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In sessile organisms such as plants, interactions occur locally so that important ecological
aspects like frequency dependence are manifest within local neighborhoods. Using
probabilistic cellular automata models, we investigated how local frequency-dependent com-
petition influenced whether two species could coexist. Individuals of the two species were ran-
domly placed on a grid and allowed to interact according to local frequency-dependent rules.
For four different frequency-dependent scenarios, the results indicated that over a broad
parameter range the two species could coexist. Comparisons between explicit spatial simula-
tions and the mean-field approximation indicate that coexistence occurs over a broader region
in the explicit spatial simulation. © 1999 Academic Press
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1. INTRODUCTION an advantage to rare species, leading to negative fre-
quency dependence in the relative fitness of species. More
generally, negative frequency dependence, an important

Interactions between species or genotypes, whether mechanism for the maintenance of genetic diversity in
negative or positive, can be important in determining the natural populations, can arise in a number of ways: there
diversity of species or genotypes within a community. is strong empirical evidence for such effects in both com-
Some, such as herbivory and disease spread, may convey petition (if resource requirements differ among species,
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Frequency Dependence in a Spatial Context

e.g., Antonovics and Kareiva, 1988) and predation (e.g.,
through apostasis, Clarke, 1969, 1979). Similarly,
negative frequency dependence may occur in parasite—
host systems if parasites prefer the most common host
type (May and Anderson, 1983). Other mechanisms,
such as competition for pollinators or mycorrhizae or
other mututalistic interactions, may lead to positive fre-
quency dependence. For example, pollinators may prefer
to specialize on the most common floral type and there-
fore be more likely to carry the common pollen on any
given visit to a plant. This gives the common floral type
an advantage. Finally, processes such as competition for
resources may be either positively and negatively fre-
quency dependent, depending on the relative strengths of
interspecific and intraspecific interactions, or may exhibit
mixed influences as frequencies change.

In concert, these influences may produce overall
species interactions that are positive over some ranges of
densities and negative over others. In the absence of spa-
tial localization of effects, the predictions from models of
simple frequency dependence are well known. In general,
negative frequency dependence facilitates coexistence
and positive frequency dependence does not. However, in
sessile organisms such as terrestrial plants and marine
invertebrates, and in any population in which movement
is restricted, the strongest interactions among individuals
take place locally (Harper, 1977; Antonovics and Levin,
1980). This means that frequency dependence is governed
by local densities. In situations where individuals interact
only within local subpopulations, there may be some
subpopulations where interactions are primarily positive
and others where interactions are primarily negative.
Therefore, inclusion of spatially local interactions can
confound our intuition about the outcome of positive
and negative frequency dependence. Models that con-
sider local interactions explicitly are needed, but these
models are so complex that the results are difficult to
interpret. In this paper, we analyze a simple spatial fre-
quency-dependent model. As we shall show, novel results
arise from incorporating spatially explicit interactions.

To investigate the effect of frequency-dependent inter-
actions in a spatial environment, we constructed
probabilistic cellular automata that retained the essential
characteristics of competition, but simplified the details.
By specifying very simple rules about the dynamics of an
individual cell in response to its own state and that of its
neighbors, one can explore how spatial structure influ-
ences the dynamics of populations. Recently, cellular
automata have become increasingly popular in the
ecological literature because they can be used to under-
stand the consequences of spatial structure in popula-
tions in a simple but intuitive way (Crawley and May,
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1987; Inghe, 1989; Green, 1989; Phipps, 1991; Hassell et
al., 1991; May and Nowak, 1992; Silvertown et al., 1992;
Molofsky, 1994).

