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Harry Kesten’s Publications
A Personal Perspective

Rick Durrett

Writing zhout Harry Kesten's life work is a daunting task. At of the writing of
this paper, he has published almost 150 papers totaling more than 5000 pages.
The topics range from refined results for the classical topics of random walks. re-
newal theory, Lévy processes, and branching processes to questions of interest in
statistical mechanics: first passage percolaticn, percolation, DLA, and the models
named after Ising, Potts, and Heisenberg. In most cases Harry has solved other
people’s problems, so his publication list makes excursions into dozens of other
topics from the local times for Markov processes [25, 43] to existence and unigue-
ness of Markov random fields [54]; from the speed of convergence of martingales
[59] and properties of positive harmonic mcwnﬁomm {617 to Chung-type laws of the

iterated logarithm [143].

‘When I was bom (Le., oEmmaoa from graduate school) in quo the definitive
work of the dynamic duo of Kesten and Spitzer on random walks {17, 20, 26]
was legendary and, together with Kesten's individual work on random walks [21
32, 34, 35] and his joint work with Stigum [27, 28, 33] and with Ney and Spitzer
{31} on branching processes, was an important part of one’s graduate educaton. In

particular, the Kesten and Stigum result that F(Z logh Z1) < o0 is necessary and
sufficient for the convergence of mean normalized branching processes Z,/m”™ (0
a limit with mean EZp is something that is usually mentioned (but not proved)
when branching processes are discussed. These and other results of that era [41,
43, 49, 51, 58] showed us that Kesten was someone who could prove results under
a mimumal number of assumptions and whe could mmmnwﬁsmwo the mysteries of
random walks with infinite rean.

However, most of all we knew Kesten as a problem sclver. A classical and
well-known example is Kesten’s impressive work calculating “Hitting probabili-
ties of single points for a process with independent increments" which appeared as
Memoirs of the AMS, No. 93 [37] and was the subject of his 1970 address at the
International Congress of Mathematicians in Nice [39]. A more personal bit of data
is the following testimonial from G.R.Grimmett@statslab.cam.ac.uk:
“Rick: I was perhaps understandably impressed by ‘Supercritical branching pro-
cesses with countably many types and the size of random Cantor sets’ [106] which

was inspired by Delddng/Grimmett. Harry was just able to blast through a ver-
sion of the problem doing substantially better than anyone else. I understood then
how well he grasped branching processes.” Indeed, one does not really under-
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2 Rick Durrett

stand Kesten’s prowess until you have seen kim demolish a problem that you have
worked on.

The first two decades of Kesten’s work, while containing important contribu-
tions, are difficult for me to properly put in context since the work was already
complete when I started learning probability. Because of this I have decided to
tell the story of his work as I experienced it. Thus, following the style of some
paperback novelists, T will begin in the middle of the story with some exciting
events to grab the reader’s attention. Then after the story line is established, I will
go back and fill in earlier developments.

I spent the 1980-81 academic year at Comnell. At this time, Dynkin’s Russian
style serninar, held Wednesdays 7-9 PM, was a lively affair, with Avi Mandelbaum,
Bob Vanderbei and Patrick Sheppard as students. Kesten had recently proved that
“The critical probability for bond percolation on the square lattice equals 1/2" [67]
and followed this up with “power estimates of functions in percolation theory” [71].
The title of the last paper is a2 double entendre. The results concern the power law
behavior of functions near the critical value but introduced powerful new rigorous
renormalization arguments. To facilitate writing his book [72], Kesten tanght a
graduate setninar on percolation and first passage percolation. Harry prepared for
class while swimming laps in the pool at Teagle Hall, so in his lectures you got
to see how he thought. He would start with the main idez of the proof, but then
often would have to go back and insert a technicality at an angle on the margin
of the board. This made it difficult for the students to get good notes, but for me

<. it provided valuable insights about why things are true and how he went about

sclving problems.

