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In recent years several authors have obtained limit theorems for the location of the right most
particle in a supercritical branching random walk. In this paper we will consider analogous
problems for an exponentially growing number of independent random walks. A comparison of
our results with the known results of branching random walk then identifies the limit behasiors

which are due to the number of particles and those which are determined by the branching
structure.
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1. Introduction

Recently several authors have obtained limit theorems for the growth of a
supercritical branching random walk. The first results were due to Hammersley [10],
Kingman [14] and Biggins [3] who proved the following ‘law of large numbers’.

Theorem 1. Let L, be the position of the right most particle in a supercritical branching
random walk with displacement distribution IF and suppose that

¢(0) = j e” dF (1)< for some 6> 0.

As n—00, L,/n converges almost surely to y=supi{a:®P(a)=1}. Here ®(a)=
inf(e"™mep(6): 6> 0) and m > 1 is the mean of the offspring distribution.

In the result above L,/n converges to a constant so the next problem is to define
sequences of normalizitig constarnts ¢, and a, so that (L, —c,)/a, converges to a

nofidegenet ste Vimit distribution. Bramsoti [4] has dotie this for branching Brownian
totions.

Theorem 2. There is d sequence of constants ¢, = 221 = 3(2) ™% log n +O(1) so that
L, =€, eonverges weakly to a continuous linit distribution.

*The research for this paper was supported by funids from NSF prant MCS 77-03121.
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118 R. Burrett | Branching random walks

Since we do not expect the normal distribution or the continuous time branchingto
be special it seems reasonable to conjecture that similar results will hold for
branching random walks (under appropriate moment assumptions). Bramson [5] has
analyzed the case in which the distribution F is bounded above. If sup{x : F(x) <1} =
A <o and m(1 - F(A-))> 1, then the subprocess of individuals who are displaced
by exactly A is supercritical. From this we get that {L,—nA =0} has positive
probability and it is easy to show that conditioned on non-extinction L, -nA
converges weakly (and a.s.?).

If (1 - F(A-))m = 1, then the limit behavior changes. In this case the subprocess is
critical so L, —nA->—-0 and we have to choose a new sequence of norming
constants. Bramson [5] has given a complete solution of this problem. In the case
F({0}) =p and F({—1}) =1 —p his result may be stated as
Theorem 3. In the offspring distribution has p ¥;ip;=1 and ¥, i*"®p; < for some
8 >0, then conditioned on nonextinction there is a random variable V and a sequence
€, of random variables so that e,, -» G almost surely and

L+ |’log log n —log(V +¢,)

log 2 ] -0 a.s.

where [x] is the least integer =x.

This result says that along almost every sample path L, - o0 like the (deterministic)
function [(log log n —log V)/log 2], i.e. L, increases through the integers 0,1, 2. ..
in a very slow and predictable manner. The variables £, are needed in the statement
of the result to adjust for the fluctuations in the transitions between successive
integers.

All the re sults above are for distributions with | e®* dF(x) < for some 8 >0. If

the distributions have larger upper tails the limit behavior is quite different. Durrett
[6] has shown

Theorem 4. Suppose that there is a slowly varying function L so that 1—F(x)~
x"L(x) as x >0 and suppose that log(—x)F(x)-0 as x -»—. Then there is a
sequence of constants a, - so that for all x>0

P(L.<a.x) ->I P( mW € dy) exp(—ryx ™).
{0,003 m-—1

Here W is the a.s. limit of Z,/c, which appears in Seneta’s well known result (see
[1, p. 30]) and the sequence a, is chosen so that c¢,(i —F(a,))- 1. For the result
above if ¥, (i logi)p; <o we can take ¢, =m" and if 1-F(x)~x"? we can let
a, = ¢»'%. If both cunditions hold we have a, =m™? so0 £, > very rapidly. This

result is in sharp contrast to the linear growth observed when [e® dF(x)<oo for
some 6 >0.
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At this point we have surveyed the known results for branching random walks and
we will begin to describe our resu!ts for the maxima of independent random walks.
For each i =1 let {S}, n =0} be an independent random walk generated by F. Let
B>0andlet M, = max{S,, : 1 <i<exp(nB)). If we let 8 = log m, then the number of
random walks is comparable to the number of particles in the branching process so if
we compare the results above for L, with the results below for M, we can see how the
dependence in the branching chain effects the location of the maximum. Our first
result is the analogue of Theorem 1.

