
Stochastic Processes End their Applications 9 (1979) Sl7- 13 5 
@ North-Holland Publishing Company 

Richard DURRETI’ 
Department of Mathematics, Unioersity of California, Los Angeles, CA 90024, U.S.A. 

Received 25 October 1978 
Revised 14 June 1979 

In recent years several authors have obtained limit theorems for the location of the right most 
particle in a supercritical branching random walk. In this paper we will consider analogous 
problems for an exponentially growing number of independent random walks. A comparison of 
our results with the known results of branching random walk then identifies the limit beha\,isrs 
which are due to the number of particles and those which are determined by the branching 
structure. 
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1. Introduction 

Recently several authors have obtained limit theorems for the growth of a 
supercritical branching random walk. The first results were due to Elammersley [IO], 
Kingman [14] and Biggins [3] who proved the following ‘law of large numbers’. 

Thewem 1. Let L, be the position of the right rvzost particle in a supercritical branching 
random walk with displacement distribution Fand suppose that 

~(t3)=IeefdFo(m forsome8>0. 

AS h --, do, &/h cotitierges almost surely to y = sup{a : @(a) 2 1). Here @(a) = 
inf (e-” t@(e) : 8 >i 0) atid m > 1 is the meah! of the offspring distribution. 



$iwe we ds not orspm #lo aarmal distributian ar tkf? WItiIIbWs tima branching to 
be spersial it seems reasonable to conjecture th@t similar results will hold for 
branching random walks (under appropriate moment assumptions). Bramson [5] has 
analyzed the case in which the distribution F is bounded above. If sup{x : F(x) < I} = 

A K 00 and m (1 - dF(A-)) > 1, then the subprocess of individuals who are displaced 
by exactly A is supercritical. From this we get that {L, - nA = 0) has positive 
probability and it is easy to show that conditioned on non-extinction L,, -nA 
converges weakly (and a.§.?). 

If (1 -F(A-))m = 1, then the limit behavior changes. In this case the subprocess is 
critical so L, - nA +--00 and we have to choose a new sequence of norming 
constants. Bramson [S] has given a complete solution of this problem. In the case 
F({O}) = p and F({-1)) = 1 -p his result may be stated as 

Theorem 3. In the offspring distribution has p Ci ipj = 1 and xi Ppi < 00 for some 
8 > 0, then conditioned on nonextinction there is a random variable V and a sequence 
E,, of random variables so that E,, + 0 almost surely lznd 

L + bm.zn-wv+~n) +* as 
rl - 1 log 2 1 . . 

where [xl is the least integer ax. 

This result says that along almost every sample path L, + 00 like the (deterministic) 
function [(log log n -log V)/log 21, i.e. L, increases through the integers 0, 1,2 . . . 

in a very slow and predictable manner. The;ariabSes E~ are needed in the statement 
of the result to adjust for the fluctuations in the transitions between successive 
integers. 

All the re cults above are for distributions with J e” dF(x) C 00 for some 8 > 0. If 
the distributions have larger upper tails the limit behavior is quite different. Durrett 
[6] has shown 

Theorem 4. Suppose that there is a slowly varying function L so that 1 -F(x) - 
X-‘L(X) as x +OQ and suppose that log(-.x)F(x)+ 0 as x + --oo. Then there is a 
sequence of constants a,, --) 00 so that for all x > 0 

P(L, S a,x) + I,._,P(~~dy) exP(-ryx-q). 
. 

Here W is the as. limit of Z,,/cn which appears in Seneta’s well known result (see 
[l, p. 301) and the sequence a, is chosen so that c,(l-F(a,))+ 1. For the result 
above if Ci (i log i)pi COO we can take c,, = mn and if 1 -F(x) -x-’ we can let 
a, = CA”. If both conditions hold we have a, = m n/q so L, + CO very rapidly. This 
result is in sharp contrast to the linear growth obserq‘;ed c-hen J eex W(x) C 00 for 
some e > 0. 



