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We introduce a one dimensional contact process for which births to the right of
the rightmost particle and to the left of the leftmost particle occur at rate *e

(where e is for external). Other births occur at rate *i (where i is for internal).
Deaths occur at rate 1. The case *e=*i is the well known basic contact process
for which there is a critical value *c>1 such that if the birth rate is larger than
*c the process has a positive probability of surviving. Our main motivation here
is to understand the relative importance of the external birth rates. We show
that if *e�1 then the process always dies out while if *e>1 and if *i is large
enough then the process may survive. We also show that if *i<*c the process
dies out for all *e . To extend this notion to d>1 we introduce a second process
that has an epidemiological interpretation. For this process each site can be in
one of three states: infected, a susceptible that has never been infected, or a
susceptible that has been infected previously. Furthermore, the rates at which
the two types of susceptible become infected are different. We obtain some infor-
mation about the phase diagram about this case as well.

KEY WORDS: Contact processes; Poisson process.

1. INTRODUCTION AND RESULTS

There are two motivations for our work. The first is the theoretical question:
Can changing the two external birth rates of the one dimensional contact
process significantly affect its chances of survival? To formulate this question
precisely and to prepare for our second question, we will define the basic
contact process in d dimensional space. Among the several notational
possibilities (see Liggett, (10) Durrett(4, 5)), we will choose to define the con-
tact process `t to be a Markov process in which:
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(i) The state at any time t�0 is a function from Zd to [0, 1] with
`t(x)=1 indicating that the site x is occupied by a particle, while `t(x)=0
indicates that the site is empty.

(ii) Particles die at rate 1 and for each vacant nearest neighbor give
birth to a new particle there at rate *.

The first modification of the basic rules we will consider here pertains only
to the one dimensional contact process started from a finite set of occupied
sites. In what we will call the boundary contact process, if the leftmost par-
ticle is at lt and the rightmost particle is at rt then births at lt&1 and at
rt+1 occur at rate *e , where e is for external. To symmetrize the notation
we introduce *i , with i for internal, to denote the common value of all the
other neighbor birth rates.

Let !0
t denote the boundary contact process started from a single

occupied site at the origin, let |!0
t | be the number of occupied sites at time t,

and let 00=[ |!0
t |>0, for all t�0] be the event that the contact process

does not end up in the all 0's state. The following monotonicity property
is intuitively clear, though it does require some work to prove:

Proposition 1. The survival probability P*i , *e
(00) is an increasing

function of each of its two variables *e and *i .

Proposition 1 implies that if we examine the behavior of the system as
a function of (*i , *e) there is a critical curve so that parameters above the
curve correspond to survival, i.e., P*i , *e

(00)>0, while the points below the
curve correspond to dying out, i.e., P*i , *e

(00)=0. Let *c=inf[*: P*, *(00)
>0] be the critical value for the contact process. It is clear from Proposi-
tion 1 that if *i>*c and *e>*c then the system survives, while if *i<*c

and *e<*c then the system dies out.
This leaves us with two quadrants of parameter space to explore. See

Fig. 1 to follow our progress. Theorem 1 explores the lower right quadrant:
*i>*c , *e<*c . The next result shows that even though the outside rates
are used at only two sites, changing them can reduce the survival probability
to 0.

Theorem 1. (a) If *e�1 then the boundary contact process dies
out from any 0�*i��.

(b) If *e>1 then for *i>4(*e) the boundary contact process
survives. Furthermore,

lim inf
t � �

P(`0
t (x)=1)>0
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Fig. 1. Phase diagram for boundary contact process, d=1.

Proof of (a). The interval [lt , rt] of occupied sites gets longer by 1
at rate at rate 2*e , and gets shorter by at least 1 at rate 2. Comparison with
a random walk then shows that the system dies out with probability one
if *e�1. g

To prove part (b) we start with the fact that when *i=� the interval
[lt , rt] is always fully occupied. Thus, it gets longer by 1 at rate 2*e , gets
shorter by 1 at rate 2, and the process survives with positive probability for
*e>1. Combining this idea with a block construction, we can easily prove
the second conclusion. We give the details of the proof in Section 2.

Our next result covers the upper left corner, *i<*c , *e>*c . In words,
it says that a supercritical rate on the outside can't save a process that is
subcritical on the inside.

Theorem 2. For *i<*c the boundary contact process dies for all
*e>0.

This is not as easy to prove as it might seem at first glance. To succeed,
we compared with a version of the boundary contact process in which
there were no deaths at the boundary and then exploited the fact that the
bonus births were occurring on a monotone increasing path.