Theorem 5. If ¢(6)=[e™ dF(x)<w for some 6 >0, then M,/n converges almost
surely to y =suply : ¥(y) =1} where ¥(y) = inf(e”"**?4(8): 6 >0).

Comparing this result with Theorem 1 shows that L,, and M,, grow at the same rate
so the effect of the branching is o(n). Differences between the branching and
independent cases begin to appear when we consider the fluctuations in L, and ./,,.
Our result for independent random walks is:

Theorem 6. Suprose F is a nonlattice distribution with ¢(9)=[e® dF(x)<o for
some 8 >0 and suppose there is an h <. 8 so that ¢'(h)/ ¢ (h) = v, the constant defined it
Theorem 5. Then there is a sequence of constants ¢, =ny—(2h)" log n — K so that

M, —c, = exp(—exp(—xh)).

Although the notation here is different, the asymrytotic formula given in
Theorem 6 is very close to Bramson’s result for branching Brownian motions. If F
is a normal distribution with mean zero and variance one, then $(8) = exp(36°) so
¢'(6)/$(8) =6 and h =y. In Bramson’s situation y =2'/? so applying Theorem 6
gives that for independent Brownian motions ¢, = 2'/?>—27*? log n + K. Comparing
this result with Bramson’s theorem shows that the dependence in the branching
random walk makes L, smaller than M, by 27'? ilog n.

Although the branching structure has a mild effect on the location of the
maximum, it has a drastic effect on the limit distribution. For independent random
walks the limit is always a double exponential distribution. For a oranching random
walk the limit is a complicated function of the offspring and displacement dis-
tributions and we do not know if the limit exists under the hypotheses of Theorem 6.
The reader should observe that even for independent random walks some technical
condition is needed to rule out the bounded case for in this case there is behavior
similar to, but much simpler than that observed by Bramson [S] for branching
random walks. If sup{x:F(x)<1}=A <o and e®(1-F(A-))>1, then P(M, =
nA)-1.1fe?(1-F(A-))=1, then P(M,, =nA)>1—¢ 'andforx<A

PM,—(n-1A<x)-»e (F(x)/F(A-)).

If e®(1-F(A-)) <1, then P(M, = nA)- 0 and we can show that the conclusion of
Theorem 6 holds in this case.
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All the results above are for distributions with [ e® dF(x) < e for some 0. In
Sections 3 and 4 we consider what happens when 1 =F(¥)= x"L(¥). Seetion 3 is
deveted to teehniealities. In this seetion we prove some large deviations results whieh
eonsolidate and generalize results due to Nagaev [16] for g >2 and Heyde [11=13]
for D=<q <2, q # 1. The theorems whieh we have obtained are the following:

Theorem 7. If x,798 is sueh that 8,/ %, eonverges to 0 in probability, then forall e >0

Co P(S, > %)
llfg»@f n (s =(1+6)%)

=1.

Theorem B, Let (<g<ee and suppose 1 =F(x)~x "L(¥) as X 300. If some § 0
x”mniﬁi/lamg@’ then

, P§, =)
llﬁ?ﬂ%p "  {CTEE =1

Combining Theorems 7 and B shows that if 1 =F(x)~x 'L(x) and %, 3% fast

enough we have P(§, > x,)~nP(§,>x,). Using this faet it is easy to prove the
following result:

Theorem 9. Let F he a distribution such that
@ 1=F(x)~x""L(x) asx=>%and
(b) (log(=%))F(x)=20 gsx=2-0,
If we pick c, so that n e® (1 =Fl(c,))» 1, then

B’(%@ < x) ~exp(—x"%) forallx.

The reader should observe that if | —=F(x) ~x " thenc, ~ (n e®")"9sa0 M, goes to
oo very rapidly.

If we let B=logm then c,=(nm")"’* which compares with c,=m"* in
Theorem 4. This difference is easy to explain. The location of M, is determined in
each case by one large jump. In the case of independent random walks there are nm"
opportunities. In branching random walks there are

" m
r Y mk =m"(-—-—-—).
k=0 m-1

2'

In this section we will obtain limit theorems for M, when the underlying dis-
tribution F satisfies the following condition

@(8)= J exp(6x)dF(x)<o forsome 6>0.
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The first result we will prove is the law of large numibers for M, given ih the
introduetion

Theorem 8. As i = 00, M,/n converges dimost surely to y =suply i W(y) = 1} where
W(y) = infle ™' Pplo): 0> 0),
Proof. We start by observipg that for all >0
P(M, = iy) < expected number of partieles in [ny, 8) = ™ B(S, = ny)
géﬁn g '”"‘5&9(@)”

§0 if ¥(y)<1, ¥ BIM, =ny) <% and from the Borel=Cantelli lemma we have
lixpg%m *%i‘ sy, almost surely (h

where ¥ =infly i ¥(y) < 1}.
The last computation gives an upper bound for the growth of M,,. The next step in
the proof is to establish the foellowing lower bound

!imigf%”?y;%up{wW(y)>l}, (2)

After we have done this we will show y2 = y =y, to complete the proof.

