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Abstract

We introduce a continuous-time Markov chain model for the evolution of microsatellites,
simple sequence repeats in DNA. We prove the existence of a unique stationary
distribution for our model, and fit the model to data from approximately 106 base pairs
of DNA from fruit flies, mice, and humans. The slippage rates from the best fit for our
model are consistent with experimental findings.
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1. Introduction

Microsatellites are repeats of short patterns (2–6 base pairs) in DNA. These repeating
patterns are unstable with respect to mutations in length, resulting in a high degree of variabil-
ity. This high degree of variability and the fact that microsatellites occur with high frequency in
the DNA of many organisms has made them popular for use as markers in constructing whole
genome maps of humans and other organisms [5, 32], and in phylogenetic studies [10, 28].
Another reason for interest is that microsatellite loci play an important role in human genetic
diseases such as fragile X syndrome, myotonic dystrophy and Huntington’s disease [2]. In
these cases the disorders result when the number of repeats exceeds a certain threshold. For
example, Huntington’s disease appears when the number of repeated CAGs at a certain locus
is 36 or more.

The first thing to notice is that the occurrence of microsatellites is much more frequent than
one would predict on the basis of chance. Data on primate repeat sequences from 6 994 799
nucleotides drawn from GenBank 84.0 reported on p. 415 of Bell and Jurka [3] shows 30
dinucleotide repeats consisting of 20 repeat units or more, including one of length 40. If we
assume that the 4 possible bases A, C, G, and T of DNA occur with equal probability then the
probability of a dinucleotide repeat of length 20 that begins with a specified pair of nucleotides
is 4−38 = 1.32 × 10−23. Since the sample consists of ≤7 × 106 nucleotides, the probability of
a single occurrence of a dinucleotide repeat of length 20 by random chance is less than 10−16.
Thus, it is clear that these repeat sequences do not arise from random chance events.

There are two primary mechanisms that may lead to a change in the length (number of repeat
units) of a microsatellite. The first is ‘polymerase slippage’. Replicating strands of DNA may
dissociate, and reassociate in a misaligned manner leading to an alteration of the number of
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repeat units [13]. In the microsatellites associated with diseases, unstable transmission can
result in increases of ≥10 repeats in one generation [15]. Here, we will concentrate on the
evolution of the presumably neutral markers used in genetic mapping. In these the slippage
usually leads to changes of ±1 repeat units, but greater changes are possible. For example,
a study by Weber and Wong [31] found that 82% of mutation events observed in humans
involved a gain or loss of a single repeat unit.

The stepwise mutation model of Ohta and Kimura [17] and Moran [16], originally for-
mulated to model the charge state of proteins as inferred from electrophoretic mobility, has
recently been much used as a model of the change in size of microsatellites [6–10, 12, 20,
24, 25, 30]. According to the basic stepwise mutation model, microsatellite length follows a
simple random walk with a reflecting barrier at one repeat unit. One problem with the use
of this model is that such a reflecting random walk on the line is null recurrent, so there is
no stationary distribution for microsatellite lengths. However, this problem is easily solved by
looking at the difference of the lengths in a sample of n individuals. The differences will have a
well-defined equilibrium distributionsince the genealogies of the sampled individuals coalesce
to a single common ancestor following the usual rules for neutral genealogies [11, 29]. The
technique of looking at differences can be used to determine the variance in lengths of a sample
from a population. A genetic distance measure can then be derived by comparing variances in
different species or populations [20]. An alternate solution to avoiding some of the problems
of the stepwise mutation model is to introduce mutation bias into the evolution process [8]. If
short alleles have a preponderance of length-increasing mutations, whereas long alleles tend
to decrease in size, then an equilibrium length will be reached. Zhivotovsky et al. analyse this
model and use it to derive a genetic distance measure [35].

Most users of the stepwise mutation model ignore a second important mechanism; a point
mutation (insertion, deletion, or nucleotide substitution) will destroy the perfect nature of
the repeat and cut a microsatellite into two smaller pieces. A notable exception is Bell and
Jurka [3], who let their repeats of length n break into one of length j − 1 and one of length
n − j at rate a. At the lower end of their state space they have an absorbing barrier at 1, but
allow new repeats to be born at length 2 at a positive rate, c. At the upper end they impose
an artificial cutoff at 30 by declaring that microsatellites were killed when they reached that
length. At first one might worry that even in a bounded interval the branching might lead to an
exponentially growing population of repeats. This fear can be quieted by noting that the total
of the lengths of all the repeats is decreased by 1 when a split occurs, so an equilibrium will
become established. Unfortunately, it seems to be very difficult to compute anything for this
model except by simulation.