In this brief article there is not enough space to discuss why things are true,
so we will only discuss what Kesten {and others) have done. Our first two iopics,
percolation and first passage percolation (which we will interpret very broadly)
are those of Harry’s course in 1980 and of his Wald Lectures in 1986 (see [95]). In
each case we will take the subject from the 80°s up fo today. For the third section of
the paper we will go back to Kesten’s Ph.D. thesis and follow his work on random
walks and related topics up to the present. In these three forays we will touch on
much, but by no means all, of Kesten’s best work. Like a one week bus tour of
Europe, there is only time to drive past the outside of some of the most imporiant
iandmarks. We apologize in advance for the fact that in order to say things guickly,
we will not always be able to say things carefully. We will never intentionally lie
gbout what is true, but sometimes we will not tzke the time to sort out 2} the details
of whao did what when.

1.1 Percolation

Broadbent and Hammersiey (1957), and Hammersley {1959) introduced perco-
lation as 2 mode! for the spread of a fluid or gas through a random medinm. To
formulate the bond nmﬂnommmom._ model in & dimensions, we make the d-dimensionzl
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integer lattice Z¢ inte a graph by drawing edges connecting adjacent sites. We
imagine that the edges are channels and that fuid will move through a channel
if and only if the channel is wide cnough. We declare that the edges are inde-
pendently designaied as open {wide enough) or closed with probabilities p and
1 — p respectively, and let P, denote the resulling probability measure on the
configurations of open and closed edges. We will also sometimes consider site
percolation in which the sites are independently open with probability p or closed
with probability I — p, but for this article the default process is bond percolation.

With that set-up it is natural to ask about the set of sites Cy that can be reached
from the origin by 2 path of open edges. The first papers mentioned above showed
that if p is smali, then the number of points in Cp, [Co}, is always finite, while if
p is close enough to 1, then

8(p) = P({Cy] = o0) > 0. (111

This and an obvious monotonicity establishes the existence of a critical vajue
pe = inf{p : 8(p) > 0} but dees not give much information abowt its value. The
first step in that direction for two dimensicnal bond percolation was taken by Harris
(1960). He noticed that when p = 1/2, symmetry dictates that the probability of
a left to right crossing of 2 “sponge,” ann x (1 - 1} piece of the square latiice, 18
1/2, and used this observation to show that at p = 1/2 the erigin is smrounded by
infinitely many cut sets of vacant edges, so p. > 1/2.

The next step in this direction was taken by Sykes and Essam {1964) who
intreduced a guantity they called the free energy:

Alp) = Ep(1/|Col; 1Cof > 0). (1.1.2)

Probabilistically, this is the limiting value of the sumber of clusters per unit volume.
By snalogy with the Ising model, Sykes and Essamn argued that the phase transition
in percolation must be manifest in 2 “singulerity” at pe. Their calculations showed
that the squase lattice, A{p) — A(l — p) is a polynomial in p, so assuming that
such a singularity was unique, they arrived at p, = 1/2 for the square laifice. In
addition, Sykes and Fssam used varlations of this argument to show that the critical
value of site percolation on the triangular {attice is 1/2 and supplemented this with
the star-triangle transformation to show that the critical values for bond percolation
on the trizngular and hexagenel lattice are p and 1 — p where p = 2sin(x/18) is
the unique root of 3p — /A =1in(0, ).

Not much beyond Harris” result was rigorously proved about percolation untl
1978, when Russo (1978} and Seymour and Welsh (1978) provided two valuable
steps. The first is that if sponge crossing probabilities are large enough, then per-
colation cccurs. To state the second, we need 1o define the dual of a planar graph,
which is constructed by putting sites'in each component of the complement of the
graph and connecting two sites by an edge if the boundaries of their associated
components share an edge. Denoting the dual by a star and defining

pr =sup{p 1 Ep(|Col) = oo}, (1.1.3



R A TR SRS N RS e e, S Rt

A A P a1

4 Rick Durrert

the second fact is p. + p} = 1. The third crucial ingredient was provided by
Kesten, who showed that if n is jarge, then the sponge crossing probability for
two dimensional bond percolation is a very steep function of p near p = 1/2.
Since small sponge crossing probabilities Imply that the cluster size is finite, this
completed the proof of p, = 1/2.