Incorporating spatial structure into models can lead to
qualitatively different results from non-spatial models
(Kareiva, 1990). For example, Hassell et al. (1991) found
that the dynamics of a host—parasite system varied
depending on immigration rates among adjacent cells.
Stochastic spatial models are advantageous for studying
spatial structure, because in certain simplified scenarios
analytical solutions are possible (Durrett, 1988; Durrett
and Levin, 1994). These simplified cases can provide a
jumping-off point for more complex, and hence realistic,
ecological models. However, reference to the standard
models provides an expectation about the behavior of
more complex models. One example of a simplified
model is the “voter” model (Durrett, 1988), so named
because of its obvious analogy to human decision mak-
ing. An ecological interpretation of the voter model is
that each species or genotype occupies space strictly in
proportion to its presence in the community. For the
two-dimensional voter model, Holley and Liggett (1975)
have shown that coexistence cannot occur.

In this paper, we expand upon the voter model to con-
sider situations where the response of the species (or
genotype) is not simply proportional to the species that
are present, but where the species response is nonlinear
(ie., the common species is either enhanced or
diminished as a function of its frequency in the surround-
ing population). From this expanded voter model, we
show that a wide variety of spatially local, frequency-
dependent interactions can lead to coexistence and that
the exclusion of one species is relatively uncommon.

2. DEVELOPMENT OF THE MODEL

We consider competition between two species (species
0 and 1), for example, clonal plants, on a finite grid
(although the model applies equally well for two non-
mating genotypes). We assume that a site in the model
receives seed input primarily from itself and its four
nearest neighbors (Fig. 1). If a seed from a neighboring
patch is as likely to capture a site as a seed from that site
itself, then the probability that a site will be captured by
a particular species, (say for the case of annual plants) is
simply proportional to the frequency of that species in
the neighborhood. Suppose, for example, that species
compete equally and that each site contains exactly one
adult plant; then the probability that a site will be
occupied by species 1 is simply proportional to 7, the
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FIG. 1. The configuration of the neighborhood used in the model.

number of plants of species 1 in the five squares centered
at the focal cell; that is,

P(species 1) = g ,

where 7 is the number of plant species 1 in the five-square
neighborhood.

More generally, the probability of capturing a site may
increase or decrease depending on the ecological situa-
tion. We treat four general cases based on the following
assumptions.

First, we assume that each location or site contains a
single individual of either species 0 or species 1; we do not
allow empty cells. The dynamics are simple: the identity
(0 or 1) of the individual at a particular location depends
upon the identity of the individual at that location in the
previous time step and the identity of its four neighbors
(the von Neumann neighborhood). More general
neighborhoods are considered in Durrett and Levin
(1994). We assume that a propagule from a given cell has
probability 0.2 of landing in any of the five cells in its
neighborhood (including the donor cell), so that the
probability a focal cell will be occupied in the next
generation by a given species is determined by the number
of cells in the neighborhood occupied by that type; such
rule systems, based only on the sum, are sometimes
termed totalistic (Wolfram, 1986). One may think of such
systems as stating that the probability a site will be
occupied by species 1 is a function only of the number of
available propagules of species 1 in the neighborhood.

In the deterministic case, these probabilities are 0’s and
I’s. The possible “transition” rules then specify the state
of a cell in the present generation, given the numbers in
the neighborhood in the previous generation. This
associates one of two states with each of the six possible
sums, leading to 64 possible sets of rules. We reduce that
set to 16 by requiring that in cases where only one species
is present in a neighborhood (corresponding to a sum of
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0 or a sum of 5), it maintains the site in the next genera-
tion; i.e., if the number of cells in the neighborhood
occupied by species 1 is zero, species 0 always wins,
whereas if the number of cells occupied by species 1 in the
neighborhood is 5, species 1 always wins. We reduce the
set further, to four possible cases, by assuming symmetry
between the two species. Thus, the four general cases
correspond to the following four scenarios. The probabil-
ity of capturing a site may increase with the number of
individuals of that species present in the neighborhood,
but the increase may be nonlinear (Fig. 2A). Alter-
natively, the probability of success need not increase
with frequency; for example, where pathogens are impor-
tant, there is an advantage to being rare. The effects of
disease may depress fitness (probability of site capture)
as frequency increases from low densities (Fig.2B).
Ultimately, the probability of success must rise with local
frequency, because if only one species is present in the
neighborhood, it is the only candidate for capturing the
site. The picture may become even more complicated if
multiple processes interact. For example, the effects of
disease may dominate when one species is rare, but be
overshadowed if competition favors the common species
at intermediate densities. In this case, species 1 loses
when very rare but can capture the site when moderately
rare, as might be the case in the presence of an Allee effect
(Fig. 2C). In the final case, species 1 wins when very rare
but loses when moderately rare (Fig. 2D).