Theorems 1 and 2 complete our description of the phase diagram for
the modified one dimensional model. We do not know how to give a good
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definition of an ``external particle'' in two dimensions, so we will instead
consider an epidemic in a population where susceptibles who have never
had the disease acquire it at rate *e , while those who have had the disease
previously acquire it at rate *i . To record the medical history of the suscep-
tibles in the state of the system we write 't : Zd � [&1, 0, 1] where,
1=infected, &1=never infected, 0=susceptible who has been previously
infected. We call 't the three state contact process. Letting n1(x) be the
number of nearest neighbors of x that are in state 1, we can write its flip
rates as:

&1 � 1 at rate *en1(x)

0 � 1 at rate *i n1(x)

1 � 0 at rate 1

Let '0
t denote the three state contact process started from a single 1 at

the origin in a sea of &1's. Let |'0
t | be the number of 1's sites at time t,

and let 00=[ |'0
t |>0 for all t�0] be the event that the infection does not

die out. If P*i , *e
(00)>0 we say that the three state contact process sur-

vives. It is trivial that if both *i and *e are larger than the critical value for
the contact process then the system will survive, while if both are smaller
than *c it will die out. So again, we have two quadrants of parameters to
explore.

To facilitate comparison with Theorem 2, we will start this time with
the upper left quadrant: *i<*c , *e>*c . In the extreme case *i=0
our model is the standard spatial epidemic or forest fire model (see
Kulasmaa(9)), so it follows from known result that

Proposition 2. If *e>*f , the critical value for the forest fire, and
*i�0 then the three state contact process survives.

The last result is vacuous in d=1 since *f=� there. The next result
which has a proof very similar to that of Theorem 2 gives a good reason
for this.

Theorem 3. In dimension 1, if *i<*c then the infection dies out in
the three state contact process for any *e�0.

Turning to the lower right corner, *i>*c , *e<*c we encounter a
behavior totally different from the result for the one dimensional boundary
contact process given in Theorem 1. To be able to contrast our next result
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with the survival in Proposition 2, we formulate a notion stronger than
mere survival. We say that the infection persists if :

lim inf
t � �

P*i , *e
('0

t (x)=1)>0

Theorem 4. For the three state contact process, if *i>*c then the
infection persists for any *e>0.

Note that the result we have stated in Theorem 1(b) implies per-
sistence but in contrast only holds when *e>1 and *i>4(*e).

Combining Theorems 3 and 4 we see that in one dimension, we have
the trivial behavior

*i <*c infection dies out

*i >*c infection persist

Figure 2 gives a diagram of the situation in d>1. To complete the picture,
we have

Theorem 5. Persistence is impossible when *i<*c , for the three state
contact process.

Putting together Proposition 2 and Theorem 5, we see that if *e>*f

and *i<*c then the three state contact process survives but does not per-
sist. In other words, there is a positive probability that there is always at
least one 1 somewhere in the graph but the probability of having a 1 at a
fixed site at time t goes to 0 as t goes to infinity.

Fig. 2. Phase diagram for three state contact process.
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The remainder of the paper is devoted to proofs. Proposition 1 and
Theorem 1 are proved in Section 2, Theorems 2 and 3 are proved in Section 3,
Theorem 4 in Section 4, and Theorem 5 in Section 5.

2. THE CONSTRUCTION AND THE PROOFS OF PROPOSITION 1
AND THEOREM 1

We begin by presenting a construction of the boundary contact pro-
cess from independent Poisson processes [T x, k

n , n�1] x # Z and 0�k�4.
The processes [T x, 0

n , n�1] have rate 1. At their arrival times we kill
the particle at x if it is occupied.

The processes [T k
n , n�1] for k=1, 2 (note no superscript x) have

rate *e . At the arrival times T 1
n a birth to the left comes from the left-most

particle. Likewise, at the T 2
n , a birth to the right will occur from the right-

most particle.
The processes [T x, k

n , n�1] for k=3, 4 have rate *i . At the arrival
times T x, 3

n , a particle at x will send an offspring to x&1, but only if the
particle at x is not the left-most particle, since those births are taken care
of by T 1

n . Likewise, at times T x, 4
n then there will be a birth to x+1

provided the particle at x is not the right-most particle.
Although there are infinitely many Poisson processes involved, and

hence no first arrival, it is not hard to show that:

(2.1) Lemma. The rules described above specify a unique process.

Harris's (1972) argument covers this. You can read about the details,
for example, in Section 2 of Durrett.(6)

Proof of Proposition 1. Let (*i , *e) and (*$i , *$e) be such that *i�*$i
and *e�*$e . Consider a finite set A=[x1 , x2 ,..., xn] with x1<x2< } } } <xn .
We say that a finite set B is more spread out than A if there is a function
,: A � B so that

|,(xi)&,(xj)|�|x i&xj | for all xi , xj # A

and

min B= y1=,(x1)< } } } <,(xn)= yn=max B

We say that the configuration !$t is more spread out than !t if [x:
!$0(x)=1] is more spread out than [x: !0(x)=1].