In this paper we introduce a simple continuous-time Markov chain model for the evolution
of microsatellites in the DNA of various organisms, which shows that, as Schug et al. sug-
gested [22], the equilibrium length of repeats is ‘determined by a balance between the rate
at which DNA slippage introduces new repeat units, and the rate at which point mutations or
insertion/deletion mutations occur within the repeat itself’. To motivate the definition of our
model, we fix our attention on a pair of nucleotides, and let Nt be the number of times that the
pair is repeated in the sequence beginning with the chosen pair and reading to the right. When
Nt = � there are three types of transition that can occur:

• polymerase slippage: � → � + k at rate r�,k

• point mutations that destroy the perfect repeat: for 1 ≤ j < �, � → j at rate a

• substitutions that start a new repeat: 1 → 2 at rate c.
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In the stepwise mutation model rl,1 = rl+1,−1 = r for all l ≥ 1. However, experimental
evidence clearly indicates that microsatellite mutation rates depend on their length [13, 21, 34].
We suppose instead that r�,k is of the form (�−1)bk (with minor exceptions to this rule when �

is small). In writing this formula, we imagine that slippage events of size k occur at a constant
rate bk in any of the �−1 positions between repeated units. The simplest choice, which we call
the nearest neighbor case, has b1 = b−1 = b with the other bk = 0. However, as mentioned
above, one cannot ignore the possibility of slippage by more than 1, so we will consider general
finite range models, i.e. bk = 0 when |k| > K .

The choice of r�,k described in the previous paragraph leads to an absorbing state at 1.
However, the third transition fixes this problem. Here we are thinking, for example, of a single
CA becoming CACA through one or two substitutions. Note that since any substitution and
any single insertion or deletion will cut a repeat, while only a judicious substitution or two
will extend it, c will typically be 5–10 times smaller than a. While on the subject of sizes of
parameters, we should note that estimates of b1 given below are usually several hundred times
as large as a.

Logically, the first thing we have to do is to show that our model has a stationary distri-
bution. By Markov chain theory, it is sufficient to check that the expected time to return to 1
starting from 1 is finite. To do this, we can obviously throw away slippage down and consider
the following example.

Example 1. The upper bound model: r�,k = (�−1)bk for 1 ≤ k ≤ K , and r�,k = 0 otherwise.

Theorem 1. Let u = ∑K
k=1 kbk . In the upper bound model, and hence in any finite range

model, there is a unique stationary distribution π with

∞∑
�=1

(� − 1)π(�) ≤ 2(c + u)

a
.

Note that c is much smaller than u, so the first term can be ignored. If we do this in the case
when b1 = b and bk = 0 for k > 1, the upper bound reduces to 2b/a.

2. Comparison with experimental results

Since the stationary distribution of lengths exists, it is natural to ask if its shape is similar
to the distributions observed in nature. To test this, approximately 106 nucleotides of DNA
from fruit flies, mice, and humans were collected for each organism from World Wide Web
sites maintained by the Whitehead Institute (http://www-seq.wi.mit.edu) and the Lawrence
Berkeley Laboratory (http://www.lbl.gov). We processed the data by examining each pair of
nucleotides and then counting the number of times the pair was tandemly repeated, starting
from the chosen nucleotides, and scanning to the right in the sequence. A microsatellite was
defined as a sequence consisting of five or more repeat units. This definition is used for several
reasons. We will be comparing the predictions of our model to experimental studies, and
experimental studies tend to restrict their attention to repeats of length five or more repeat
units. Another reason for this definition is that short repeats will often occur by random chance,
and not due to the slippage/point mutation interaction. Finally, trying to fit the model to the
frequently occurring short repeats makes the fit insensitive to the tail of the distribution.