To prove (2) we will start by conpsidering the case in which F is bounded above
~i.e.sup{x 1 F(x) <1} = A <a0. In this case ¢ (#) < oo for ail 8 > 0 so for any 9 >0 we
can define a distribution F* by the formula

y

F')=¢(6)" j e™ dF(x).

The distribution has mean

— -1 ® Ax _¢‘(0)
m(6) = () Loxe dF(.x)~--m¢(0)

and variance

¢"(6) (cb'(ﬂ))2 _

2 — -1 w 2 6x d — 2 = = m'
o“(6)=¢(0) Lnx e dF(x)—m(8) 50 \a) m'(6).

Since we have assumed F is nondegenerate each FF° has positive variance and sc
m(0) is strictly increasing, m(0) =u = { x dF(x) e [-00, c0) and the dominated con-
vergence theorem implies m(#) is continuous so it follows from this that there is a
unique positive solution of m(8) =y for all

[.L<y<£iglo m(6) = A.
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When m(0) = y has a positive solution we-can use Theorems 1 and 6 of [19] to obtain
the following asymptotic formula for P(S, > yn).

Lemma 1. Let Fbe a nondegenerate distribution with ¢ (8) < o for some 0 >0.Ifh <@
and m(h) =y, then

log P(S, > ny) =n log ¢(h) —nhy —3 log n +O(1}. 3)

From this result we can compute the asymptotic behavicr of M,. To do this we

observe that

P(M, <ny)=(1-P(S, > ny))"™*
and for Lemma 1 we have

log(exp(Bn)P(S, > ny)) = n(B +log ¢ (k) —hy)s log n + O(1)
50

O R bty

In the first case we ean sharpen the result to say Y, P(M,, = ny) <. To do this we
observe that 1= x <e* so

(1= (8 > ny))**®") :< axp(=exp(n)P(S, > ny)).

To bound the right-hand side note that if B +10g & (h) =hy = a >0, then there is an
€ >0 so that

exp(Bn)P(S, =ny) =1 "2,
Combining the last two results shows

€9 23]
Z; P(M, = ny)= Zl exp(=¢ e"?) <o
B=

H=

and applying the Borel=Cantelll lemma gives that
ll';m;gaf—%"é ys=sup{y : B8 +log é(h)=hy >0},

To transform the last result into the one given in (2) we have to show that y2 = ;.
To do this we observe that

- T G O SN A 1 () )
Tk "Po(g)=e" ¢£9)<—y*¢—(65)

80 if y € (u, A) the infinum of e™" "P¢(6) on (0, =) is attained at the # = 6(y) which
solves ¢'(6)/@16) = y. The value of the funetion at this point is

exp(B +log & (8(y)) = ya(y)).
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This number is >1 or <1 accordingly as 8 -+log ¢ (6(y)) —y8(y) >0 cr <050 y> = y3.

At this point we have proved (2) under the assumption that sup{x : F(x) <1} < oo,
To prove (2) for unbounded F we will proceed by truncation. For each K < oo we can
define a distribution by

F(x) forx<K,

F .—.{
k(x) 1 forx=K.

If we let MY be the maximum of e®" independent random walks generated by Fg,
then we have from the results above that

M" X
lim inf —== y§ =suply : ¥*(y)>1} 4)

h-00

where ¥ (y)=inf(e‘”+"¢ (6):0>0) and ¢*(8) =] e®™ dF* (x).