(2.2) Lemma. If !$0 is more spread out than !0 then the two process
can be constructed on the same space so that !$t is more spread out than
!t at all t�0.
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The existence of this coupling is enough to prove Proposition 1, so it
suffices to prove the lemma. The ideas here are very similar to those in the
proof of Theorem 1.9, Chap. VI in Liggett.(10)

Proof. To do this we will have to use a construction slightly different
from the graphical representation. Again all the Poisson processes used are
independent. Let x1<x2< } } } <xn be all the sites occupied by !t . Let
y1< y2< } } } < yn be the corresponding sites occupied in !$t with y1 and yn

being the leftmost and the rightmost sites occupied by !$t , respectively.

(i) Death Events for the particles in xm and ym are derived from the
same Poisson process [T� m, 0

n , n�1] with rate 1.

(ii) External Birth Events are performed simultaneously for pro-
cesses !t and !$t by using the processes T 1

n and T 2
n (they both have rate *e)

introduced above. To take care of the extra births in !$t , we introduce two
Poisson processes S 1

n and S 2
n with rates *$e&*e . At the arrival times of S 1

n

and S 2
n the leftmost and rightmost particles of !$t give birth to their left and

right, respectively.

(iii) Internal Birth Events are performed simultaneously for the par-
ticles at xm and ym by using the processes T� m, k

n with rate * i , to the left
(k=3) and to the right (k=4). Again, we introduce Poisson processes
S m, k

n with rate *$i&* i (as we did in (ii)) to take care of the extra births for
the particles at ym .

(iv) Additional flips for the particles of !$t . In addition to the ym there
may be other sites (between y1 and yn) that are occupied by particles in the
process !$t . In order to take care of these flips we use independent Poisson
processes [T y, 0

n , n�1] with rate 1, [T y, 3
n , n�1] and [T y, 4

n , n�1] with
rate *$i . At the arrival times of T y, k

n we do nothing if y is one of the ym .
However, if y is not one of the ym then at the arrival times of T y, 0

n we kill
the particle (if any) at y, at the arrival times of T y, 3

n and T y, 4
n the particle

at y (if any) will give birth on y&1 and y+1, respectively.

The processes !t and !$t are constructed simultaneously by using (i)
through (iv). To prove Lemma 2.2 it suffices to check that no transition in
any of the Poisson processes can destroy the comparison. To do this is use-
ful to have a concrete example to keep in mind:

0
0

0
0

0
0

y1

1
0

0
1

x1

y2

1
1

x2

0
0

1
0

0
0

1
1

x3

y3

1
1

x4

0
0

0
0

y4

1
0

0
0

0
0
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Deaths at internal sites clearly preserve the comparison. After a death at
the left edge, the new left-most particle will be at x2 in !t and at a point
� y2 in !$t , so things are more spread out than before. External birth events
are easy to accommodate. One to the right from the right end leads to new
particles xn+1 and yn+1 that are paired up. At internal birth events, several
things can happen: (i) the birth may be possible in !$t but not in !t (e.g.,
at time T� 1, 4

n for the example above), or (ii) a birth in !t may be matched
by a birth onto an already occupied site in !$t (e.g., T� 3, 3

n ).

Proof of Theorem 1. Part (a) was proved in the introduction, so we
only establish (b). We start by introducing some notation. Let

L=[(m, n) # Z2 : m+n is even]

B=(&4L, 4L)_[0, T ] Bm, n=(2mL, nT )+B

I=[&L, L] Im=2mL+I

where L and T are parameters to be chosen later.
We declare (m, n) # L to be ``wet'' if for the process starting with every

site in Im in state 1 at time nT, and not allowed to give birth outside of the
space-time box Bm, n , every site of Im&1 and every site of Im+1 has a 1 at
time (n+1) T. We impose the spatial cutoff so that the events [(m, n) is
wet] and [( j, k) is wet] are independent if ( j, k) and (m, n) are not nearest
neighbors in L. In other words, the events that the various sites are open
are 1-dependent.