The computation of the critical value for the sqnare laitice was soon generalized
to the other graphs Sykes and Essam considered, see {72, Chapters 1-3], and a flood
of new results followed. Some of the results were proved for general 4 initially
and most are known in that generality now, but to meke the storytelling simple we
will restrict our attention here to d = 2 and add the disclaimer that many other
people’s work was important in reaching the following conclusions. If you want
the whole story and to have it told correctly, you should buy 2 copy of Grimmert’s
(1999) book.

Soon after Kesten’s breakthrough, it was shown that P,(1Cs| > n) decayed
expenentially fast for p < p; while for p > p. large finite clusters were very
unlikely:

Py(n < |Co| < 00} = Coxp(—yn“~)  forp > p,.

Here one cannot do better than the power n(9~1/¢ since a cube of vacant edges of
radius r has probability mwm_ﬁlnwn\ 1y and cuts off a volume of r%. For a more recent
lock at estimates for the probability of a large cluster in supercritical percolation,
see [105].

- A second important consequence of Kesten’s work is that it was possible for the
first time to prove results about the behavior of various quantities near p,. Taking
F(p) = {p— p.|¥ tomean that log f(p)/log |p — p.| — «, physicists tell us that
near p, we have

9(p) = Pp(iCol = 00) % (p — pc)? asp | pe.
X(p) = EpllCeli [Cal w00} = {p — p |77 asp— py

while if we use P, to denote P, with p = p,, then we can define three more
critical exponents

Po(|Col 2 m)y o1/
P {radius{Cp) = n) ~v n 1o

P A(n, Q) € Cp) /e p~ @240,

IV

Kesten was the first [71] io prove bounds which show that in two dimensions if
£, ¥, and & exist, then they are positive and finite. These insights were deepened in
[81] when he gave arigorous definition in two dimensions of physicists’ “incipient
infinite cluster at criticality” (where the probability of an infinite cluster is Oy by
conditioning or the event that the origin is connected to the boundary of the box
of radius » and letting n — oo.

The incipient infinite cluster is a fractal of dimension (2—7)/(1 —1/4). Simula-
tions show that the cluster consists of many dangling ends and very little backbone,
Le., the part that would carry electricity if the origin was electrified and the bound-
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ary of the box was grounded. In order to prove a result that captures this mental
picture of the stucture of the cluster, Kesten considered in [82] and [83] random
walk on various random graphs. In the case of a graph that is the family tree of a
critical branching precess conditioned on non-extinction, Kesten was able to show
that the normalized height of the walker at time 7, n~3R(X,), converge to a limit.
His results were less complete for walks on the “incipient infinite cluster” but he
was able to establish subdiffusive behavior, 1.e., show that [ Xn]/2%5~¢ was tight
for some ¢ > (. For recent related work on the geometry of critical percolation
clusters, in particular results about lowest crossing, see Kesten and Zhang [123].
The incipient infinite cluster is not only a mathematical curiosity but also a
useful technical device. It allowed Kesten to show [89] that the three exponents
that we introduced for 2., were simply related in £ = 2 {assuming they exist}:

n=2/6, &=25—1 (1.1.4)

The last two equalities are two of many scaling relationships that relate the behavior
of various quantities at and near p,. However, before we can state more of these
relations we nead to introduce a quantity that is more subtle but equally Important
as those introduced above.
Taking the simplest of several possible definitions we can define the correlation
length by )
2

1,
E(p) = w@M 1312 Po(y € Co, 1Co} < 00)

and the corresponding exponent by £(p) & |p — p.|7V as p > p.. (See [§7] for
a definition in terms of the exponental decay of varicus connection probabilities.)
Intuitively, the correlation length gives the radius of a “typical” finite cluster. Using
the definition above, Kesten was able 10 show [90] that the critical exponents of

two dimensional percolation satisfy
v §—1
R

These equalities, which can be guessed by back-of-the-envelope caleulations, were
widely accepted by physicists, but it required a fair amount of ingenuity for Kesten
to prove them in the two dimensional case.