These four basic cases (Table I) define the complete
parameter space but are of limited interest because they
do not admit stochasticity. In any realistic scenario,
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FIG. 2. The probability that species 1 will capture the target site
for the four scenarios given in Table I. Rule 1 is represented in A, Rule 2
is represented in B, Rule 3 is represented in C, and Rule 4 is represented
in D.
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TABLE 1

The Four Deterministic Rules Used in the Simulation Model

The sum of the neighbors

Rule systems 1 2 3 4
1. Positive 0 0 1 1
2. Negative 1 1 0 0
3. Allee effect 0 1 0 1
4. Modified Allee 1 0 1 0

Note. The deterministic cases delimit the extreme cases and form
the boundary of the square of the parameter space.

stochasticity will be important. Hence we define the
following:

p; = probability that the target cell becomes a 1 given
that the neighborhood sum equals 1

p, = probability that the target cell becomes a 1 given
that the neighborhood sum equals 2.

Because of the symmetry assumptions already men-
tioned, these two parameters totally characterize the set
of possibilities because p; =1— p,and p,=1— p,. Thus,
p; and p, determine the dynamics of competition.

The purely deterministic cases (p; =0or 1, p,=0o0r 1)
form the boundaries of the feasible set of parameters. In
particular, p, = p, =0 represents absolute positive fre-
quency dependence, in which the numerically dominant
species always wins locally; p,=p,=1 represents
absolute negative frequency dependence. The other cases
are intermediate, representing various degrees of positive or
negative frequency dependence depending on the local state.

In this paper, we consider completely symmetric
dynamics between the two species. If that assumption is
relaxed, instability remains for mean field dynamics but
not for the interacting particle system on the infinite grid
(Durrett and Levin, 1994). Even under weak asymmetry,
however, the analyses for the symmetric case provide
insight into the dynamics on finite grids, or on finite
regions of the infinite grid, and hence a first step toward
understanding fast time scale dynamics on the infinite grid.

3. DETERMINATION OF THE REGION
OF COEXISTENCE

Mean-Field Approximation

Much previous work has shown that the dynamics of
systems with local interactions will differ fundamentally
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from mean-field versions, but that the latter provide a
point of departure in classifying outcomes and in guiding
simulations (e.g., Durrett and Levin, 1994; Tainaka,
1994; Harada et al., 1995; Kubo et al., 1996; Nakamura
et al., 1997; Hiebeler, 1997). Thus, we first consider a
mean-field approximation to the system, by considering
an infinite lattice on which sites are mixed randomly after
each time step. On such a lattice, the proportion of
neighborhoods with a specified number of individuals of
species 1 is given by the binomial expansion; and since
the lattice is infinite, we can write a deterministic
system describing x,, the proportion of sites occupied
by species 1:

Xr+1 =5p1xl(1 _xt)4+ 10p2Xf(1 —X,)3 + 10(1 _Pz)

xx3(1—=x)?+5(1—p)xH(1—x,)+x3. (1)

The equilibrium equation x,, | = x, is a quintic equation,
with five possible equilibria.

By inspection, we verify that 0, 1/2, and 1 are all equi-
libria of the mean-field Eq. (1), as we would expect from
the symmetry of the system. Factoring out these roots
leaves us with a quadratic equation that determines the
remaining two roots, which we will call the “quadratic”
equilibria. Depending on parameter values, these two
roots may or may not “exist” biologically as equilibria.
To exist as equilibria for the system, they must be real
and lie between 0 and 1.