We fix *e>1. We are going to show that when *i=�, for any =>0
there are L and T such that

P((m, n) is wet)�1&=

By translation invariance we may consider the site (0, 0) in L. Assume that
at time 0 each site of the interval I is occupied by a 1. Let lt and rt be the
leftmost and rightmost sites occupied by a 1, respectively. If lt<rt we have

rt � rt+1 at rate *e

rt � rt&1 at rate 1

The process rt does not move more than one step to the left since the
occupied sites from a block with no holes on Z. It is easy to see that by
taking L large enough

P(rt>lt , for all t�0)>1&=
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By the strong law of large numbers we have almost surely on [rt>lt ,
\t>0]

lim
t � �

rt �t=*e&1

Taking L large enough and T=5L�2(*e&1) (recall we are assuming that
*e>1) we get that

P�, *e(rT�3*)�1&=

The leftmost site occupied by a 1, lt , behaves in a symmetric way and all
the sites between the leftmost 1 and the rightmost 1 are occupied by 1's.
Thus,

P((m, n) is wet)�1&= if *i=�

Since B is a finite box we have that as *i � � the process restricted to B
with parameters (*i , *e) converges in distribution to the process restricted
to B with parameters (�, *e). So there is 4 depending only on = and L
such that

P((m, n) is wet)�1&2= if *i>4

If we assume that *e�*i the basic coupling shows that the system restric-
ted to the finite boxes Bm, n has less particles than the unrestricted infinite
system. We may assume that *e�*i with no loss of generality here. So the
boundary contact process dominates a 1-dependent oriented percolation
system. For =>0 small enough it is known that there is percolation with
positive probability (see Durrett (1984)). This proves that 1's survive for-
ever with positive probability and the proof of Theorem 1(b) is complete.

3. PROOFS OF THEOREMS 2 AND 3

We begin with the harder task.

Proof of Theorem 2. We want to show that any system with *i<*c

dies out. It is enough to prove that

(3.1) Lemma. There is a constant C such that for any time t�0,
E |!0

t |�C.

For if the system survives the number of particles goes to infinity as
t goes to infinity and Fatou's lemma implies that E |!0

t | � �.
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Proof of (3.1). The difficulty in analyzing |!0
t | comes from the fact

the edge processes may move inwards by an unbounded number of steps.
To avoid this problem, we now introduce a system whose edges behave
more nicely. Let !� 0

t be a Markov process with the same birth and death
rates as !t except that the leftmost and rightmost particles do not die. We
construct the processes !t and !� t by using the construction described in the
proof of Proposition 1, with the result that if both processes start with a
single particle at the origin then |!� 0

t |�|!0
t |. Thus, if we are able to show

that

E |!� 0
t |�C (3.2)

we will be done.
The right edge of !� 0

t moves to the right only and the left edge moves
to the left only, one step at the time. For a site x to be occupied in !� 0

t , it
must be a descendent of a site on rightmost or leftmost paths. If we let Nt

be the number of sites at time t that are a descendant of a site on the path
of the rightmost particle then by symmetry we have

E( |!� t | )�2E(Nt) (3.3)

Let H(x, r, s) be the event that the basic contact process with birth rate *i

starting from x has a path to x&r or x+r or survives until times s.
Bezuidenhout and Grimmett(1) have proved that for *i<*c there are
constants 0<#, C<� so that

P(H(x, r, s))�C(e&#r+e&#s) (3.4)

Conditioning on the path of the rightmost particle of !� t we have

E(Nt | rightmost path)� :
y�1

P(H(rt& y, [ y�2], Trt&[ y�2])) (3.5)

where Ty is the first time the right edge reaches y�1. Using (3.4) and (3.5)
now, then taking expected value gives

E(Nt)� :
y�1

C(e&#[ y�2]+Ee&#T[y�2])

�2C :
�

m=0

e&#m+(Ee&#T1)m
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since thanks to the condition of no deaths at the boundary Tm&Tm&1 are
independent and identically distributed. Since Ee&#T1<1 the sum converges
and we have

E(Nt)�C$ (3.6)

where C$ is a constant independent of t. (3.6) and (3.3) show that (3.2)
holds and completes the proof of Theorem 2. g

Proof of Theorem 3. Again we begin by comparing with a process
with no deaths at the edge and conclude that it is enough to show (3.2).
Since the three state contact process with no deaths at the edge behaves as
the boundary contact process with no deaths at the edge, the desired result
follows. g

4. PROOF OF THEOREM 4

We will first prove the result for very super-critical 1-dependent three
state oriented two dimensional site percolation on our favorite lattice
L=[(x, n) # Z2 : m+n is even]. The result will then be extended to the
three state contact process on Zd by using the work of Bezuidenhout and
Grimmett.(1)

Before we can do the first step, we must first define the three state
oriented percolation process precisely. Given are variables |(x, n) # [0, 1]
for (x, n) # L that are 1-dependent and have density at least p. That is,
whenever (xi , ni ), 1�i�I have &(xi , ni )&(xj , n j )&�>1 if i{ j we have

P(|(xi , ni )=0 for 1�i�I )�(1& p)I

We think of the |(x, n) as representing the ordinary part of our three state
process, i.e., the process that would result if there were no &1's.