Our method of processing the data, i.e. examining every pair and then counting to the right,
has the property that a repeat of n > 5 units will generate repeats of lengths n − 1, . . . , 5.
Readers who want to recover the usual laboratory viewpoint should note that if p(n) is the
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frequency of microsatellites of the length n when each repeat is counted only once, and π(n)

is our stationary distribution then

π(n) =
∑
m≥n

p(m),

since each repeat of length exactly m ≥ n generates exactly one repeat of length n in our
counting scheme. In words, the equilibrium distribution of our chain is the tail of the distribu-
tion function for the more natural counting scheme in which each repeat is counted only once.
Once we estimate the distribution function π(n) by fitting the model, the density function p(m)

can be obtained by taking p(m) = π(m) − π(m + 1), and rescaling.
Our first step in fitting our model to the data is to reduce the number of parameters. To

eliminate c we note that it follows easily from the equations for the stationary distribution
(see e.g. (1) below for the nearest neighbor case) that the value of c only controls the value
of π(1) relative to (π(2), π(3), . . . ), so if we restrict our attention, as we have, to repeats of
length 5 or more, then the parameter c is not relevant. In other words, the actual value of c
will cancel when we condition the stationary distribution on n ≥ 5. To eliminate a we set
a = 2 × 10−8 [14], a rough guess for the rate at which point mutations hit one of the two
nucleotides in the repeat unit. We then vary b1 = b−1 = b and a multiplicative constant M
to fit Mπ(n), n ≥ 5 to the data. We note here that the one true parameter of the model is the
ratio, b/a. If we were to vary the value of a, the value of b would change proportionally.

Our estimate of b was chosen to be the slippage rate that minimized the sum of the absolute
differences between the observed and expected length distributions. Using absolute differences
rather than squared differences seemed to work better since the squared error criteria assigned
too much weight to the first few values of Mπ(i) and was insensitive to the tail. Figure 1
shows our stationary distribution fit to the data for humans, which is typical of the other two
fits. There are two main reasons for only fitting the stationary distribution to microsatellites
consisting of five or more repeat units. First, shorter repeats are typically not classified as
microsatellites in the experimental setting. Since we are interested in comparing our results
to experimental findings, we only count length 5 or greater microsatellites in the data, and
condition the stationary distribution accordingly. Second, the number of times that a pair of
nucleotides is repeated 1–4 times in a long sequence is very large. Attempting to fit these
short repeats would obscure the fitting of the tail of the distribution. Table 1 shows the best
fit slippage rates for dinucleotide repeats for organisms that we considered and compares with
experimental estimates. The first column is the value of 2b (slippage up plus slippage down,
assuming a = 2 × 10−8) that gave the best fit to the data. To compare our per nucleotide
(per generation) slippage rates to the per locus rates quoted in the literature, we have to
multiply the rate in the first column by (l − 1), where l is the average microsatellite length
in the experimental study. The result is given in the second column for comparison with the
experimental results in the third.

It is comforting to note that the slippage parameter that led to the best fit was highest
in mice, followed by humans and then fruit flies. There are several reasons for differences
between the fitted values and the experimental results. Most importantly, our model cannot
include all of the biological complexities (e.g. it ignores unequal crossing over [27]), and it
can only be expected to provide rough estimates. A second important factor is that there is still
considerable uncertainty in the experimental results because they are based on having found
few mutations. For example the estimate in Schug et al. [23] is based on finding 3 mutations
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FIGURE 1: The best fit results of the model to human dinucleotide microsatellite data. Observed
counts are given by the histogram, and expected counts are given by the line graph. The counts are
presented according to the counting scheme described in the text, and the lengths are given in number of

nucleotides.

after screening multiple markers in 6570 allele generations at 39 loci, so it should not be
surprising that their 95% confidence interval includes our estimate.

Two important conclusions follow from the fit of the model:

• The fact that in each organism the stationary distribution is able to explain the shape of
the empirical distribution shows that a simple difference in slippage rate can cause the
different microsatellite length distributions observed various organisms.

• Furthermore, the agreement between the value of experimentally determined slippage
rates, and the slippage rate estimates determined by the model, indicates that the sta-
tionary distribution can be used to estimate slippage rates in organisms where sufficient
sequence data is available.

TABLE 1: Results from fitting the model.

Rate per unit Rate per locus Experiment Reference

Human 4.8 × 10−6 2.3 × 10−4 1.3 × 10−4 [18]
Mouse 1.0 × 10−5 1.9 × 10−4 4.7 × 10−4 [4]

4.5 × 10−5 [5]
Fruit fly 2.3 × 10−7 2.8 × 10−6 9.3 × 10−6 [23]

1.9 × 10−7 [33]
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3. A better upper bound

For our fit of the human data, the parameter b = 2.4 × 10−6 per repeat unit. Recalling
that we have set a = 2 × 10−8, this means that b/a = 120 and the bound on the mean
microsatellite length in equilibrium given in Theorem 1 is 1 + 2b/a = 241, which drastically
overestimates the lengths shown in Figure 1. In this section we turn our attention to finding
better bounds, or more generally to the question: how does the equilibrium distribution depend
on the parameters of the model? Some insight can be gained from exact solutions. Letting d
stand for down and e for expand, we can consider the following example.