Angther of the “chvious” facts about percolation that nesded mathematical proof
was the fact that the infinite cluster, when it existed, was unigue. A first step in
this direction was taken by Newman and Schulman (1981} who showed that, with
probability one, there were 0, 1, or oo infinite clusters. The last possibility occurs
for trivial reasons for percolation on trees. Not many people believed that infinitely
many clusters was a reasonable possibility on Z¢, but it took another half decade
before Aizenman, Kesten, and Newman {see [88] and [91]) could prove this by
relating uniqueness to the differentability of the free energy, A(p). Though the
proof was slow to be found, it did not last long as the best argument around. In

(1.1.5)

B
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{1988} Burton and Keane discovered a very beautiful geometric proof that worked
for a number of dependent models as well.

There are many reascns for being interested in percolation. When generalized to
the oriented case and then to “continuocus time,” these resuits have led to a wealth
of information about the contact process, one of the most basic interacting parti-
cle systems. See Durrett (1984) and Bezuidenhout and Grimmett (1950), (1991).
On a different level, comparison with oriented percolation can be used 1o prove
the sxistence of imteresting behavior for particle systems with long range or fast
stirring. See Durrett (19952).

Physicists view percolation as a prototypical example of a system with phase
transitions. In the case of the Potts model (a multicolor version of the Ising model)
the connection is more than an analogy. Suppose we use the independent per-
colation measure P, with 0 < p =< 1 1o define a new measure for g > 0
by

A0, pfdPy = gC@ L (1.1.6)

“r Z(g, p, &) o

where C(w, A) is the number of connected components in the box A (for some
specified boundary conditions) and Z(g, p, A) is the normalizing constant to make
the ¢, ; a probability measure. Then the infinite volume hmit @, , gives ihe
distribution of the ¢-state Potts model, and taking ¢ = 2 we have the Ising model.
This great idea came from Fortuin and Kastelyn (1972). For more on this see
Grimmett (1995).
" This connection was used by Aizenman, . Chayes, L. Chayes, and Newman
(1988) to prove the discontinuity of magnetization in the one dimensional 1 /jx—y|?
Ising and Potis models by using earlier results of Aizenman and Newman (1986) for
the enalogous percelation process. Later {99, 100, 102], and [103], in joint work
with various subsets of {Bricmont, Lebowitz, Schonmann}, Kesien used these
ideas (o study the asymptotic behavior ¢f Ising, Pous, and Heisenberg models as
the dimension gels large. More recently in [ 1207 with Bezuidenhout and Grimmety,
Kesten used this conncction to show that the critical value B, of the ferromagnetic
Pouts model is a strecrly decreasing function of the strengihs of the interactions in
the process.

Tuming away from critical values; cur nex( topic is critical exponents, specifi-
cally “mean field bounds™ on them. To explain this term, we note that percolation
on a tree in which cach node has degree & + 1 1s essentially 2 Galton-Watson
process in which each individual has a binomial(k, p) number of children. Cal-
culations for branching processes (exercise for the reader) show thar the critical
value p, = 1/k and critical exponents 8 =1,y = 1,8, = l,and § = 2.

There are 2 number of results which show that the mean field values in general
provide bounds for those of ordinary percolation. Aizenman and Newman (1984)
showed that y > 1. J.T. Chayes and L. Chayes (1986) showed § < . Aizenman
and Barsky (1987) showed § > 2. Going further in this direction, there are results
which show that values of critical exponents do not take their mean field values
in Jow dimensions. Reversing historical order we note that for ¢ = 2, Kesten
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that 6, = 2 > 1. The latter result is based on their famous inequality that the
probability for two increasing events 1o occur disjointly is smailer than the product
of their probabilities. For an up to date account of this inequality and its remarkable
generalization to arbitrary events, see the article by Borgs, Chayes, and Randail in
this volume.