To take care of the sites that are in state &1 we will add an independent
set of random variables |$(x, n) # [0, 1] that are themselves independent
and have P(|$(x, n)=1)=+. If x was in state &1 at time n&2 these
variables are used instead of the |(x, n) to see if the site will be open at
time n. It is easy to see that if we are given !(x, m) for all (x, m) # L with
m=0 or m=&1 (the latter to be able to compute the fate at time 1 of sites
x with !(x, &1)=&1) then we can, by induction, compute !(x, m) from
the |(x, n) and |$(x, n). In the last sentence and in what follows, having
to look back in time one or two steps to compute the next state is annoying.
To fix this problem we will extend our process from L to Z2 by setting
!(x, n)=!(x, n&1) when (x, n) # Z2&L.
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To prove Theorem 4 for oriented percolation, we will apply the block
construction as explained in Section 4 of Durrett.(6) To this end we use the
notation of that reference. Lest the authors become confused, we should
note that in this part of the proof we are only concerned with proving the
result for a very supercritical two dimensional percolation process, so we
let

B=(&4L, 4L)_[0, T ] Bm, n=(2Lm, Tn)+B

I=[&L, L] Im=2Lm+I

Here L and T are parameters to be chosen later. The primary ingredient in
the block construction is a set of happy configurations H determined by
the values of the process on [&L, L]. The one we will choose has a two
part description:

(H1) There are no &1's in I, at time 0.

(H2) There are at least - L 1's in I at time 0.

Let _y ! be the operator that translates the configuration by &y. That
is, _y!(x)=!(x+ y). To check the interpretation note that _y !(0)=!( y),
i.e., the value that used to be at y has been moved to 0. Our goal is prove
the following result:

(4.1) Proposition. Let =>0. If p is sufficiently close to 1 and L is
large enough then for any starting state ! # H for the oriented percolation
process in which no births are allowed outside (&4L, 4L) there is T>0
such that we have _2L !T # H and _&2L!T # H with probability �1&=.

Proof of Theorem 4. Once (4.1) is established, we can use
Theorem 4.2 in Durrett(6) to establish a comparison between our process
and a 1-dependent oriented percolation. The result in Theorem 4 then
follows from Theorem A.2 of Durrett.(6) g

Proof of (4.1). We will proceed in two steps that parallel those in the
definition of the happy configurations, H.

(i) If we start with - L 1's in [&L, L] and no &1's in [&L, L]
then with probability �1&=�10 we will have no &1's in (&4L, 4L) by
time 2L2.

(ii) When (i) occurs, with probability �1&=�10 we will have at least
- L particles in [L, 3L] and in [&3L, &L] at time T=3L2.
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At an intuitive level, these statements are easy to believe.

(a) From the basic facts about very supercritical oriented percolation in
a strip of finite width (see Durrett and Liu,(7) and Durrett and Schonmann(8)),
there is a #>0 so that if L is large then the process on (&4L, 4L) starting
with - L individuals will with high probability survive until time e#L. Sup-
pose in the worst case that the site L+1 is in state &1. Since the right edge
of supercritical oriented percolation has positive drift (see Durrett(3)), we
expect that the mean time between returns of the process to L will be finite.
Each occupancy gives the process an opportunity to kill the &1 at L+1,
so it is very unlikely that the &1 can survive up to time L�3. Repeating this
argument 3L times, we get (i).

(b) Once the interval (&4L, 4L) is cleared of &1's we have ordinary
oriented percolation in a strip of finite width. In this situation, well known
techniques (see the papers cited in (i) and Durrett(3)) will allow us to
control the number of 1's in the interval at time T.

Turning the intuition behind (a) into a proof requires some care. To
keep control of the ordinary oriented percolation that comes from only
considering the variables |(x, n), we will build a chain link fence of paths
with mesh K=L0.1 in the space time set (&4L, 4L)_[0, 2L2]. See Fig. 3.
Here, the exact value 0.1 for the exponent is not important. This could be
any small positive number, but at this point the Greek alphabet beyond its
breaking point.

Fig. 3. Block Construction.
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The chain link fence is a potential set of connections that is realized
in the part of the interval that is free from &1's. We build this network first
then use it to break down the &1's. Once the &1 are gone, the percolation
process can fully express itself and fill up a reasonably dense subset of the
interval.