At this point we have surveyed the knowr, results for branching random walks and 
we will begin to describe our resu!ts for the maxima of independent random walks. 
For each i 3 1 let {Sl, n 30) be an independent random walk generated by F. Let 
p > 0 and let M,l = max{SL : 1 s i s exp(rlp)],. If we let ~3 = log m, then the number of 
random walks is comparable to the number of particles in the branching process so if 
we compare the results above for L, with the results below for M, we can see how the 
dependence in the branching chain effects the location of the maximum. Our first 
result is the analogue of Theorem 1. 

Theorem 5. If 4(O) = 1 e*’ dF(x) C CD for some 0 > 0, then .k?,,/n converges almost 
surely to “y = sup{y : V(y) 2 1) where V(y) = inf(e~ey+P~(8) : 8 > 0‘1. 

Comparing this result with Theorem 1 shows that L, and MU grow at the same rate 
so the effect of the branching is o(n). Differences between tlhe branching and 
independent cases begin to appear when we consider the fluctuations in L,, and ,‘& 
Our result for independent random walks is: 

Theorem 6. Suppose F is a nonlattice distribution with c$@) = 5 eex dF(x) COO for 
some 8 > 0 and suppose there is an h <: @so that &(h )/q5(h ) = y, the constant defined in 
Theorem 5. Then there is a sequence of constants c,, = ny - i,2h )-’ log n - K so that 

M -G 3 exp(-exp(-xh)). 

Although the notation here is different, the asymy:totic formula given in 
Theorem 6 is very close to Bramson’s result for branching Brownian motions. If F 
is a normal distribution with mean zero and variance one, then l&(8) = exp&*) so 
@(@)/d(e) = 8 and h = y. In Bramson’s situation y = 2l’* so applying Theorem 6 
gives that for independent Brownian motions cn = 2 “* - 2-3’2 log n + K. Comparing 
this result with Bramson’s theorem shows that the dependence: in the branching 
random walk makes L, smaller than M,, by 2-“2 log n. 

Although the branching structure has a mild effect on thle location of the 
maximum, it has a drastic effect on the limit distribution. For independent random 
walks the limit is always a double exponential distribution. For a branching random 
walk the limit is a complicated function of the offspring and displacement dis- 
tributions and we do not know if the limit exists under the hypotheses of Theorem 6. 
The reader should observe that even for independent random walks orbme technical 
condition is needed to rule out the lbounded case for in this case: there is behavior 
similar to, but much simpler than that observed by Bramson [S] for branching 
random walks. If sup{x : F(x) < 1) == A <aI and eP( 1 - F(A-)):B 1, then 
nA)-,1.Ife4(1-F(A-))=1,thenP(M,=:Y1A)-,1-e-’andforx<A 

P(M, - (n - l)A < x) + e-‘(F(x)/F(A-)I. 

If eP(l - F(A-)) < 1, then 
Theorem 6 holds in this case. 

nA) + 0 and we can show that the c~ncl~~~i~~ 



PC ct1 
X) “~e~p(--x-~) ftwallx. 

The reader should observe that if 1 -F(x) - x-“, then c,, - (n 8” )l’%o MO gacs to 
00 Wry rapidly. 

If we let fi = log m then cn = (MZ”)“~ which csmpares with cn = m”“’ in 
Theorem 4. This difference irs easy to explain. The location of Mn is determined in 
each case by one large jump. In the case of independent random walks there are nm” 
opportunities, In branching random walks there are 

In this section we will obtain limit theorems for Ad, when the underlying dis- 
tribution F satisfies the following condition 

t+(6) = 1 exp(&) dF(x) < 00 for some 0 > 0. 



(2, 

F”(y) = Cp(W’ 1’ 8 dF(x). 
--a0 

The distribution has mean 

and variance 

a*(e)=&(e)-’ Jw x2eex dF(&-m(d)* d$$+.($!;!!)2zz-,n’(el, 
-00 

Since we have assumed F is nondegenerate each Fe has positive variance and SC 
m (0) is strictly increasing. m(O) = 9 == 1 x dF(x) E [.--a, 00) and the dominated con- 
vergence theorem implies m(O) is continuous so it follows from this that there is a 
unique positive solution of m ((3) = y for all 
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When m(e) = y has a positive solution we-can use Theorems 1 and 6 of [ 191 to obtain 
the following asymptotic formula for P(S, > yn). 