Example 2. A more general nearest neighbor model. Let

r�,−1 = d� for � ≥ 2, r�,1 = e� for � ≥ 1

and note that we have incorporated c into r1,1.

Because of the large jumps that come from point mutations, Example 2 is not a birth and
death chain. However, by considering the flow out of and into the set [1, i] we can conclude
that the stationary distribution π satisfies

eiπ(i) = ai
∞∑

j=i+1

π( j ) + di+1π(i + 1). (1)

Introducing σ(i) = ∑∞
j=i+1 π( j ) then leads to the coupled recursion

π(i + 1) = ei

di+1
π(i) − ai

di+1
σ(i), σ(i + 1) = σ(i) − π(i + 1). (2)

In our basic model di+1 = ib−1, for i ≥ 1, e1 = c, and e j = ( j − 1)b1 for j ≥ 2. If, instead,
we take e j = j e for all j ≥ 1, and change variables b−1 = d then the coefficients in (2) are
constant and we have an exponential solution with π(i) = βλi and σ(i) = βλi+1/(1 − λ),
with β = (1 − λ)/λ. It follows from (2) that,

λi+1 = e

d
λi − a

d

λi+1

1 − λ
or 0 = dλ2 − (a + d + e)λ + e.

If d = 0, i.e. slippage down is impossible, then λ = e/(a + e). If d > 0 then solving the
quadratic equation and noticing that we must have λ < 1 gives

λ = 1
2



(

1 + a + e

d

)
−
√(

1 + a + e

d

)2

− 4e

d


 . (3)

Some authors have suggested [1, 19] that microsatellites exhibit a preponderance of expan-
sions over contractions. However, one can also argue for a symmetric model by noting that
a slippage event which results in an addition of k units to the strand being replicated would
(in most cases) also result in a decrease of k units if it happened on the template strand. If in
Example 2, d = e = b, then the expression under the square root in (3) becomes

(
2 + a

b

)2 − 4 = 4a

b
+
(a

b

)2
.
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If a/b is small then the square root is roughly 2(a/b)1/2 and we have

λ ≈ 1 − (a/b)1/2. (4)

Note that in the above calculation β is a constant needed to make the π’s sum to 1 and make
π(i), i ≥ 1 into a density function. For example, if d = 0 and λ = e/(a + e) then

∞∑
i=1

λi = e/a,

and if we let N denote mean microsatellite length at equilibrium, then β = a/e and the density
function is

P(N = j ) = a

e

(
e

a + e

)j

= a

a + e

(
1 − a

a + e

) j−1

, j = 1, 2, . . .

which is geometric with mean (a + e)/a.
If λ = 1 − (a/b)1/2, then

EN =
( ∞∑

i=1

λi
)−1 ∞∑

i=1

iλi

= 1 − λ

λ

λ

(1 − λ)2

= (1 − λ)−1 = (b/a)1/2.

The last calculation is exact for the model with di+1 = bi and ei = bi for i ≥ 1, but a little
thought reveals that it also gives the asymptotic exponential decay of π(i) in the model with
di+1 = bi for i ≥ 1, e1 = c, and e j = b( j − 1) for j ≥ 2. This decay rate for the tail of the
distribution suggests that if slippage is symmetric then microsatellites should typically be of
size

√
b/a.

Our final result gives a bound which extends the above rule of thumb for the size of
microsatellites to the non-nearest neighbor case.

Example 3. The symmetric model. Suppose bk = b−k for 1 ≤ k ≤ K , and bk = 0 otherwise.

r�,k = (� − 1)bk, −(� − 1) ≤ k ≤ (� − 1).

Here, the lower limit on k is needed to avoid transitions to 0, while the upper one is forced by
symmetry.

Theorem 2. Let v = ∑
k k2bk. The stationary distribution for the symmetric model has

∞∑
�=1

(� − 1)π(�) ≤
(

3v

2a

)1/2

+
(

3c

2a

)1/3

.
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Note that for the parameters of interest to us, the second term on the right is always
smaller than 1 and can be ignored. If we do this in the nearest neighbor model in which
b1 = b−1 = b then v = 2b and the upper bound becomes (3b/a)1/2. Inserting our fit for the
human data which has b/a = 240 yields an upper bound on the mean microsatellite length of
1 + (720)1/2 = 27.83. This still overestimates the mean (as it must by the proof of Theorem 2
given in the next section) but is substantially closer than the crude estimate of Theorem 1.