Since p is close to 1, we take :=1 and $=0.04 in Section 11 of
Durrett(3) to arrive at the definition of A as the parallelogram with vertices

(&0.06K, 0) (&0.2K, 0)
(0.98K, 1.04K ) (1.02K, 1.04K )

Reflecting around the axis we can define A� =&A. To extend these defini-
tions to the other points (m, n) # L we let

Am, n=(0.96Km, Kn)+A A� m, n=(0.96Km, Kn)+A�

To see the reason for translation by multiples of 0.96K, note that our
choice of 0.96 makes the slice of A0, 0 at time K fit in the space between the
tubes A1, 1 and A� 1, 1 . See Fig. 3.

We say that A0, 0 is occupied if there is a path in the oriented per-
colation inside A0, 0 that starts in (&0.05K, &0.03K )_[0] and ends in
(0.99K, 1.01K )_[1.04K ]. Our next goal is to show

(4.2) Lemma. If 1& p�3&3601 then P(A0, 0 is occupied)�1&Ce&#K.

Here and in what follows C and # are strictly positive finite constants
whose values may change from line to line. To inspire the reader for the
details of the proof of (4.2), we note that K=L0.1 and there are fewer than
(8L+11) } 2L2 trapezoids Ai, j that touch our space time box (&4L, 4L)_
[0, 2L2]. Thus if L is large, then with probability �1&=�10 all the
trapezoids that touch the box are occupied. When this good event, G1 ,
occurs we say that we have a chain link fence of paths. Once the fence is
touched by a wet site in oriented percolation (i.e., one that can be reached
from the initial wet sites) the wet region expands at a rate almost one to
cover the entire network. Since ALL the trapezoids that make up the fence
are occupied, we have a network of paths that bangs into the boundary at
predictable intervals and automatically leads to a large number of occupied
sites at the final time.

Proof of (4.2). We begin with a known result for the right edge of
oriented percolation starting from a half line of occupied sites. Using a
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small modification of the notation of Section 12 of Durrett(3) we let C=
[ y: for some m�0, (m, 0) � y] and let sn=sup[m: (m, n) # C]. With this
notation, (2) of Section 11 of Durrett(3) can be stated as

(4.3) Lemma. If 0<q<1 and (1& p)<3&36�(1&q) then

P(sn�nq)�Ce&#n

Using (4.3) with n=1.04K and q=1.02�1.04<0.99 we see that

P(&0.03K+s1.04K�0.99K )�Ce&#K

and hence with high probability the right edge of the process starting with
(&�, &0.03K ] occupied at time 0 will be �0.99K at time 1.04K.

The next step is to show that this event guarantees the existence of the
desired path. In words, we can say that since we are in discrete time and
have chosen :=1, the edges of the parallelogram move at the speed of
light, this is trivial and furthermore the probability of failure is 0. To
explain this more slowly, we begin by noting that the right edge of the
process starting with (&�, &0.03K ] occupied at time 0 cannot be to the
right of 1.01K at time 1.04K. Likewise a path that ends up in [0.99K, 1.01K ]
at time 1.04K must start from a point �&0.05K at time 0 and cannot
leave the parallelogram on the left side. For if it did, then it could never
reach the target interval at time 1.04K. g

Having built our chain link fence, we are three short steps from the
end of the proof of Theorem 4 for highly supercritical oriented percolation.
For a given =>0 one can choose L so large that:

(4.4) Let G2=[at least one 1 in the initial configuration makes a
connection with the chain link fence]. On G1 , the failure of event G2 has
probability �=�100.

(4.5) Let G3=[no &1's in (&4L, 4L) at time 2L2]. On G1 & G2 , the
event G3 fails with probability �=�100.

(4.6) On G1 & G2 & G3 we always have at least L0.9&2 occupied sites
in the intervals [L, 3L] and in [&3L, &L], at time 3L2.

Clearly (4.4)�(4.6) gives us (i) and (ii), so the proof of (4.1) will be
complete once we establish these three results.

Proof of (4.4). To estimate the probability in (4.4) we note that if
there at least L0.5 sites occupied by a 1 at time then since K=L0.1, there
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must be at least L0.4�2 intervals [1.92Kj, 1.92K( j+1)) with &L0.9�1.92<
j<L0.9�1.92 that contain at least one 1. For otherwise, even if there inter-
vals were completely filled, there would not be enough 1's. To achieve inde-
pendence, we don't want our intervals to touch, so we observe that there
must have at least L0.4�4 intervals with odd values of j or at least L0.4�4
intervals with even values of j. We will suppose without loss of generality
that the first alternative occurs.