Lemma 1. Let Fbe a nondegenerate distribution with 4 (8) < 00 for some 8 > 0. If h < 8 
and m (h) = y, then 

log P(& > ny ) = n log c$ (h) - nhy -i log n + 0( I 1.. (3) 

From this result we can compute the asymptotic behavior of Iw,. To do this we 
observe that 

P(M, G ny ) = (I- P(S, > ny))exp’B”) 

atid for Lemtna 1 we have 
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This number is > 1 or ~1 accordingly as /3 -t- log 4(@(y)) - y@(y) > 0 or SO so y2 = y3. 
At this point we have proved (2) under the assumption that sup{x : F(x) < 1) < 00, 

To prove (2) for unbounded F we will proceed by truncation. For each K < 00 we can 
define a distribution by 

F(x) for x <K, E’K(x)=( 1 

forx*K. 

If we let iW2 be the maximum of ePn independent random walks generated by FK, 
then we have from the results above that 

limifi$Ly~ =sup{y : ?PK(y)>l} 
n-wm n 

(4) 
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If y > Ao, then the infimum is approached as 8 + 00 = sup@ : (b(O) < 00). If P(y) > 
0, then for any E > 0 we can pick “I @I so that if 8 E (or, t9,) 

e-ey’Bq!@)~(l + E)M(y). 

If z > y and 0 E (e,, &), then 

M(z)se -““pan (1 + E) e-*“-Y’M(y). 

Since this holds for all E > 0 

so V is strictly decreasing on [Ao, 00) n {y : P(y) > 0) and the proof of the lemma is 
complete. 

From Lemma 2 it is trivial to see that y1 = ~2. Combining this observation with (1) 
and (2) proves that MJn converges to y almost surely. While this result is some 
accomplishment it is only the first step in determining the asymptotic behavior of M,, 
the next step is to consider the convergence of (M, - ~,)/a,. It is easy to determine 
what the norming constants should be. If there are constants a, and cn so that 
(A4fn - c,)/a, converges weakly to a continuous distribution, then these constants can 
be chosen by picking 0 < p c 4 < 1 and defining c,, and a, by P(M, < c,) + p, 
P(M, G cn + a,) + q or equivalently 

P(S, > cn -k a,) log q 

P(Sn >Gl) +logp* (6) 

To compute the norming constants from (5) and (6) we need a formula for 
P(S, > ny) which is more accurate than (3). The result which we will use is Theorem 2 
Of [19-j. 

Lemma 3. Suppose F has a nonlattice distribution and 4(e) = 1 eex dF(x)C 00 for 
some 9 > 0. If there is an h > 8 so that d'(h) f 4(h) = ‘y, then for any sequence S, 3 0 

pwn -‘n(y+&N-- 
exp(n[log~(h)-h(y+&)-&1+O(&))/2~2(h)l) 

h (2ma2( h))1’2 
. 

m 

Now from the definition of y we have @ + log 4(h) - hr = 0 so from the formula 
above we have 

e’“P(& sn(r+@)- 
exp(n[-ha, -Si(l -+O(S,))/2~~(h)l) 

h(2nnaz(h))“2 
. (8) 

From this it follows that if we let c: = n(r +SE) where 8: = 
-log(h(2ma2(h))“2)/hn, then n(6z)2 + 0 so 
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and if we let p = e-l in (5) we can pick 

cn = ny-log(h(2nn(r2(h))“*)/h = n7-(2h)-l log n -K’ log(h(2ncr2(h))“$ (9) 

The next step is to determine the scaling constants a,. To do this we observe that 
from (8) and the definition of c,, 

exp(n[-h(Sz +a&~)-- @‘2~2~~f’2 (1-b O(Sz + a,x/n))]) 
h 

h (2nntr*(h))“* 

= exp - ha,,x - n 
(6: + a,x/n)* 

2cr*(h) 
(1 +C(Sz +a,x/n))). 

