive integers; after
that, dealing with a proper subset J is merely a matter of redefining f by making
it constant through the integers which are no longer there.

So we now consider a sequence A = {b,} such that 0< b, < b, < -+, f(b) =
e n=1,2,--- and (A, f) satisfy (2.1). We shall now proceed to show that the
construction given by (2.2) is valid; ie., M,.,<m, n=23,--- and any
sequence {b,} satisfying it is admissible in (2.1).

Note that b, >0 is arbitrary, b, < b, = ab,, so that M, < m,; now make the
induction hypothesis #,that M,_,<m,, n =2,3,--- k, with b,,- - -, bx_, chosen
to satisfy (2.2), and choose a b, so as to satisfy (2.2). Then we wish to show that
M, < my.,; i.e., we have to show that b+ b,_, [ =1,2,---,k — 1, are all less
than b,, + bx—msy, m = 1,2, k. The case | = m presents no problem, since the
construction ensures that {b,} is an increasing sequence; so we consider the two
cases: (i) I <m, (ii)) [ > m.

In Case (i), we have b, + b,,—i—; < b, and bi_; = by _p+1 + bn-i-y by ¥, so that

b+ bt +bmoi s <bm +bi-mir+ bmi-1.

In Case (i), b=bn +b-m and b +b_,, <bi-m«1 by i, so that
bi+bii+bi—py < bm + bi-mer + bi—m.

Hence #, = #..., and so we have M,_, < m,, n =23, ---. (Incidentally, it is
easily seen that {(m, — M,_,)} is a monotone non-increasing sequence; we have
not looked at the matter of its limiting value.)

Having chosen such a sequence {b,}, we now define f by

0=x<b,
3 b,§x<b.+1,n=l,2,°”.

26) 1) = {}

It is now easily verified that (2.1) is satisfied, because the conditions (2.2) are
precisely the conditions needed to verify that

bm-ﬂ! gbm+bu<bm+n+|, m,n=1,2,"'.

Finally, the existence of integers m, n and a A > 0 such that f(b,.) = ¢ **~ and

f(b.) = e ** is exactly equivalent to the rationality of b,./b, ; and our construc-
tion makes it clear that each b, can be chosen so as to be relatively irrational to
the previous ones, since we have a continuum of choices.
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Having disposed of the case J = N7, it remains to state precisely what happens
when J is a proper subset of N*. It this case £ = {0} U {8J} where J = {j.} is an
additive semi-group of positive integers, with 0 <j, <j,<---; if we take any
sequence {b.} constructed as above and define

1, 0=x < a,
2.7) a,.=b,, n=12,---, and f(x)=

-8

e B =X ey, =125,

it is easily verified that ({a.}, f) satisfy (2.1).

3. Total lack of memory

To return to the original problem of waiting times without memory, we shall
first deal with Definition 3 and Property (1.5) of Section 1, and then with random
variables which have both Properties (1.4) and (1.5); finally, Definition 1 will be
discussed independently by itself.

Concentrating on the purely mathematical aspect of (1.5), we encounter a
functional equation which is complementary to (2.1), but turns out to be much
easier to deal with. This is primarily because f(t) = Pr{T >t} being a right-
continuous function, Equation (3.1) below gives us more of a hold on it than (2.1)
does.

Problem. Let f be a right-continuous, monotone non-increasing function on
the reals, with f(x)=1 for x =0 and f(») =0, and let P be the measure on
one-dimensional Borel sets which is uniquely defined by P((a,b])=
f(a)—f(b). Let B be a Borel set such that

G.1) P(B)=1 and stEB, s<t=>f(1)=f(s)f(t—s).

Then what are all possible (B, f) satisfying these conditions?