From the last result it is easy to prove (2). To do this we observe that F, = F, =
<= F 50 if we use the recipe Fi' (U), U uniform on (0, 1) to define the displace-
ments we can detine ML, M2, -+, M,, on the same probability space so that

MlsMi<...sM,
Combining this result with (4) shows that

M, K
“,,m;;g'f—,;?}ggg Y3

50 It remains to eheek that liMg s ¥5 = 2. To do this we observe that as Koo,
o" (8116 (0) 5o
Kroy (i =0y+B 4 K g\,
v (y)—(ggf,e ) (6):9>0)T
and
ngjegf wE(y)=w(y)
(striet inequality is possible if ¢ (§) = eo for some 8 > 0). From this it is easy to see that

limgte ¥5 = v2 which eompletes the proof of (2).
The last detail in proving Theorem § is to show that ¥, = y;. To do this we use

Lemma 2. (y) is strietly decreasing on {y 1y =p 1 W(y) >0},

Proof. As we have observed before, if y <Ao=uup(é'(6)/d(8): d(6) <), the
infimum is attained at the 8(y) which selves ¢'(6)/# () = y and the value at this point
is exp(=y6(y) + B)(A(y)). Differentiating with respect to y gives

¢ (E(Yi}
B (8(y))

which is <0 (since @'(8(y))/&(8(y)) =y) so ¥ is strictly decreasing on [u, Au).

exp(=y0()+ 06 (0| ~00) 38+ S L ()|
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If y > Ay, then the infimum is approached as 6 - 6, =sup(6 : ¢ (0) <0). If ¥(y)>
0, then for any £ >0 we can pick 2 6, so that if 8 € (61, 6o)

e " Pp(6)<(1+¢)M(y).
If z>y and 6 € (8,4, 6,), then
M@z)<se ®*Pp(0)<(1+£)e "V M(y).
Since this holds for all ¢ >0
M(z)<e " M(y) <M(y)

so ¥ is strictly decreasing on [Ao, ) N{y : ¥(y) >0} and the proof of the lemma is
complete.

From Lemma 2 it is trivial to see that y; = y,. Combining this observation with (1)
and (2) proves that M,/n converges to y almost surely. While this result is some
accomplishment it is only the first step in determining the asymptotic behavior of M,
the next step is to consider the convergence of (M, —c,)/a.. It is easy to deterniine
what the norming constants should be. If there are constants a, and c, so that
(M, —cn)/ a, converges weakly to a continuous distribution, then these constants can
be chosen by picking 0<p<q<1 and defining ¢, and a, by P(M, <c,)->p,
P(M, <c, +a,)- q or equivalently

exp(Bn)P(S, > c,)~> —log p, (5)

P(S,.>c,.+a,) . log g
P(S,>c,) logp’

(6)

To compute the norming constants from (5) and (6) we need a formula for

P(S,. > ny) which is more accurate than (3). The result which we will use is Theorem 2
of [19].

Lemma 3. Suppose F has a nonlattice distribution and ¢(8)=[e® dF(x)<oo for
some 6> 0. If there is an h >0 so that ¢'(h)/P(h) = v, then for any sequence 5, » 0

exp(nflog ¢ (h)—h(y +8.)~85(1+0(38,))/20> (h)])
h(2wno’(h))'/? (7)

Now from the definition of y we have 8 +log ¢(h)—hy =0 so from the formula
above we have

P(S.=n(y+6,))~

exp(n[—hé, —82(1+0(8,))/20° (h)]) g
h2mna?(h))"? ®

From this it follows that if we let cf=n(y+8%) where &%=
—log(h(2wno(h))"/?)/ hn, then n(8%)*>0 so

e P(S,=c¥)>1

e” P(S,=n(y+6))~
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and if we let p = e ' in (5) we can pick

cn = ny—log(hQuna?(h)?/h =ny—2h) logn—h ™" log(h2ma’(h)'7). (9)

The next step is to determine the scaling constants a,. To do this we observe that
from (8) and the definition of ¢,

e?"P(S, =c, +a.x)=e"P(S, =n(y+85)+a.x)

(8% +anx/n)

exp(n[—h(8% +a.x/n)— 3 (1+0(8% +a.x/n)))
_ 20°(h)
h(Qmno?(h))"?
8% +anx/n)
= exp(—ha,,x -~ nﬁ——i—a—‘—;(—:{ﬂ(l +O(6% + a,,x/n))).

Since 87 ~ —log n/2hn it follows from this that if we take a, =1
e?'P(S, =n(y+85)+x)>e ™™,

and so
P(M, <nu(y+8%)+x)~>exp(—e ™).

We can restate the last result as

Theorem 6. Suppose F is a nonlattice distribution with ¢(8) = | exp(6x) dF(x) <o
forsome 6 > 0 and suppose there is an h < 0 so that ¢'(h)/ ¢ (h) = y the constant defined
in Theorem 5. If we define c, by (9) we have

M, —c, = exp(—exp(—xh)).