Somewhat more surprising than the strict inequalities in low dimensions is the
statement that above the critical dimensicn (d, = § for percolation) all critical
exponents take their mean field values. For a long time this statement was a claim
that physicists made and mathematicians couldn’t prove. The first steps toward a
mathematical proof were taken by Ajzenman and Newman (1984) who showed

that if

V= Mwea — )P {x = Y Peur(y > 0) <2 (1.1.7)
x.¥

then v = 1. Barsky and Aizenman (1988) showed that if the “triangle condition”
was satisfied, then we also have § = I and § = 2. The final step was taken
by Hara and Slade (1989, 1990) who showed that the triangle condition held (i)
for the nearest neighbor case in d > 4, (where d, < 19, sec Hara and Slade
{1994)) or (ii) in d > & for a sufficiently spread owt model. To be precise, they
generalized the percolation model so that connections from x t¢ v have probability
whimmﬁq — x)/L), where g is a nice function, and showed that V < 00 if
L > L,{d). Since there is no reason o believe that percolation with range 1
is different from range 30 or 100, (i) gives a convincing demonstration that the
critical dimension is < 6.

Hara and Slade proved their results with the “lace expansion” which has turned
out to be a powerful technique for understanding phase transitions in other systems.
Recent applications of this method to lattice trees and the incipient infinite cluster
are discussed in Slade’s articie in this volume. The limit in Slade’s article invclves
a functionai of super-Brownian motion, a process that is the subject of articles by
LeGall and Cox, Durrett, and Perkins.

Results on percelation have continued to this day to be an important part of
Kesten’s work. Inspired by a seminar talk Larry Shepp gave at Cornell, Kesten
and 1 solved a problem Shepp posed about long range percolation in one dimen-
sion, see [104]. In {119] he studied with Grimmett and Zhang random walk on
the infinite cluster of bond pereolation on Z9, showing that in the supercritical
regime when d > 3 this random walk 15 2.s. transient. This conclusion was proved
by considering the infinite percolation cluster as a random electrical network in
which each open edge has unit resistance and showing that the effective resistance
between a nominated point and points at infinity is almost surely finite.

Recently, Kesten has with Benjamini [130] and with Sidoravicius and Zhang
[146], proved some fascinating results about the question: when can one with
positive probability see every infinite word of O’s and 1's from 2 given site in a
lattice of independent {0, 1} valued random variables? To be precise, a word is a
binary sequence (1, v2,...) € &= {0, 1} where N = {1,2,3,...). Wesay that
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the word is seen from x if there is a self-avoiding path starting from a neighbor
of x along which we see the word. (We start at a neighbor for the trivial reason
that there can be only one value at a given site.) Let §(v) be the words seen from
a given vertex v and S = U, 5(v) be the words seen from some vertex.

To relate this to our previous discussion, note that the classic question of
percolation can be phrased as: “Is (1, 1,1,...) € S{v)7" Another variant that
has beer investigated is AB percolation (see Wierman and Appel (1997) and
references therein). In the current setting the question may be phrased as: “Is
(1,0,1,0,..) € S(x)?" Benjamini and Kesten {130] studied the case in which
(’s and 1’s each had probability 1/2 in the original product measure. They showed
thatind = 10, P(Se = E) = 1 whileford > 40, P(S(v) = 2 forsome v) = 1.

The dimensions 10 and 40 came from considering analogous questions for ori-
ented percolation and hence are not sharp. To approach the question from the other
end, consider the mangular laitice in two dimensions. In this case, due to the lack
of percolation at p = 1/2, (1, 1,1, ...) cannot be seen, but Wierman and Appel
(1987) have shown (1,0, 1,0, ...} can be seen. To ask how many words can be
seen, we can take a comprehensive lock by introducing product measures with
density 0 < 8 < 1, vz on & and let p(&) be the probability the word £ is seen
from some starting point. In [149], Kesten, Sidoravicius, and Zhang showed that
£(&) = 1 for vg almost every word &.

Finally, while I have been writing this article, Kesten has done his best to create
new resulis faster than I can digest what he has done. In {1511 he and Zhong-
gen Su investigated p-percolation. Leiting X (e} = 1 if the bond is open and 0
if"it is closed, they asked if there is an infinite oriented path vg = 0, vy, vz, ...
starling at the origin so that lim inf, , {1 /7} MM_HH X(vi—1, v5) = p. Defining
the critical value in the obvicus way, they considered D = limg o0 d Y2 po(d)
and an analogous Hmit, D, for site percolation showing that I < D and that
neither of these values is the equal to the comesponding Hmit for regular d-ary
rees.