The stability of solutions can be assessed by looking at
the Jacobian: the derivative of x, , ; with respect to x,. A
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FIG. 3. Phase plot for the mean-field approximation of the local
frequency-dependent model.
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solution will be locally stable when |J| < 1. The Jacobian
at the equilibria x =0 and x =1 is given by

J(0) =J(1)=5p,. (2)

Hence the one-species equilibria will be stable when
p1 < 1/5 and unstable when p, > 1/5. In this non-spatial
system, the ability of a rare species to invade does not
depend at all on p,. This is to be expected, since without
spatial correlations, an individual from a rare species will
encounter other individuals of the same species negligibly
often.

The Jacobian when x = 1/2 is given by

J(1/2)=(15—15p, — 10p,)/8.

This equilibrium has J>1 and thus “repels” solutions
locally when 15p, + 10p, <7 (there is another way for
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this equilibrium to become unstable, which we will dis-
cuss later).

These two criteria define four regions of parameter
space. Intuitively, we might expect the two “quadratic”
solutions to exist biologically, and be stable, when the
equilibria at 0, 1/2, and 1 are all repulsive, and to exist
and be repulsive when the equilibria at 0, 1/2, and 1 are
attractive. Analysis of (1) indicates that this is in fact the
case, and that in the larger regions where the one-species
equilibria and the equilibrium at 1/2 are of different
types, the quadratic equilibria do not exist biologically.

The resulting regions of phase space are shown in
Fig. 3. The two largest domains of this system are the
“ergodic” regime, where only the x =1/2 equilibrium is
stable, and the “clustering” regime, where only the equi-
libria at x =0 and x =1 are stable. In these two regimes,
the two quadratic solutions do not exist biologically. In
addition, there is a small “multiple outcome” regime

FIG. 4. The (0.35, 0) model from a vertical interface after 1000 updates.
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where the equilibria at 0, 1/2, and 1 are stable and
divided by unstable quadratic equilibria, and a “phase
separation” regime where only the quadratic equilibria
are stable. The small region in the upper right-hand corner
will be discussed below.

Interpretation of these results is straightforward.
Increasing either p, or p, generally tends to favor the
rarer species. When both values are large enough, in the
ergodic region, the rare species always tends to do better,
and the species exist in a 50/50 balance. When both p,
and p, are small, in the clustering regime, the common
species always does better and whichever species gains an
advantage will exclude the other one. If p, is moderately
large and p, is very small, however, we have a situation
where a very rare species is favored, whereas a
moderately rare one is not. This is the phase separation
region, where a rare species will invade, but not reach
50% prevalence, instead stopping at some intermediate
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equilibrium. Similarly, in the multiple outcome regime p,
is small while p, is very large. Here, a moderately rare
species can increase to 50 % prevalence, while a very rare
species will go extinct, leading to three qualitatively dif-
ferent possible outcomes, depending on initial condi-
tions. The results of the non-spatial model are sum-
marized in Fig. 3.

There is another way for the equilibrium at x=1/2 to
become unstable. From (3), we see that J< —1 when
15p, + 10p, > 23 (requiring both p, and p, to be quite
close to 1). This corresponds to a “flip” bifurcation. The
equilibrium attracts points that are far away, but is not
stable, leading to cycles of period 2. As p, and p, increase
even further, we would expect to find a period-doubling
cascade. Note that the quadratic equilibria do not exist in
this region of parameter space. From a biological point
of view, the situation in which species 1 almost certainly
wins a site if it has one or two individuals in the

FIG. 5. The (0.27, 0) model from a vertical interface after 5000 updates.
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neighborhood, and almost certainly loses if it has three or
four, but certainly wins with five seems rather contrived;
but it is of interest for mathematical completeness.

Simulation Results

Returning to the nearest-neighbor spatial version of
our competition model, we investigate the various types
of system behavior that can arise for different choices of
the parameters p, and p,. In light of the preceding mean-
field analysis, we should anticipate a similarly complex
phase diagram, but the extent of correspondence is hard
to predict. Unfortunately, rigorous mathematical anal-
ysis is impossible except in the linear voter case (1, 2)
(Holley and Liggett, 1975). Thus we resort to Monte
Carlo simulation in order to compare and contrast the
phase diagram of the spatial model with that of its non-
spatial counterpart.