The result above cannot be applied if ¢'( - )/ (- ) =y has no solution. This can
happen if

(1) sup{x:F(x)<1}=A and 1-F(A—-)>0 or if

(2) sup{6:¢(8) <o} and sup{f: ¢»'(9)/H(6)} are both <co.
In the first case we can determine the asymptotic behavior of M,,. If e’ P(S; = A)> 1
the problem is trivial: e®"P(S, =nA)->% so P(M, =nA)- 1. If e*P(S,=A)<]1,
then we can pick an £>0 so tha: e’P(S§;=A—¢)<1 and we have *"P(S, =
n(A-¢))->0. This implies P(M, <n(A—-¢))~>1 so ye(u, A—¢]. From compu-
tations in the proof of Theorem 5 it follows that there isan h >0so that ¢'(h)/¢(h) =
v and Theorem 6 can be applied.

If e?P(S; = A) =1, then we are in a critical case. e’ P(S, = nA) = 1 for all n so we
have

P(M, =nA)=1-(P(S, <rAy))"™™*">1-e".
To determine the distribution of M, on {M, < nA} we will consider the limit of

J.= min I

1=i=exp(Bn)
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where
L=|{k:Si—Si1 #A, 1<k=n}.

From the calculations above we have P(J, = 0)- 1—e~". This implies P(J, =1)~>
e”!. To compute the limit of P(J, =2) we observe

PU,=2)=PUL =2 =(1-P(, < 1))‘*""‘”"",

PUIl<1)=PUI.=0)+PU.=1)=P(S;=A)"+nP(5:=A)"'P(§:<A).
Wien e’P(S;=A)=1

e®"PU; <1)=1+ne’P(S:<A).

Since P(S; =A)=e? <1 this >0 as n » © so P(J, =2) - 0. In the critical case then
J, converges weakly to J where P(J =0)=i—e ' and P(J =1)=e¢"". From this we
see that

PM,—(n-1)A=A)>1—e""

and

P(M,—(n—1)A<x)-»e (F(x)/F(A-))
for x <A.

This completes th consideration of case (1) and leaves us with case (2). In this case
there is not much to say. Let Ao =sup{¢'(0)/$(8): $(8) <oo}. If y < Ay, then there is
an h >0 which has ¢'(h)/¢(h) =y and Theorem 6 can be applied. If B is too large
vy= A, and we need new methods to determine the limit behavior of M,. We
conjecture that as we observed in the bounded case, the limit behavior changes

drastically from that given in Theorem 6 but we have not been able to solve the
problem in this case.

In this section we will consider large deviations probabilities for distributions F
which have 1 - F(x) -~ x °L(x) for some q > 0 and slowly varying function L. Our aim
will be to show that if x, - o sufficiently rapidly, then P(S, > x,.)/nP(S; > x,)~> 1.
The first step in doing this is to obtain a lower bound for P(S, > x,). This result does
not require the assumption that 1 — F(x)~x"9L(x).

Theorem 7. If x,100 is such that x,,' S, converges to 0 in probability, inen for all ¢ >0

lim inf — L on = Xn)
n-»a0 nP(S,>(1+e)x,,)/ ’
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proof of a result due to Heyde [12,

=X > exn;, then

\C

\
5))
P

)
|
il
M=
-}
—_
/—\
I C v

?ig P((A,- N B)N (;L;J: Aj)°> = ig:l(P(Af NB;)— QA,' N Ai))

=nP(A,)P(B))—n"P(A,)

The hypothesis implies P(B;)—»>1 so to complete the proof it suffices to show
nP(A;)- 0 but this is a consequence of the degenerate convergence criterion given

below (see [9, p, 134]). If ¢, 70, then ¢, 'S, 50 if ar:d only if

(i) nP(lSll> ec,.)->0 for all ¢ >0,
(ii) nc, Lﬂ;c" dF(x)->0 and
(i) ncn, SMSC“ xdF(x)~>0.

The next result gives an upper for P(S, > ;).
Theorem 8. Let 0<q <o and suppose 1—F(x)~x"°L(x) as x - co. If for some

>0, x,/n®" 500, then

m i PSS

Proof. The proof of this fact is based on the following lemma which is a generaliza-

tion of a result of Nagaev [16].