Since 8: --log n/2hn it follows from this that if we taKe a,, = 1 

eP”P(Sn >n(y+S~)+x)+eVhx. 

and so 

We can restate the last result as 

Theorem 6. Suppose P; is a nonlattice distribution with d(e) = 1 exp(8x) dF(x) c CD 
forsome0>Oandsuppose thereisan h < 0so that&(h)/b(h) = ytheconstantdefint~d 
in Theorem 5. If we define c,, by (9) we have 

Mn -G + exp(-exp(-xh)). 

The result above cannot be applied if +‘( l )/c$( l ) = y has no solution. This can 
happen if 

(1) sup{x:F(x)~l}=A and 1-F(A-)>Oorif 
(2) sup{@ : 4(O) am} and sup{8 : ~V(8)/t$(~)} are both COO. 

In the first case we can determine the asymptotic behavior of Mt. If ePP(S1 = A) > 1 
the problem is trivial: e”“P(& = n/l) + g) so P(Mn = nA) + 1. If ePP(S1 = A) < 1, 
then we can pick an E > 0 so that e”P(S, 2 A -E) < 1 and we have e”” B&a 
n(A -E)) + 0. This implies P(M, sn(A-e))+l so y~(u,A-E]. From compu- 

tations in the proof of Theorem 5 it follows that there is an h > 0 so that &(h)/&(h I= 

y and Theorem 6 can be applied. 
If ePP(S1 = A) = 1, then we are in a critical case. ePn (Sn = nA) = 1 for all n ~0 we 

have 

P(b&,=nA)=l-( (Sn c I;!A~))~~~‘@‘)-+ 1 -e-l. 

To determine the distribution of M,, on {Mn < nA) we will consider the limit of 

Jn = min 1; 
lsiSexp(Bn) 
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I; =I(k:S;-S:_l #A, lsksnj). 

From the calculations above we have P(J, = 0) + 1 - e-‘. This implies 

e -I. To compute the limit of (Jn 2 2) we observe 

p( J, a 2) = P(l; 3 2)exp(pn) = (1 - P(f; s l))exp(pn), 

= 0) + P(r: = 1) = P(& = A)” + nP(S1 = A)“-‘P(& <A). 

When e”P(& = A) = 1 

e’“P(Pi S 1) = 1 +n e’P(Si <A). 

Since P(S1 = A) = e-@ < 1 this +OO as y1-, 00 so P(J n 2 2) + 0. In the critical case then 
Jn converges weakly to J where P(J = 0) = i - e-’ and P(J = 1) = e-‘. From this we 
see that 

P(IM,-(n-l)A=A)+l-e-’ 

and 

P(M, - (n - l)A <x) + e-l(F(x)/F(A-)) 

for x c A. 
This completes the consideration of case (1) and leaves us with case (2). In this case 

there is not much to say. Let A0 = sup{#Y(0)/&(8) : t#b(O) c 00). If y <Ao, then there is 
an h >O which has &(h)/&(h) = y and Theorem 6 can be applied. If p is too large 
y 3 A0 and we need new methods to determine the limit behavior of M,. We 
conjecture that as we observed in the bounded case, the limit behavior changes 
drastically from that given in Theorem 6 but we have not been able to solve the 
problem in this case. 

In this section we will consider large deviations probabilities for distributions F 
Jvhich have 1 -F(x) m- x-gL(x) for some q > 0 and slowly varying function L. Our aim 
vi11 be to show that if xn + a~ sufficiently rapidly, then P(S, > x,)/u P(S1 > x,) + 1. 
Ihe first step in doin$g this is to obtain a lower bound for (S,, > x,,). ‘This result does 
:not require the assumption that 1 -F(x) w x-~L(x). 