If a starting 1 in [1.92Kj, 1.92K( j+1)) survives up to time 1.02K
or exits from the interval (( j&0.06) K, ( j+1.98) K ) in the unrestricted
version of the oriented percolation then it must touch the chain link fence.
(Again see Fig. 3.) Thanks to our use of only odd j these events are inde-
pendent for different values of j. All these events have a probability that is
bounded below by

\=1& :
�

m=4

3n&1(1& p)m�36

the contour argument lower bound (see e.g., (2) on p. 1027 of Durrett(3))
for the probability of percolation. Thus the probability all of our attempts
will fail is at most

(1&\)L0.4�4=exp(&#L0.4)

The right hand side converges to 0 as L � � and we have established (4.4).
g

Proof of (4.5). The first thing we have to do is to wait at most 8L
units of time, which is <L2 if L is large, for the wet region (containing 1's)
to spread along the chain link fence to reach both end points of the interval
[&L, L]. So by time L2 we have expanded to visit the end of [&L, L]
and we are ready to knock on the door at L+1. Our mesh in L0.1 so we
have about L0.9�3 independent chances to kill the possible &1 at L+1
by time L2+L�3. Most of the time, i.e., with probability at least
1&C exp(&#L0.9) we will succeed on the first step. Then we have L�3 tries
at L+2 and so on... The probability we will fail on one of our 6L quests
(considering both sides) is at most 6LC exp(&#L0.9). g

Proof of (4.6). On G1 & G2 & G3 the initial configuration makes con-
tact with the fence and drives all the &1's out of (&4L, 4L) by time 2L2.
Since the distance between tubes is 1.92L0.1 and each of its arcs contains
a path the desired result follows. Here we have subtracted 2 to take care
of the partial intervals at the end where the particle our construction
produces might end up outside the interval of interest. g
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(4.6) is the last piece of the proof of (4.1), so we have established
Theorem 4 for highly supercritical 1-dependent oriented percolation on L.
Our next step is to use another block argument to extend the result to the
three state contact process in dimensions d�1 with *i>*c .

Proof of Theorem 4 for the Three Contact Process. We will use the
results of Bezuidenhout and Grimmett, (1) in the version given in Durrett, (5)

to map the d-dimensional three state contact process into the two dimen-
sional three state oriented percolation introduced in the first part of the
proof. Let

B� =[&2L� , 2L� ]d_[0, T� ] B� m, n=(4L� m, 0,..., 0, 50T� n)+B�

Let `t be the basic contact process. Lemma (h) on page 13 of Durrett(5)

says (after a little editing)

(4.7) Lemma. Call a site (m, n) # L wet if `t#x+(&J� , J� )d for
some (x, t) # B� m, n . If J� , L� , and T� are chosen appropriately, we can define
independent random variables |(m, n), (m, n) # L, with P(|(m, n)=1)�
1&3&3601 so that the wet sites contain the occupied sites in the oriented
percolation with the corresponding initial condition.

To prove Theorem 4 for the contact process, we need not only the
statement in (4.7) but also some of the details of the proof. For this reason
we now give a

Sketch of the Proof of (4.7). One first shows that a filed copy of the
cube (&J� , J� )d in the space time box B� 0, 0 will with high probability give
rise to one in the right half of B� &1, 1 and in the left half of B� 1, 1 even when
no births are allowed outside [&2L� , 2L� ]d. Splitting the boxes gives us
independence rather than the usual 1-dependence, but for us this is irrele-
vant, since we have already done the oriented percolation proof in the
1-dependent case.

To create the comparison between the d-dimensional contact process
and the two dimensional oriented percolation process, we begin by defining
the initial condition for the oriented percolation to be the set of even
integers m for which (m, 0) is wet in the sense defined in (4.7). For these
m we can find the first occupied copy of (&J� , J� )d in Bm, 0 and define
|(m, 0) by seeing if the chosen occupied cube fulfills its mission of having
two children in the target areas. For the even integers m so that (m, 0) is
not wet, we simply flip an independent coin to determine the state of the
site.

591Boundary Modified Contact Processes



Proceeding to time 1, a box B2m+1, 1 may receive occupied copies of
(&J� , J� )d from parents in B2m, 0 or B2m+2, 0 . If it receives two, we take the
later one in time. If there is only one then we must use it in the next time
period. If there are no occupied cubes from the previous level, we get out
our coin and flip it to determine the value of |(2m+1, 0). This construc-
tion can clearly be repeated at times 2, 3,.... We end up with a process in
which some of the |(z) are ``fake'' wet sites that come from coin flips inde-
pendent of the graphical representation and do not represent an occupied
interval in the contact process. The complementary set of wet sides that do
correspond to occupied cubes are called ``real.'' With out later proofs in
mind, we would like to observe that while some of the wet sites in our
paths in our tubes Am, n may be fake, our algorithm implies that any wet
site that can be reached from a real wet site is real, i.e., it implies the existence
of a nearby fully occupied cube in the underlying contact process. g

To prove theorem 4 now, we will use a block construction defined
directly in terms of the underlying d-dimensional three state contact pro-
cess. We use the old notation generalized to higher dimensions and with
yet another ornament.