Lemma 3. Sippose
@) p=1, K(S7)" <o, E(S7)*< and ES,=0 or

(b) 0<p<1 and E(S1)° <.
Ifx./(n" Pr2) log n) - 00 and y, = (1 — €)X, then there is a constant K, such that for

all n sufficiently large

1/(1-¢)
P(S. >x,)<nP(S,> y,.)+3(';lf")

n

Proof. Let F¥(x)=F(x) AF(y). Let F, and F, be the nth convolutions of F and F”

From the definition of F, it follows that we have
Fi(x)=PS.,<x,x;syforl<sjsn)<F,(x)

SO
1-F,(x)<1-F}(x)=1--F}(c0)+F (c0)— F}(x).
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From the first equation we see 1—F,(00)<n(1—F(y)). To estimate the other term
we let 0 <h <1 and define

Fr"(x)= e™ dFy (u),

(~c0,x]

Ro.W=[  e™aFw

(—o2,y]

and
F"(x)=F}* (x)/R(y,h)".

Using these definitions we can write

Fi©-Fix)=

(x,00)

e "™ dF" (u)=R(y, h)"j e ™ dEY"(w). (10

(x,00)

Since F" is a probability distribution and 4 >0 we have
J e-—hu dﬁx‘h (u) se—hx-
(x,00)
To estimate R(y, h) we write (assuming 1/h <y)

R(. 0=

e"“dF(u)+J' e"™ dF(u)=R;(h)+Ra(y, h).
(—o0,1/h]

(1/h,y]

To obtain an estimate for R,(y, h) we observe that integrating by parts gives

y
Ra(y, h)=(F(y)-1)e" = (F(1/h)-1) e—j (F(u)—1)h ™ du.
1/h
Since ¢, =E(S7)° <o we have 1-F(1/h)<c,h” and

yh
-p _h - -
u e du=cyh” ’j u?e"du.
1

y

J-ly (1-Fu))e™du=c, L

/h /h

Integrating by parts gives

yh
I u’te“du=u"re"
1

yh yh
o] et
1 1

Now u~""'e* is decreasing on [1, p + 1] and increasing on [p + 1, ) so

vh
j u? e du<(yh)™ e’ +pyh max((yh) "' e, e)=
1

=(yh)™® ™ (1+p max(1, (yh)"*'/e"* ™).

. +1 -1 . 3 .
Since x”""/e* " is continuous and -0 as x ~> 00 there is a constant K, so that

yh
J‘ u’edu<K,(yh) " e".
1
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Using this inequality with thc results above gives

Ry, h)y<ec,h® +K,(yh) P "

The next step ig to obtain an estimate for R,(A). To do this we will consider several

cases. We start by supposing p = 2. In this case we observe that if u is any real number
we can write

0(hi)

2
(hu) ef™  where0< ;

hu
e =1+ hu+-—"
“TT

<.
u

Using this formula and observing ES; =0 we have

1/h 1/h 1/h 2
Rl(h)=J. dF(u)+[ hudp(u)+j (—h—;’—)—eﬂ"'“’dfr(u)

-0

rco o h2 1/h
1- J‘ dF(u)—J hu dF(u)+—i—_[ u® e® "™ dF (u)
1/h 1/h —a0

p2 1/
1 +—2— J u’e® ™ dF (u).

i

To estimate this expression we observe

0

1/h 1/h
J. u? ee("")dF(u)S[ uzdF(u)+eJ' u? dF(u)<E(S7)*+ec,

SO
h’ .
Ri(h) <1 +—5(E(Sl ) +ecy).
If 1<p<2 we still have ES; =0 but ¢, may be infinite so we need to use a

different bound for the last integral in the expansion. In this case we observe that
u’(1-F(u))sc, so

1/h
I W2 dF(u)=E[(ST)%; ST <1/h]1<E[ST rh7)]=
0

1/h 1/h ] 2Cphp—2
=J' 2u(1—F(u))dus;1+J 2cou Pdus<l+ -
0 1 2-p

Combining this with other estimates from the case p =2 gives

2ec,h”?

1/h
J. uzee(hu) dusE(sl—)2+e+
—c0 2—p

and

Ri)<1 +(§—_€ﬂp-)h"+(

E(s;)2+e) ,
— k.
2
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If 0<p <1, then the mean of §, does not exist so the arguments given above do not
apply. In this case we will expand only to first order in 2u. To do this we observe that if
u is any real number we can write

e"™=1+hue® ™ where0< 0 ;lhu) <1.
u

Using this formula we have

[eo) 1/h
Rl(h)=1—I dF(u)+hI u e dF ()
1/h -0
i/h
<l+he j u dF(u).