‘L If xn ‘/QO is such that x,‘S, converges to 0 in probability, mn for all E > 0 
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Proof. The proof follows the same lines as a proof of a result due to Heyde [12, 
p. 15761. Let Ai = {Xi z (1 + E)x,~} and Bi = {Sn -Xi > -EX~}, then 

(cj,in,\l, ~ 
i=l I i = 1 

(,Ai,,!,(~A~~Bj)‘) 
j=l 

a i P((AJl BJn(~A,)‘)~ iI( 
i=l i = 

(Ai”B,)-P(~Aj~~Ai)) 

(AI)P(B1)-n’P(Al)* 

The hypothesis implies P(B1) + 1 so to complete the proof it suffices to show 
n P(AI) + 0 but this is a consequence of the degenerate convergence criterion given 
below (see [9, p, 1341). If c,Jm, then c,‘S, 50 if and only if 

0 i 
. . 

( ) 
(if t, 

n P(lSll > ECU) + 0 for all E > 0, 

nc,* j,x(*c, x2 W(x) + 8 and 

nc,l I,&, x dF(x) + 0. 

The next result gives an upper for P(S, = A~). 

Theorem 8. Let 0 c q < 00 and suppose 1 -F(x) - x-‘L(x) as x -+ 00. If for some 
6 >O, x,/n(l+s)“‘nl)+ 00, then 

lim inf 
P(& >xA < 1 

n-*a3 nP(S+x,)- ’ 

Proof. The pioof of this fact is based on the following lemma which is a generaliza- 
tion of a result of Nagaev [16]. 

Lemma 3. Suppose 
(a) p 2 1, Is(Sf)P < 00, E(S,)*< QO and ES1 = 0 or 
(b) O<p <. 1 and E(Sf)P < 00. 
If x&n l’(“*) logn)-*aandy, = (1 - E)x,,, then there is a constant Kp such that for 

all n suficien tly large 

@P ( 1 
1/(1-E) 

P(St, >x,)WzP(S1>y,)+3 - 
Ypn 

Proof. Let FY(x) = F(x) A F(y). Let Fn and Fj: be the nth convolutions of F and FY. 
From the definition of Fs, it follow!; that we have 

F;(x) = (S,~~,xj~yfor Nj<n)GF,(x) 

so 

l-F,(x)~P-F::(x)=l--F~(oo)+Fll(oo)-F::(x). 
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From the first equation we see 1 -Fs (a) < n(1 -F(y)). To estimate the other term 

we let 0 l < h < 1 and define 

FCh(x)=/ ehu dFI: (u), 
(-wxl 

H(y,h)=J ehu dF’(u) 
(-WY1 

Using these definitions we can write 

Fi(oo)-F;(X)= [ evhu dFth(u)=R(y, h)” [ eWhu @ch(u). (101 
‘(xm JkW 

Since Fg” is a probability distribution and h>Owehave 

J e -hu dFch (u) s emhxe 
(XI=)) 

To estimate R (y, h) we write (assuming l/h sy) 

WA= 1 ehu dF(u)+ 1 
J(-wl/h3 

ehu dF(u) = RI(h) + R2(y, h). 
J(l/h,yl 

To obtain an estilmate fog Rz(y, h) we observe that integrating by parts gives 

Rz(y, h)=V'b9-l)~hy -(F(l/h)-l)e-IY (F(u)-1)h ehu du. 
l/h 

Since c, =E(St)P<cowe have l-F(l/h)~c#’ and 

J ’ l/h 
(1 -F(u)) ehu du cc, J ’ 

l/h 

u-’ ehu du = cphP-’ J yh u-’ e” du. 
1 

Integrating by parts gives 

J 
vh yh 

U -’ e” du = uWp e” 
1 I J 

yh 

+p ip-’ e” du. 
1 1 

Now u-‘-l e” is decreasing on [l, p + l] and increasing on [p + 1,~) SO 

J 

yh 
fp e” du s (yh)-P eyh +pyh max((yh)-P-’ eYh, e)= 

1 

= (yh)-P evh(l +p max(1, (yh)““‘/eyh-‘)). 

Since xp+‘/exW1 is continuous and +O as x =+ 00 there is a constant Kp so that 

J 

yh 
u-’ eLi du 4Kp(yh)-P evh. 