Molofsky et al.

Figure 3 suggests that evidence of ergodicity, cluster-
ing, and phase separation may be most easily discern-
ible with parameters on the “bottom edge” {p,=0;
0<p,<1}. In order to test for qualitatively different
spatial behaviors, we use the WinCA cellular automata
modeling software to check how readily each species is
able to invade the other’s terrain. Our experiments take
place on a 640 x 480 array, with species 0 (white) initially
on the left half, with species 1 (black) on the right half]
and with a mixed boundary condition that wraps the top
edge to the bottom, but disables interaction between the
left and right edges. The “mixed” boundary condition
allows us to simulate competitive interactions occurring
along a discrete boundary as would be the case for an
ecological border. By wrapping the top of the array to the
bottom, but not the left to the right, interactions can
propagate only from the initial interface rather than two
“parallel” interfaces as would occur in a torus. This setup

FIG. 6. The (0.31, 0) model from a vertical interface after 2000 updates.
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effectively emulates large-scale interface dynamics in an
infinite system. We also analyze more conventional
simulations, starting from random initial configurations
with 0’s and 1’s randomly placed on the grid in a 50/50
mixture (ie., ¢€(0,1) (ie., from Bernoulli product
measures u,)) with wraparound at each edge. As it turns
out, we encounter three distinct scenarios by varying p,,
with p, fixed at 0.

If p, =0.35, or for any larger value of the parameter,
each species invades the other’s territory at a linear rate;
and between the two wave fronts the system rapidly
reaches an equilibrium with density 3. Figure 4 shows
this process after 1000 updates. Starting from any ran-
dom distribution (u,, ¢ € (0, 1)), the simulation appears
to converge quickly to the same symmetric equilibrium
with short length scale, i.e., a random pattern. This,
then, is the ergodic case. One should note that our
probabilistic automata, when restricted to a finite array,
are finite Markov chains with only the trivial states “all
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0°s” and “all 1’s” as traps. Therefore, strictly speaking,
nontrivial invariant distributions do not exist for the
finite systems. We are observing a metastable steady state
that will persist for eons, but eventually will break down.
Only in the infinite system should we expect to obtain a
true stochastic equilibrium with this or any other choice
of parameters.

For p, =0.27 or smaller, on the other hand, neither
species is able to make significant headway into the
other’s domain. Rather, the interface stays tight even
after 5000 updates (Fig. 5). Starting from the symmetric
random distribution u,,,, this standoff allows solid
regions of either species to consolidate. Pockets of one
species that are completely surrounded by the other
gradually disappear, by a kind of curvature-driven sur-
face tension. In other words, because a neighborhood
that spans a curved boundary will on average have
unequal frequencies of the two species, the common type
will continue to be favored albeit at an ever-decreasing

FIG. 7. The (0.31, 0) model from symmetric randomness after 5000 updates.
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rate as the boundary curvature decreases. In our finite
simulation, the species that acquires more territory by
chance eventually takes over the entire array. This is the
clustering regime. From random initial distributions with
any density other than 3, the consolidation process favors
the predominant species, so that after a long time, in all
likelihood, that species will take over the finite system.

The plot thickens when we investigate p, =0.31, in
which case each species is able to invade, but only as a
minority faction. Waves of mixed populations advance
steadily (at about half the speed of the ergodic instance
above), as shown in Fig. 6 after 2000 updates. Now,
however, there is evidently a predominance of species 0
emerging on the left, and a predominance of species 1 on
the right. For instance, sample averages over moderate-
sized windows within the predominantly species 0 region
average about 0.2 and rarely exceed 0.25, whereas corres-
ponding averages within the predominantly species 1
region average about 0.8 and are rarely lower than 0.75.
This, then, is phase separation. The corresponding
dynamics starting from a density of 0.5, u, ,, create ever
larger patches of the two nontrivial equilibria over time,
with the changes in relative frequency being determined
by interaction in neighborhoods at the patch interfaces;
Fig. 7 shows that process at time 5000. For any other
¢ € (0, 1) the evolution starting from u, apparently con-
verges to nontrivial steady state with a higher density of
the initially prevalent species. To summarize, the phase
point (0.31, 0) corresponds to a system in which “all 0’s”
and “all 1’s” are unstable, yet there are two distinct stable
mixed equilibria dominated by 0’s and 1’s, respectively.