1.2 First Passage Percolation

Again our subject originates in England, but this time more than a half decade
later in the work of Hammersley and Welsh (1965). To formulate the model in
dimensions, we again imagine that the edges connecting neighbering sites in 2
are channels. However, we now assume that the fluid can flow through any channel
but will take an amount of time 1, to flow through edge ¢, where the 1, = [0, &)
are independent and identicaily distributed random times.

With this set-up it is natural to ask: at what time 7(x, y) will fluid first appear
at y if we turn on 2 source at x at time 0? ¥ we let e; = (1,0, ..., 0), then the
passage times dy , = T{mei, ne;) do not have independent increments, but by
exploiting an obvious subadditivity property 49 m +am.n > @p., One can conclude
(see Kingman (1968) or Chapter 5 of Smythe and Wierman (1978)} that if Ez, < oo
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then
agn/n — 1 as. where u = inf Eag . /m. (1.2.1)

m=1

Like many other peopie, Hamry Kesten was attracted to the subject by Smythe
and Wierman’s (1978) monograph. Not surprisingly, his first result in this direction
in [63] was closely related to his work on percolation. He showed that the time
constant ¢ is 0 if and only if the atom at § in the passage time distribution is < pr,
the critical value for infinite mean cluster size. To put this result in context, we
should mention that this was proved before it was known that p. = pr.

Having mentioned the possibility of 1 = 0, we will now define it out of exis-
tence by supposing for the rest of our discussion that the passage time distribufion
has F(0) = 0. There is nething special about the direction e; in the limit theo-
rem quoted zhove. Taking inspiration from Richardscn (1973), one can define a
propagation speed for each direction and then patch them together to get a shape

theorem for the wet region
W, ={xeZ?:c(0,x) <t}

To do this Jet @ = {—1/2, 17219 be the cube of side 1 and convert the wet region
at time 7 into 2 solid blob by letting W, be the union of x + @ overall x € W,. Cox
and Durrett (1980) showed that for any distribution F with limyoee Flx) = 1
{e.g, we do not have to assume the existence of a mean) there is a Hmiting convex

set G so that for any € > 0
P(W, C(14+enG, \W/ji— G|l <¢) — 1. 1.2.2)

Here [A] denotes the Lebesgue measure of A. .

An easy consequence of this result is thatif we let 2(0, 1) = min{z (0, x) 1 xy =
1} be the point to hyperplane passage time, then for any distribution F we have

boufn — 1 as. where g = Evm Eay m/m. (1.2.3)

m

In contrasi, scine moment condition is needed to have almost sure convergence of
ag.n /r in(1.2.1). For, otherwise, the minimum of the 24 bonds ending at ne; may
be > en mfinitely often, spoiling the convergence. For ag ,,/n, Cox and Durrett
(1580} showed that the necessary condition implicit in the previous sentence is
sufficient for convergence to 1 almost surely. The stubbemn points are responsible
for little holes in the Iimiting shape which force the complicated formulation. T
would like to thank Harry Kesien for explaining this aspect of Cox and Durmett’s
work to me.

The time constant jo = inf>; Eag m /m is a mysterious object. One can, with
considerable pain, get upper bounds on p by estimating Fag./n forn =1 or 2.
However, to my knowledge it cannot be ¢omputed exactly in any-case in which g >
infi{x : F(x) » 0}. Cox (1980) was the first to Investigate continuity properties
of 1 as a function of the underlying distribution F. He proved that if the F, were
dominated by a single distribution G with finite mean and F,, = F in the sense
of weak convergence, then u{F,) — p(F). As the “no moment" result in (1.2.3)
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might suggest, the domination condition is not needed. It was removed by Cox
and Kesten [70] who showed thatif F, = F, then u(F,;) — p(FY.