1 
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Using this inequality with the results above gives 

&(y, h)~ec,hP + Kp(yh)-P eYh. 

The next step i$ to obtain an estimate for RI(h). To do this we will consider several 
cases. We start by supposing p 2 2. In this case we observe that if u is any real number 
we can write 

chu)* 
e h”=f+hu+- 

2 e 
8thU) where 0 < 8(h’i) < 1 

-hu l 

Using this formula and observing ES1 = 0 we have 

= 1-r 
OD oc l/h 

J 
dF(u) - 

h* 
u2 eethu) dF(u) 

l/h I I/h 
hu dF(u) +y 

I -03 

h* I/h 
sl+- 

2 J 
u e * e(hu) dF(u). 

-CD 

To estimate this expression we observe 

J 

l/h 0 1 /h 
* u e e(hu) dF( u) s 

J 
Ir*dF(u)+e 

J 
u*dF(u)~E(ST)*+ecz 

--oo --oo 0 

so 

h* 
RI(h) s 1 +-i-(E(S;)2+ec:!). 

If 16~ < 2 we still have ES1 = 0 but c2 may be infinite so we need to use a 
different bound for the last integral in the expansion. In this case we observe that 
~‘(1 -F(u))sc, so 

J 

l/h 
cc* dF(u) = E[(S;)*; St s l//z] s E[(Sf A R-1)2]= 

0 
l/h 

= 
J J 

f/h 
2u(l -F(u)) du SI 1 -k 2c,u ‘-’ du G 1+ 

2c,hP-2 

0 1 2-p .* 

Combining this with other estimates from the case p 2 2 gives 

J 

l/h 
u e * e(hu)du sE(SI)*+e+ 

2ec,h ‘-* 

--a0 2-P 

and 
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If 0 c p < 1, then the mean of S1 does not exist so the arguments given iabove do not 
apply. In this case we will expand only to first order in hu. To do this we observe that if 
u is any reall number we can write 

e h” = 1 + hu e5’(hu) where 0 s - - e’(hul~ 1 

hu l 

Using this formula we have 

00 

RI(h) = l- I dF(u) + h 
l/h I 

l/h 

u e”(hu) dF(u) 
--oo 

I 

l/h 
Gl+he u dF(u). 

0 

Again we observe u”(l-F(u)&+ so 

I 
l/h 

u dF(u) = E[Sf ; S: s l/h]~E[st A h-‘-J 
0 

and 

l/h l/h 
= l-F(u)ducl+ 

Cp!l”-’ 
c,u-’ du G l+- 

1-P 

ec,h’ 
Rl(h)s 1 +j--F+eh. - 

Combining the estimates above and using the fact that h s 1 we have 

IZI( I +KihiP”*) for O<p coo 

where 

if p32, 

I =P 
l-p+e’ if OCp<l. 

Combining this with the estimate for Rz(y, h) givt s 

R(y, 12)~ 1 +(KL +~ecP)hPA2+KP(yh)-P eGh. 

Now if 8 2 0, then (1 + 0)” c ene = 1 + no + (n*/n)e f- l - . so from this it follows that 
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Substituting h = -log(nK&,y -")/y in the last expression and noticing that 0 < h < 1 
and l/h G y if y >p log y > I +log ~lk:p gives that 

i ( P log 3’ -log nK, “* 
R(y, h>, Gexp> 1 -tn(K' +ecJ --- 

Y >) 

and 

Fz (IJO) -FL (x) =S eswZLxR(y, h)” 

+$x’Yexp( 1 +&Kb +ec,)(P logy ilog ‘KP)pA2) 

whenever y >p log y > 1 +log nM,. 
Now for the purposes of the lemma we are interested in the value of the expression 

when x,/(n ““**’ log YE) + 00 and y, L- lil- E)x~. In this case we will have y, > 
p log yn > I -tlog nh& when n is sufficiently large and we have that the exponent in 
the right-hand side of the inequality converges to 1. From this it follows that for n 
sufficiently large we have 

F;(a)-F::(x,)c3 

Combining this inequality with the fact that 1 -Fj: (~0) s n(1 -F(y)) proves the 
lemma. 