The simulations provide an estimate of the qualitative
patterns that develop. However, to quantify differences,
we calculated mean time to extinction and clustering for
two one-dimensional transects through the parameter
space. For mean time to extinction, we selected a transect
that contained the linear voter model p, =0 to 2 at 0.1
intervals, p, =0.4. We simulated 100 starting conditions,
each containing a 50/50 mixture of the two species and
recorded when one species excluded the other species. We
set an upper limit of 10,000 generations so for cases
where both species persisted at 10,000 generations, we
underestimated the time to extinction. The mean time to
extinction increases as we approach the boundary
between clustering and ergodic (Fig. 8(top)).

To calculate the clustering index, we calculated the fre-
quency each species was next to the same species versus
the other species. The one-dimensional slice was chosen
to encompass ergodic regions of varying distances from
the clustering border. Thus, we chose p,=0.2 and
p>=0.5t0 1.0. We averaged 20 simulations (each started
at an initial frequency of 50/50). Clusters of each species
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FIG. 8. (Top) Mean (+1 se) time to extinction (p; =0 to 0.2,
p>,=04) and (bottom) mean (+1 se) cluster index (p; =02 and
p>,=0.5to 1.0) for the cluster region and ergodic region, respectively.

develop close to the clustering border, i.c., p, =0.2 and
p,=0.5, but as we move farther away from the border
(p>,=0.6to0 1.0), any association between the two species
breaks down and we see only random patterns
(Fig. 8(bottom)).

Our initial experiments indicate convincingly that the
bottom edge of the spatial phase diagram agrees
qualitatively with that of the mean-field model, exhibit-
ing ergodicity, clustering, and phase separation, though
this last phenomenon would seem to be rather rare. The
next order of business is to obtain a good empirical
estimate of the complete spatial phase diagram—in par-
ticular, searching for evidence of multiple outcome and
periodic phases. To this end, we have enlisted the aid of
CAMBS, a dedicated cellular automata machine from
MIT capable of simulating our model on a 512 x 512
array at several hundred updates per second. We con-
clude this section by summarizing our findings based on
extensive, detailed simulation of the entire (p,, p,)
parameter space using both WinCA and CAMS.

Motivated by Fig.3, we have investigated barely
ergodic systems for large sampling values of p,, especially
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FIG. 9. The (0.998, 0.998) model from symmetric randomness after 5000 updates.
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for p, between Z and 1, starting from random distribu-
tions with very small density of the rare type (e.g., from
Uy01)- In multiple outcome cases, one would expect con-
vergence to all 0’s from sufficiently small initial densities
of species 1. In every instance, however, small isolated
configurations of species 1—such as the dyads described
in the next section—have a propensity to nucleate
linearly growing patches of the symmetric equilibrium.
We conclude that, in contrast to the mean-field model,
there is no multiple outcome regime of the spatial model.