Eden {1961) was interested in the Markovian case of first passage percolation in
which each edge had a mean one exponential distribution. Early simulations, and
4 little wishful thinking, suggested that the limit shape might be a ball. However
in the mid 1980’s a super-computer solved the problem by showing there was
roughly a 2% difference between the speeds along the axis and on the line at 45
degress. (See Zabolitsky and Stauffer (1986a,b).) In words, the fact that the L!
distance to (n/+/2, n/+/2) is +/2n rather than z to the point (n, 0 is almost exactly
compensated by the fact that there are many more paths of minimum length to the
first point. Kesten showed in Section & of [78] that in high dimensions the balance
between these forces breaks down. If we suppose that the underlying distmibution
F has density function F'(0) = 1, then the time constant is of order {logd)/d
while the passage time in the direction {1, 1, ..., 13/+/d is of order 1/d.

There is only one special case in which we have some rigorous concrete in-
formation about the limiting shape G in (1.2.2). Consider two dimensions for
simplicity and suppose that Pz, > 1) = l and P(z, = 1} = p. Since the fluid can
move at most one unit per time, the limiting set must be comained in the diamond
{(x, ) o x|+ ¥ = 1}. Durrettand Liggett (1981) showed that if p was [arger than
the critical value for eriented percolation in two dimensions, then the boundary of
the limifing shape contained an interval inx 4 y = 1.

Closely related 1o the topic of first passage percolation is the notion of random
resistor networks. To formulate the model in two dimensions, we imagine that
the edges connecting adjacent sites in the sguare lattice are resistors with random
resistances r, that are independent and dentically distribuied random values €
{0, c0]. Grimmett and Kesten [74] investigated the bulk properties of random
resistor netwoerks consisting of 7 x n chunks of the square lattice, with a special
interest in the case in which the values 1 and oo had probabilities p and 1 — p. They
also tooked at the flow through networks where edges have random capacities. This
study involved a look at large deviations probabilities for the various passage times.
na second study [75] they examined properiies of random electrical networks on
complete graphs. The reader should not be surprised to hear that the results are
morc precise and detailed in this context.

Kesten’s work on percolation and first passage percolation earned him his second
invitation for a 45 minute lecture at the International Congress of Mathematicians,
which met in Warsaw in 1983. The odd numbered year is not a typo. The Congress
was delayed for a year due to political unrest in Poland. Like many mathematicians.
Kesten showed his solidarity with Solidarity by not going to the Congress,

In 1984 Kesten lectured fwith René Carmona and John Walsh) at Beole &'Ei4
de Probabilités de Saint Flour XTV. Kesten’s lecture notes cover many of the topics
we have referred to above and in many cases present new refinements. We have
already mentioned the asymptotics for large dimensions that were given In Section
8 of his notes. The work of Grimmett and Kesten [74] is taken further in Section
5 by giving large deviations results and rates of convergence of Eag,/n to the

Y
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passage time, ard in Section 7 with a look at convergence rates in the case g = 0
in d = 2. For more recent results on the last topic, see Kesten and Zhang [142].

The rate of convergence to the time constant given in (5.16) of the St. Flour notes
was crude: O ((logn)~1/®4+3}} bur it took several years before Kesten [117] and
Alexander (1993) could improve that bound to the very respectable O (n~ 12 jog ).
Kesten showed in [117] that the fluctnations ag, — Eap,, are at most diffusive,
i.e., the variance of ag; is < Cn. Novice readers might expect to hear next of a
central {imit theorem being proved. However, physicists tell us (see Kardar, Parisi,
and Zhang (1986), Zabolitsky and Stzuffer (19862,b), and Knug and Spohn {1991})
that in two dimensions the standard deviation of the first passage time £ (0, (, 0))
is of crder n1/3.