Proof of Theorem 8. Having proved Lemma 3 it is easy to prove the theorem. We 
will first consider the case 0 < q s 1. Let E > 0 and yn = (1 - E)x,, 

1 -K&A 1 -Eh) 1 -F(yn) 

n(l-F(x,))=n(l-i-F-x,,)’ 

Since 1 -F(x) w x-?L(x) 

l-FntYn)+(l_Ej-q 

1 -F(xn) 
. 

To estimatle the other term observe 1:hat E(St )” < CD for all p c C.J ard if we i>ick 
p>q/(l+S), then x,I(d” log n) + 0~ so Lemma 3 can be applied to give 

lim sup 
1 -F&a) 

<1+3limsup 
(nKP)l’lwp 

n+* 41 -F(y,)) n-boo ny, p’l-F(l -F(y,))’ 

The next step is to show that the lim sup on the right-hand side is 0. To do this we 
pick E’ < E so that E’ > q&/p( 1 + 6) ancl write the fraction as 

E/l-E l/l--e 
KP a;‘7ii-dy+-h~-~~(~ _F(y,-jj’ 

Yn 
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Since Et<&, yn P(l--E’)/(l-E) (1 - F( y,)) 3 00. (see [8, p. 2771). Since E’ > q&/p( 1 + 8) and 

Y?lh (*w'~ -00 we have 

n &/l--E 

p&‘/l-e + 0. 
Yn 

Combining the last two observations and the computations above gives 

lim sup 
1 -Fn(xn) 

n+a n(1 -F(x,)) 
G(l-&)-q. 

Since E was arbitrary this proves the desired result when 0 < 4 G 1. 
To prove the result when 1~ 4 < 00 we begin by proving the result when ES1 = 0 

and E(S~)*<W Let E >O and yn = (1 - E)x~. From arguments above 

lim sup 
1 -F,,(x,,j 

S (1 - E)-’ lim sup 
‘1 -F,(x,) 

n+* n(1 -F(x,)) n+* n(l-F(y,))’ 

To estimate the right-hand side we observe x,/n I+’ -, 0 for some S > 0 so if 1 < p < 4 
Lemma 3 can be applied to give 

lim sup 
1 -F,(x,) 

G1+3Iimsup 
(nKp)l’l-E 

n+* n(l -F(Y,)) n+aO ny, p’l-E(l - F(y,)) l 

To show that the lim sup on the right-hand side is 0 we’ pick E’ < E so that E ’ > E/P and 
write the fraction in the same way as in (12). Since E’ < E 

Yn P(l-F”‘l--E(l -F(y,,))+oo. 

Since E’ > E/P and y,/ut ‘-+’ ‘b cc for some S > 0 we have 

n .5/l--E 

pe’/l-& + 0. 
Yn 

Using these observations in the same way as in the case p c q s 1 proves the desired 
inequality when ES1 = 0 and E(SF)* < 00. 

To prove the result in general we begin by truncating the distribution. Let 

0 
F(x) ( F(x), if x 2 0, = 

0, if x < 0. 

If Fi is the nth convolution of F”, then 1 -Fz (x) 2 1 -Fn(x) and 1 --F”(x) = 
1 -F(x) for x ~0 so it suffices to show 

1 -F:(x,j 
lim sup - 

n+a n(l -F”(x,)) 
a. 

Let4 bethemeanc~fFo.Sinceq~1,a<~.IfweletF1(x)=Fo(x+a),thenF’isa 
distribution with mean 0 and& x2 dF(x) < W so using the result from the last part of 
the proof gives that if 2,/n I+’ 3 00 

lim sup 
lwFf,(zn) c1 

n-e03 n(1 -F’o)- 
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or letting xn = zn -an we have that if xJn “’ + 00 

lim sup 
l-F:(xn) 

n+a n(1 -F”(xn +an)) 
sl. 