To our surprise, careful inspection of a minuscule
neighborhood of the upper right corner of the phase
space does reveal a fourth regime for the spatial model
corresponding to the mean-field periodic case. For
instance, starting from u,,, on a 320 x 240 array with
wraparound edges, parameter choices p, = p,=0.998
lead to the highly clustered configuration of Fig. 9 after
5000 updates. What’s going on here? The system is best
viewed as a perturbation of the deterministic cellular
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automaton at (1, 1), which is locally periodic, meaning
that the sequence of values at each site repeats from some
time on, but the sequences at different sites can have dif-
ferent patterns and lengths. That rule subjected to very
occasional random errors self-organizes into quasi-peri-
odic configurations dominated by horizontal and vertical
clusters of period 2 stripes. Over time stochastic fluctua-
tions prevent fixation and, provided that the error is
small enough, aligned clusters apparently grow to
arbitrarily large length scale. This phase admits two
totally aligned steady states: v, and v, say. Starting from
any u, with ¢e(0,1), the dynamics converge to
3u, + 3v,. For cases in which the errors occur more than
a few times in a thousand, however, the alignment pro-
cess breaks down and ergodicity prevails. (A similar but
more robust phenomenon takes place in the opposite
corner of the square: rule (0,0), ie., deterministic
majority vote, is locally periodic with fixation at most
sites, whereas any small or moderate random perturba-
tion of (0, 0) results in clusters.)

Finally, the results of our extensive CAMS simulation
are summarized in the estimated phase diagram of
Fig. 10. Note that the boundary separating the clustering
and ergodic regions runs from about (0.024, 1) at the top
edge, down through the linear voter point (0.2, 0.4),
before a bifurcation encloses the tiny phase separation.

4. DISCUSSION

Among the fundamental questions in ecology are
determining under what conditions two species can
coexist and understanding why we see the patterns of
coexistence we do in nature. Simple spatial models have
arole to play in answering both these questions. We have
shown using a simple spatial model of local frequency-
dependent competition between two species that
coexistence of two species is possible for large regions of
the parameter space. In the region of the parameter space
corresponding to positive and negative frequency
dependence, the conclusions from the mean-field model
and the explicit spatial model are similar to conclusions
from nonspatial models of frequency dependence, mainly
that positive frequency dependence leads to exclusion
and negative frequency dependence allows coexistence.
Within the region of the parameter space corresponding
to positive frequency dependence, the mean-field model
and the explicit spatial model both predict exclusion of
one species, but in the explicit spatial simulation, exclu-
sion can take many generations. Choosing parameter
combinations close to the border between positive and
negative frequency dependence causes exclusion to occur
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very slowly. In the proportional case (p; =0.2, p,=0.4)
exclusion can take nearly 10,000 generations. In any
reasonable ecological study, these long exclusion times
would effectively appear as coexistence of the two species.

This simple spatial model has bearing on a second
major question. What creates patterns in communities?
One surprising result from this study is that stochastic
rules can produce persistent spatial patterns that are
maintained over long time intervals. Clusters or patches
develop that have characteristic sizes but where the
majority and the minority species coexist. In these cases,
the majority patch type is infected with a small number
of the minority species and this association is stable
through time. In addition, different characteristic patch
sizes occur at different regions of the grid. Larger clusters
appear as one approaches the boundary between
coexistence and exclusion. The presence of persistent spa-
tial patterns in a relatively small area might lead a field
ecologist to conclude that an underlying environmental
factor could be structuring the community. As one moves
farther into the coexistence region, the clustering breaks
down into random associations. In the purely deter-
ministic case, p; =1, p, =1, one gets a random or quasi-
periodic arrangement of the two species in space. The
presence of random patterns developing from deter-
ministic rules might also lead a field ecologist to conclude
that environmental noise rather than species interactions
is responsible for the patterns. Purely deterministic
rules leading to chaotic spatial patterns has been
demonstrated in other studies (Hassell et al., 1991;
Molofsky, 1994) and such results are typical of cellular
automata models (Wolfram, 1986). A more interesting
result is that persistent patterning is possible for
stochastic parameters.

The stochastic model allows us to assess how easy it is
to move from the extinction region to the coexistence
region. The region of the parameter space that
corresponds to exclusion is relatively small, meaning that
any combination of parameters resulting in extinction is
close to the coexistence boundary so a change in the
parameter values is more likely to promote coexistence.
Therefore, we can ask, what ecological circumstances
might allow a species to escape from the extinction
region? There are ecological situations that will minimize
the chance of extinction. First, if predominantly positive
frequency dependence is occurring (i.e., at the p; =0,
p»=0 border) then if stochasticity is high enough, the
probability of coexistence increases. Alternatively, the
sum of the two processes, say, for example, pollination
and competition, leads one process to dominate at cer-
tain local frequencies and the other to dominate at other
local frequencies.