4. Proofs of the main results

Let Nt denote the length of our microsatellite at time t . We begin with the proof of
Theorem 1.

Proof of Theorem 1. If Nt were null recurrent or transient then starting from N0 = 1 we
would have Nt → ∞ in probability and by Fatou’s lemma that

lim inf
t→∞ E1 Nt = ∞.

Thus we can prove the existence of a stationary distribution by showing that E1 Nt stays
bounded as t → ∞. To do this we begin by recalling a standard fact about Markov chains.
The polynomial bound here on f is more than enough to justify the use of the dominated
convergence theorem in the proof of Lemma 1 (which is left to the reader).

Lemma 1. Let q(x, y) denote the transition rate from state x to state y in our Markov chain.
If | f (x)| ≤ C(1 + |x|n) then

d
dt

Ex f (Nt )

∣∣∣∣
t=0

=
∑

y

q(x, y)[ f (y) − f (x)].

Our first step is to apply Lemma 1 to f (x) = x . To facilitate computation we will write q
as a sum of qa for the transition events in parts 1 and 3 of the definition, and qb for the base
pair substitutions in part 2. Recalling the various definitions shows∑

y

qa(x, y)(y − x) ≤ c +
∑

k

(x − 1)bk · k = c + (x − 1)u,

and with a little more arithmetic we get

∑
y

qb(x, y)(y − x) =
∑

1≤y<x

a(y − x) = −a
x−1∑
m=1

m = −a

(
x(x − 1)

2

)
.

Using Lemma 1 with EN2
t ≥ (ENt )

2 and the trivial Nt ≥ 1, we have

d
dt

E1 Nt ≤ c + uE1(Nt − 1) − a

2
E1(N2

t − Nt ),

≤ E1 Nt

(
c + u − a

2
E1(Nt − 1)

)
< 0,

if E1 Nt > 1 + 2(c + u)/a. Since E1 N0 = 1, an easy argument by contradiction shows that we
must have E1 Nt ≤ 1 + 2(c + u)/a for all t .
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The last conclusion shows the existence of a stationary distribution. Uniqueness of the
stationary distribution and convergence to it starting from state 1, now follow from the fact
that our continuous time Markov chain is irreducible. Another use of Fatou’s lemma then
shows that the limit distribution N∞ has

E1 N∞ ≤ lim inf
t→∞ E1 Nt ≤ 1 + 2(c + u)/a.

Proof of Theorem 2. We follow the approach of the previous proof and use its notation, but
this time take f (x) = (x − 1)2. Noting that

f (x + k) − f (x) = 2k(x − 1) + k2,

and that c is the rate of jumps from 1 to 2, we have∑
y

qa(x, y)( f (y) − f (x)) ≤ c +
∑

k

(x − 1)bk · (2k(x − 1) + k2) = c + (x − 1)v,

since symmetric slippage implies
∑

k kbk = 0. For the other term we begin with

∑
y

qb(x, y)( f (y) − f (x)) =
∑

1≤y<x

a((y − 1)2 − (x − 1)2) = a
x−2∑
m=1

m2 − a(x − 1)3

and use approximating sums for the integral to get

x−2∑
m=1

m2 ≤
∫ x−1

1
y2 dy ≤ (x − 1)3

3
.

Combining the last three displays with Lemma 1 we have

d
dt

E1(Nt − 1)2 ≤ c + vE1(Nt − 1) − 2a

3
E1{(Nt − 1)3}.

If we start with the stationary distribution, then the left-hand side is 0, so introducing
µ = E1(Nt − 1) and using Jensen’s inequality gives

0 ≤ c + vµ − 2aµ3

3
.

The cubic c + vx − 2ax3/3 on the right-hand side goes to −∞ as x → ∞, so µ

must be smaller than the largest root, ρ. To estimate this we note that if x > (3v/2a)1/2 +
(3c/2a)1/3 then we have

2a

3
x3 >

2a

3
x

(
3v

2a
+
(

3c

2a

)2/3
)

> vx + 2a

3
·
(

3c

2a

)1/3

·
(

3c

2a

)2/3

= vx + c.

From this we have µ ≤ ρ ≤ (3v/2a)1/2+(3c/2a)1/3, and the proof of Theorem 2 is complete.
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