(V]

Again we observe u”(1—F(u))<c, so

1/h
J u dF(u)=E[S7; ST <1/h]<E[Si Ah7']
0

1/h 1/h P!
=[ 1—F(u)dus1+j cu Pdus1+-=
0 1 1—p

and
D
Rim=<1+5" L en
1-p

Combining the estimates above and using the fact that # <1 we have

Ri(h)<1+K,h""? for0<p<o

where
(E(S7)*+
(S1) ecz, ifp=2,
2
, ecp E(.S'f)2+e .
K, = + <

p 2-p 5 , iflsp<2,

P e if0<p<1

Combining this with the estimate for R,(y, k) gives
R(y, h)<1+(K,+ec,)h*"*+K,(yh) ™ e™,
Now if =0, then (1+6)" <e™ =1+n6+(n?/n)0+- - - so from this it follows that

R(y, h)" <exp(n[K, +ec,)h""*+K,(yh) ™ e"*)).
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Substituting & = —log(nK,y ”)/y in the last expression and noticing that 0<h <1
and 1/h <y if y>plogy:>1-+log nk, gives that

(p log y —log nK,,)"“z)

R(y,h)"Sexp(1+n(K' +ec,) »

and

F)(0)-F}(x)<e™R(y, h)"

plogy—log nKp) P "2)

K x/y
s(%—pf) exp(l+n(K§,+ec,,)( 5

whenever y >p log y > 1 +log nk,,.

Now for the purposes of the lemma we are interested in the value of the expression
when x,/(n'®"?logn)->o and y,={1—¢)x,. In this case we will have y,>
p log y. > 1 +log nK, when n is sufficiently large and we have that the exponent in
the right-hand side of the inequality converges to 1. From this it follows that for n
sufficiently large we have

nKp)l/l‘“E

4
n

F.%(oo)—F:(xn)ss(

Combining this inequality with the fact that 1—F) (o)< n(1—F(y)) proves the
lemma.

Proof of Theerem 8. Having proved _emma 3 it is easy to prove the theorem. We
will first consider the case 0<g<1.Lete>0and y,=(1—¢)x,

I—Fn(xn) = 1—Fn(xn) I_F(Yn)
n(1-F(x,)) n(1=F(y.) 1-F(x,)’

Since 1 —F(x)~x""L(x)

l—Fn(Yn)
1-F(x,)

>{1—-¢)™

To estimate the other term observe that E(S7)” <o for all p<gq ard if we pick
p>q/(1+38), then x,/(n"’" log n)-> o so Lemma 3 can be applied to give

1-Fl) _ . .o (nk,)'""™"
<1+3lims — .
Py (1= F(y,))

limsup TR

The next step is to show that the lim sup on the right-hand side is 0. To do this we
pick &' <& so that ¢' >qe/p(1+ 8) and write the fraction as

ne/l—eKI!,/I--e

pe /(1—¢€), p(1—e)/(1—¢) . (12)
Yn Vn (1—F()’n))




132 R. Durrert | Branching random walks

Since &' <e, y2' 179 (1 - F(y,)) - 0. (see [8, p. 277]). Since &' >qe/p(1+8) and
yu/n' 729 5 00 we have
e/1-¢
e —erize 0.

Combining the last two observations and the computations above gives

lim sup AoFx)
ol n(1=F(x,))

Since £ was arbitrary this proves the desired resuit when 0<g =<1.
To prove the result when 1 <gq <o we begin by proving the result when ES, =
and E(S7)’*< . Let £ >0 and y, = (1 —¢)x,. From arguments above

s(1-¢)"

. _Fn(xn; - -q 1: ‘l—Fn(xn)
= 1— ql ——..
PR Fay Y PR F ()
1+8

To estimate the right-hand side we observe x,,/n

Lemma 3 can be applied to give
Fo(xx) (nK,)'"1*

lim sup -——————-\1+3hmsu — .
m? n(1-F(y,) Pyt (1= F(yn))

To show that the lim sup on the right-hand side is 0 we: pick £’ < ¢ so that ' > ¢/p and
write the fraction in the same way as in (12). Since £'<e

yn T (1= F(y,)) > .

~>0forsome d>0so0if 1<p<q

Since ' >¢/p and y,/n'*? - o for some 8 >0 we have
e/l £
pe'/1—¢ —>0

Yn
Using these observations in the same way as in the case p < q <1 proves the desired
inequality when ES; =0 and E(S7)*< .
To prove the result in general we begin by truncating the distribution. Let

F(x), ifx=0,

F° ={
®=10,  itx<o.