Theorem 3.1. If (B, f) satisfies (3.1), then either
(I) there exists a A >0 such that f(x)=e ™, x >0, and (3.1) is satisfied by
this f and B=R"’, or
(IT) there exists a A >0 and B is a countable set {b,}, with0< b, < b, < - -,
and f(b,)=e ™ n =12, ---; the possible choices for B are subject only to the
constraints described below:
Choose b, >0 arbitrarily, and the successive b’s arbitrarily subject to

(3.2) M,=b, <m,.,, n=23---,

where m, and M, are as defined for (2.2).
(It 1s understood that the trivial case, in which f is a pure jump-function with a
single jump of magnitude 1, is excluded.)
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Proof. As in Section 2, first consider the two mutually exclusive and
exhaustive possibilities: (I) f(x)<1 for all x >0, or (I) 3b,>03f(b,—)=1
and f(x)<1 for all x >b,. In Case (I), 3a,—0 such that {a.}CB and
f(a.)>f(an+1),n =1,2,---. Hence t € B = f(t) = f(a.)f(t — a.), so that f(t) =
f(t =), and also ¢ is the limit from the left of points at which f exceeds f(t). Thus
there are no discontinuity points in B (and hence no discontinuity points at all)
and every point in B is a point of decrease from the left. Thus f decreases
continuously on R*, and hence we have conclusion (I) of the theorem.

In Case (II), b, € B ecither because it is a discontinuity point of B or because it
is the limit from the right of points in B (same reasoning as in Section 2); t € B,
t>b, > f(t)= f(b)f(t — b)), so that f(2b, — ) = f(b,). Thus, b, is a discontinuity
point of f and f is constant in [b,, 2b,). It is now easily verified that the right-hand
end-point, b,, of this interval of constancy is again a discontinuity-point; and
continuing in this way, we see that f is a pure jump-function with f(b,)=e™™,
n=1,2,---, where A >0 is arbitrary. The constraints on {b,} follow from the
fact that (3.1) implies

(3.3) B + by = bsn < baner.

Theorem 3.2. T is a waiting time which is partially memory-less of both
Types A and B (Definitions 2 and 3 of Section 1) iff either

(I) 3A >0 such that Pr{T >t}=¢7", t>0, or

(IT) 3A, h >0 such that

(1, 0=t<h
P’{T>‘}‘[e-~, il = e Dk w=1,2, .

Proof. The result follows immediately from the fact that f(t)=Pr{T >t}
must satisfy both (2.1) and (3.1), so that if C = A N B, then we can replace A by
Cin (2.1) and B by C in (3.1). Then Part (I) of Theorem 3.1 gives us the first part
of the present theorem, and the intersection of Parts (II) of Theorems 2.1 and 3.1
is the present Part (II).

Theorem 3.3. T is a waiting time without memory (Definition 1) iff it is
partially memory-less of both Types A and B (Definitions 2 and 3).

Proof. The theorem asserts the equivalence of two sets of assumptions; since
the consequences of one of these have been disposed of in Theorem 3.2, it
remains only to study the consequences of Property (1.2). If P is the probability
measure on the Borel sets of real members which is defined by P((a,b])=
f(a)—f(b), we have P(S)=1 and hence f(a)>f(b) implies that
(a, b] N S # . Note that since T is a positive random variable, f(0) = 1. We have
now two possibilities: (I) f(x) <1 for all x > 0, or (II) h > 0 such that f(h —)=1
and f(x)<1 for all x> h.
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In Case (I), every right-neighbourhood of 0 has positive probability and hence
there exists an infinite sequence {s,} CS such that s, |0 as n—>® and
f(sa) < f(sa-1)<1. Hence for all ¢t >0, we have f(s. +t)= f(s.)f(t)<f(t), so
that every right-neighbourhood of t has positive probability. Thus to each t >0
there corresponds an infinite sequence {t,} C S such that ¢, | t; and so for all ¢,
u >0, we have f(t. + u) = f(t.)f(u), giving in the limit, f(t + u)= f(¢)f(u). It is
well known that this implies consequence (I) of Theorem 3.2.

In Case (II), either f(h)< f(h —) in which case h €S or f(h)=f(h =) in
which case, every right-neighbourhood of h has positive probability and hence,
as in the previous paragraph, Equation (1.2) is satisfied with s replaced by h.
Hence f(2h —) = f(h)and f(2h) = [f(h)]’, which means f(h) < 1 and 2h is also a
discontinuity point of f. Proceeding this way. we come to conclusion (II) of
Theorem 3.2.
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