Frequency Dependence in a Spatial Context

The precise boundary for the region of coexistence
differs when full mixing is assumed as in the mean-field
approximation, rather than local mixing, as in the
simulation. Specifically, the multiple outcome region
(found when p, is small and p, is relatively large) disap-
pears in the explicit spatial model, making coexistence
possible under a wider range of conditions than is found
in the mean-field approximation. Biologically, this is the
region where the rare species “wins” only if the two
species occur at approximately equal frequencies, as
might be the case if pollinators limit reproduction at low
frequencies, but competition for the same resource limits
reproductive success at more moderate frequencies. The
placement of the other four regimes (clustering, phase
separation, ergodic, and periodic) are modified only
slightly in the explicit spatial simulation.

Another analytical approximation for the spatial
model can be found by considering the behavior of dyads
(occupied pairs of cells). The dyad provides a more
appropriate basis for considering establishment than
does the monad (single cell), because an invading species
occupying a cell must have come from some occupied
neighbor; thus, it is more likely that a neighbor cell will
be occupied than mean-field considerations would
suggest. When dyads are considered, the boundary
between coexistence and exclusion is in excellent agree-
ment with the analytical criterion for a rare species of
either species to spread. The remarkable success of this
“rule of thumb” cannot be completely explained (Levin
and Durrett, 1996), although it is consistent with
approximations for pair approximations.

The dyad rule is easily derived. Consider a pair of cells
occupied by species 1 and surrounded by six neighbors
occupied by species 0. The probability that the rare
dyadic type will increase in the population is found by
comparing the expected number of daughter cells
(6p; + 2p,) that replace the two parent cells, and requir-
ing therefore that for population growth

6p1+pr>2;
that is,
3p,+p> 1

This condition makes intuitive sense. Large values of
p; and p, accord with negative frequency dependence,
promoting coexistence. The so-called neutral case,
p1=0.2, p,=0.4, in which coexistence is impossible, sits
on the boundary of this region. Increasing p; and
decreasing p, equally from these values introduce
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nonlinearities in which locally rare species do better than
those with more similar neighbors (Levin and Durrett,
1996), and moves the parameters into the region of
coexistence. The dyad rule does not predict the phase
separation regime that appears in both the mean-field
model and explicit spatial simulation.

Note that it may seem surprising that one does not
need to impose the monad rule (5p; > 1) as a necessary
condition for spread. The explanation lies in the
stochastic nature of the process. On a large grid, if the
monad rule is violated but the dyad rule is satisfied (e.g.,
if p,=0.1 and p, =0.5), most introductions will fail. A
few isolated monads, however, stochastically will
duplicate, getting beyond the initial threshold and allow-
ing the dyad rule to become operational.

The results of this paper present a general analysis of
spatially explicit frequency dependence, and a framework
for embedding other results. Most notably, Hubbell
(1979) showed that proportional frequency dependence
can lead to long-term persistence of tree species in tropi-
cal forests, although the eventual outcome will be extinc-
tion. Bever et al. (1997) used a spatially explicit cellular
automata model to show that positive feedback between
soil microorganisms and the plant species they infect can
lead to long-term persistence of two plant species. Our
model expands upon this previous work to provide a
more general framework for examining frequency-
dependent interactions among species. We have shown
that coexistence occurs for a large region of the
parameter space and that the patterns that develop are
random, even though interactions are not. In regions of
the parameter space where exclusion occurs, long-term
persistence is possible. Moreover, statistically recogniz-
able patch structure can develop and be maintained over
long time intervals. Effective long-term persistence with
coherent patch structure may arise from underlying
environmental variation, or from positive frequency
dependence (see Levin, 1974). Distinguishing between
these alternatives can come only from careful empirical
work.
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