If FY is the nth convolution of F°, then 1-F%(x)=1-F,(x) and 1 -F'(x)=
1—-F(x) for x >0 so0 it suffices to show

lim sup — <1,

n-% n( 1 _F (xn))
Let 2 be the mean of F°. Since g>1,a<o.Ifwelet F'(x)=F°x+a),then F'isa
distribution with mean 0 and Igm x2dF(x)<c0so using the result from the last part of
the proof gives that if z,/n'*® >0

lim su —F,(z,)
,,.,copn(l Fi(z))

=1
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or letting x,, = z, —an we have that if x,/n'/® >

lim su 1-Fy (%) <
roes P n(1-F°x, +an))

To translate this into the desired result observe that x,,/(x, +arn)—>1 so

lim L-Fln) _
n-1—-F%x,+a,)

40

In this section we will obtain a limit theorem for M, when the underlying
distribution has 1—F(x)~x °L(x) for some q >0 and slowly varying function L.
The main result is

Theorem 9. Let F be a distribution such that
(@) 1-F(x)~x""L(x) asx-> and
(b) (log(—x))F(x)=>0 asx->—oco0,
If we pick ¢, so that n e®*"(1—F(c,))~ 1, then for all x>0

P(AC/I—-'-' < x) ->exp(—x" ).
Proof. To apply the results of Section 3 we have to check that ci'S, convergestoQin
probability. By the degenerate convergence criterion (see [4, p. 134]) this happens if
and only if
(i) nP(|S1|>ec,)—>0 for all £ >0,
(i) ncy? fix=e, x> dF(x)->0 and
(iii) ncy' fixi<e, x dF(x) 0.

To check the first condition we observe that if § >0 and r > g, then from [8, p. 277
we have that 1 — F(x)=(1+8)x " for all x sufficiently large, soif n is large enough we
have

_,<1—F(c,,) 1

—~— S
‘" ST1048) ne”

s0 c, =n'" e’ Itis easy to see that this implies n P(S, > ec,) > 0. To show that the
same result holds for the other tail let x, = e and observe that if n is large

nP(S: < —sc,) < nP(S, < —¢ €5/%) = g log x. P(S1 < —£x,)

log (ex,)P(S; <~exn>—§logsl’(s. <—gx)

™I

and the last expression >0 as n > o0,
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To check that conditions (ii) and (iii) are satisfied we begin by estimating the
integrals over [0, c,]. For (ii) we observe

nc;zj. "xz dF(x)Snc:ZJ "2x(1—-F(x)) dx
(V]

(4]

and if 0<p <gq, then it follows from [8, p. 277] that 1 — F(x)<Kx? for x =1 so the
expression above

cn
< nc;z(l + I 2Kx'P dx) -0
1 .
as n - 00. For (iii) the same estimate works

nc,' j " x dF(x) <nc}! j ) 1-F(x) dxsnczl(l'*'J. "2KxP dx)->0
0 0 : !

as n -» 00,

To estimate the integrals over [—c,, 0] we use a different approach based on
assumption (b). We start by observing that

0

0
ne;? I x? dF(x)<nc};> I

—Cn —Cn

0
(—2x)F(x) dx <2nc;’ _[ F(x)dx

n

and the last expression is also an upper bound for

0
ney! J (—x)dF(x)

so to finish checking (ii) and (iii) it suffices to show that the right-hand side of the last
inequality converges to 0. To do this we write the integral as

—cl/2

2nc,’,'I F(x)dx +2nc, J F(x)dx <2nF(-c¥*)+2nc;'?

Now if 7> g, c, =e®"" so the last expression is
<2nF(—e®*)+2n e PV?"

Since the last expression converges to 0 as n - oo this shows that (ii) and (iii) hold and
hence that ¢,'S, converges to 0 in probability.

The last conclusion shows that the hypothesis of Theorem 7 is satisfied. From
assumptior: (a) we have that the hypothesis of Theorem 8 is satisfied. Combining the
conclusions of these two theorems we have that if x >0

lim L On>%Ca) _
n-o n (S, > xc,)
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At this point it is easy to prove the desired limit theorem. To do this we observe
that if x>0

M,
P(c—s x) =(1-P(S, > xc,)) e®".

Now to show that the right-hand side converges to exp(—x %) it suffices to show
exp(Bn)P(S, > xc,)—>x .
To do this we write exp(fn)P(S, > xc,) as

P(S;>xc,) P(S,>xc,)
P(S:>c,) nP(S:>xc,)

n exp(Bn)P(S:>c,)

and observe that as n - oo the first and third terms converge to 1 while the second

converges to x°.
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