B� =(&4L� , 4L� )_[&2L� , 2L� ]d&1_[0, T� ] B� m, n=(2L� m, 0 } } } 0, T� n)+B�

I� =[&L� , L� ]_[&2L� , 2L� ]d&1 I� m=2L� (m, 0 } } } 0)+I�

Our happy configurations H� this time have a two part description which
is the tilded version of the old one.

(H� 1) there are no &1's in I� at time 0

(H� 2) there are at least L� 0.6 1's in I� at time 0.

By results in Section 4 of Durrett, (6) it is enough to prove.

(4.8) Proposition. Let =>0. If L� is large enough then for any starting
state ! # H� for the three state contact process in which no births are
allowed outside (&4L� , 4L� )_[2L� , 2L� ]d&1, we have _2L� !T� # H� and _&2L� !T�

# H� with probability �1&=.

As the reader can probably anticipate we will take L� =L� } L where the
plain L is the not yet specified length scale for the block construction for
the two dimensional oriented percolation. Given an initial configuration for
the three state contact process on Zd, we can run it to time T� and see how
many wet sites (in the sense of (4.7)) we have on the renormalized lattice.
Since J� , L� , and T� are fixed, a completely filled copy of (&J� , J� )d has a prob-
ability that is bounded away from 0, so for large L, (H2) will be satisfied
for the oriented percolation with probability �1&=�10.
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The high probability of the existence of a chain link fence, event G1 ,
for the oriented percolation follows from (4.2). It follows from (4.4), by
choosing L sufficiently large, one can ensure that on G1 the failure of the
event G2=[the initial configuration makes a connection with the fence]
has probability �=�10. As remarked above, once a real wet site touches the
chain link fence, it propagates at a rate almost 1 and each real wet site
guarantees the presence of a cube nearby in space and time that is com-
pletely filled with 1's.

Since L� and T� are fixed, we have a positive probability that an
occupied copy of (&J� , J� )d will wipe out all of the &1's by time 50T� in the
adjacent box: (4L� m, 0,..., 0)+[&2L� , 2L� ]d. Given this and the argument
for (4.5) it follows that with high probability there are no &1's in
[&4L� , 4L� ]_[&2L� , 2L� ]d&1 at time 2L� 2. Once the &1's are wiped out the
chain link fence guarantees there are at least L0.9&2 real wet sites in each
of the target boxes.

Each wet site corresponds to an occupied cube (&J� , J� )d in a B� m, n .
The last renormalized row comes within 50T� of the top of our space-time
megabox B� so each cube will have a positive probability $� of having at
least one site survive to the end in the contact process with no births. Since
L� =L� } L and L� is fixed, the number of successes will be (L� )0.6 with high
probability for large L. This establishes (4.8) and hence completes the proof
of Theorem 4 for the three state contact process. g

5. PROOF OF THEOREM 5

Recall that '0
t is the three state contact process starting with a single

1 at the origin in a sea of &1's. Fix a site x in Zd and let

0x=['0
t (x)=1 for infinitely many times t]

It is clear from set theory that limt � � P*i , *e
('0

t (x)=1; 0c
x)=0. We now

deal with 0x . Given L, let T be the first (random) time at which there are
no &1's in the cube x+[&L, L]d. On 0x the random time T is almost
surely finite, so we have

P*i , *e
('0

2t(x)=1; 0x)�P*i , *e
(t<T<�)+P*i , *e

('0
2t(x)=1; T<t) (5.1)

As t � � the first term tends to 0. To estimate the second term, we
now introduce the basic contact process ` t, L

s , with birth rate *i , that starts
at time t with a 1 on each site of x+[&L, L]d and for which all the sites
outside of x+[&L, L]d are frozen in state 1. Given that T<t, there will
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never be a &1 in x+[&L, L]d after time t and we may couple '0
s and ` t, L

s

in such a way that

'0
s ( y)�` t, L

s ( y) for every y # x+[&L, L]d and for every s>t

We use the preceding remark in (5.1) to get

P*i , *e
('0

2t(x)=1; T<t)�P*i
(` t, L

2t (x)=1) (5.2)

Note that P*i
(` t, L

2t (x)=1)=P*i
(`0, L

t (x)=1) and that this is a decreasing
function of t. So it has a limit at t goes to infinity and the self duality of
the contact process we get

lim
t � �

P*i
(`0, L

t (x)=1)

=P*i
(`x

t ( y)=1 for some y � x+[&L, L]d and some t>0)

where `x
t is the unrestricted contact process starting with a 1 at x. Since

*i<*c the last quantity goes to 0 as L goes to infinity and we have proved
the desired result. g
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