To translate this into the desired result observe that x,/(x, + arc) + 1 so 

l im 1 -Fo(xn) 1 

n-m 1 -F”(x, +a,)= ’ 

4. 

In this section we will obtain a limit theorem for M, when the underlying 
distribution has 1 -F(x) - x-‘L(x) for some q > 0 and slowly varying function L. 
The main result is 

Theorem 9. Let F be a distribution such that 
(a) l-F(x)-x-‘L(x) asx+mand 
(b) (log(-x))F(x) + 0 as x + --oo. 
If we pick c,, so that n e”“( 1 - F(cn)) a+ 1, then for all x > 0 

P Mn ( ) -S x + exp(-x-‘). 
Cn 

Proof. To apply the results of Section 3 we have to check that c,‘& converges to 0 in 
probability. By the degenerate convergence criterion (see [4, p. 1341) tlhis happens if 
and only if 

(i) nP((Si]>Ec,)+O for all E >O, 

(ii) nci* Jix~sC, x*dF(x)+O and 
. . . 

( ) m nc,’ SI+~, x dF(x) + 0. 

To check the first condition we observe that if S > 0 and r > q, then from [S, p. 2771 
we have that 1 -F(x) 2 (1 + 5)x-’ for all .x sufficiently large, so if n is large enough we 
have 

C,‘S 
l-FOs 1 

(l+S) n ePn 

SOCn3n 
l/r 

ePn/: It is easy to see that this implies n P(Si > &cn) + 0. To show that the 
same result holds for the other tail let x,* = ePn’q and observe that if MI is large 

(S1 <-&Cn)Cn (SI -=c -E ep”‘q) = 

and the last expression +O as n + 0~1. 
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To check that conditions (ii) and (iii) are satisfied we begin by estimating the 
integrals over [0, c,]. For (ii) we observe 

I 
C” 

nc,* x2 dF(x) S ncf* 2x(1 -F(x)) dx 
0 

and if 0 < p < 4, then it follows from [8, p. 2771 that 1 -F(x) G Kx-” for x > 1 so the 
expression above 

C” 

2Kx’-’ dx +O 
.> 

as n +OO. For (iii) the same estimate works 

C” 

nc,’ x dF(x) G nc,’ 1-F(x)dxsnc,’ 

To estimate the integrals over [-cn, 0] we use a different approach based on 
assumption (b). We start by observing that 

mei* I 
0 

x2 dF(x) s nc,* 
-Gl I 

0 0 

(-2x)F(x) dx s 2nci’ I F(x) dx - Cn -cn 

and the last expression is also an upper bound for 

I 
0 

nc,l (-x) dF(x) 
--&I 

so to finish checking (ii) and (iii) it sufices to show that the right-hand side of the last 
inequality converges to 0. To do this we write the integral as 

I 
-CA/2 

2nci’ F(x) dx +2nc,’ F(x) dx G 2nF(-cf,‘*) + 2nc,“*. - Cn 

Now if r > 4, c,, 3 ePn’r so the last expression is 

s 2&7(-e@“/*‘) + 2n ewpn’*‘. 

Since the last expression converges to 0 as n + 00 this shows that (ii) and (iii) hold and 
hence that c,‘& converges to 0 in probability. 

The last conclusion shows that the hypothesis of Theorem 7 is satisfied. From 
assumption (a) we have that the hypothesis of Theorem 8 is satisfied. Combining the 
conclusions of these two theorems we have that if x > 0 
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At this point it is easy to prove the desired limit theorem. To do this we observe 
that if x>O 

P 
Ml 

( 1 
-C x = (1 - P(& > XC,)) e? 
Gl 

Now to show that the right-hand side converges to exp(-Cq) it suffices to show 

exp(pn)P(S, > XC,) + x-7 

To do this we write exp(@n)P(S, XX,) as 

P(& >xc,) P(S, xc,) 
n exp@n)P(& > c,) --- 

P(S+c,) nP(S1xcn) 

and observe that as yt + 00 the firs,t and third terms converge to 1 while the second 
converges to X-‘. 
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