The fluctuations in the passage times to ne; or, more geometrically, of the
boundary of the wet region at time s, W,, can be used (0 define a critical exponent,
x, by declaring that they are O{nX). In this new notation, Kesten’s result is that
x < 1/2, while physicists claim that ¥ = 1/3. Lower bounds on the fluctuations
have turned out to be more difficult. Pemantie and Peres {1994) and Newman and
Piza (1995) have shown that, ind = 2, finctuations diverge at least logarithmically
fast. This result can be improved if one is willing to introduce hypotheses that seem
reascnable, but that cannot at the moment be proved. Wehr and Aizenman (1990)
studied an exponent £, defined so that the point the wet region first touches the
hyperplane x] = n is O (n%), and proved that

x = TIQMM;HW. (1.2.4)

Combining this with Newman and Piza’s (1995) result £ < 3/4 in d = 2 gives
¥ = 1/8. Weaker versions of the last conclusion can he proved without invoking
any unverified hvpotheses.

Secking to understand the spread of first passage percelation, Newman (1595}
iniroduced a graph that consists of the union of the time minimizing paths from
one fixed point, say the origin, to all of the other points. It is easy (o see that this
graph must be a spanning tree, and that the spanning tree must have at least one
infinite path, which Newman called a one sided geodesic. Proving that one sided
geodesics exist soing in all directions, or the more mysterious claim by physicists
that two sided geodesics do not exist, has proved to be difficult. See Licea and
Newmas (1996). In this volume, Howard and Newman report on recent progress
for models that take place on R?. Here rotational invariance can be used to great
advantage once one pays the price of generalizing the lattice results to the new
setting.

The exact solution for the critical value of two dimensional percolation rests
on a duality between planar graphs. If one considers bond percolation in the three
dimensions, then a natural dual two-dimensional object is a family of two dimen-
sional plaquettes, i.e., the squares with side I perpendicular to the mid-point of the
segments from x to x 4 z where z is one of the six nearest neighbors of the ori-
gin: {1,0,0), (~1,0,0), (0, 1,C}, (0, —1, 0), (C, 0, 1), and (0, 0, —1). Aizenman,
Chayes, Chayes, Frohlich, and Russo (1983) showed that if we make plaquettes
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occupied or vacant with probahilities p and | — p and consider the event that
there is a surface of occupied plaguettes with boundary exactly equal to a given
rectangle, then the probability is of order exp{—area) if p < p., while it is of order
exp(—surface) when p > p..

Inspired by this, and using analogies with the max-flow/min-cut theorem, Kesten
considered in [87] a first passage percolation theory for random surfaces, i.e.,
the minimal cost surface that can be constructed with boundary equal to a given
rectangle of side . In three dimensions the asymptotic cost of such a loop is
proportional to the area, and dividing by n? leads to a Hmit. This may all sound
very siraightforward, but it definitely is not since the topology of surfaces in R3
rears its ugly head. Kesten’s paper was an important first step, but much remains
to be done. A proper understanding of the issue involved would probably help us
sort out the asymptotic behavior of the contact process on {(, L9, Specificaily, the
problem for the contact process 1s to show that if 7/ is the time the process dies
out (i.c., reaches all sites vacant) starting from all sites occupied, then

(1/L%logt, — ¥ (12.9)

in probability as L. — ¢o. This is known to be true in 4 = 1, see Durrett and
Schonmann {1988); but only partial results existin d > 1, see Mountford (1993).

In an opposite direction from the concept of surfaces with minimal weights
is the notion of greedy lattice animals. To set up the problem, suppose we have
i.i.d. positive random variables for the sites in the d-dimensional integer lattice,
Xy:ve Z4). Let M, be the largest sum that we can get from a seif-avoiding
pail: of length # containing the origin, and let NV, be the largest sum for an animal
(connected subset) of size n containing C. In joint work with Cox, Gandolfi, and
Griffin [121] and with Gandolfi [122], Kesten showed that if mei < 00 for
some a > O, then A, /n — i and N, /n — v almost surely.

In an opposite direction from the notion of greedy Iattice animals is that of
minima] spanning trees. Let X1, Xo, ... be independent and identically distributed
with comnion distribution 2 that has support in [0, 1)¢. and choase a spanming tree
T tominimize M, = 3, 7 |¢|¥ where |ef is the length of the edge. Steele {1088)
has shown that if 0 < & < 4, then the minimum length satsfies

n @y s clar d) .\m\ WQUQ\&E dx as. (1.2.6)

where f is the density of the absolutely continuous part of x and C(o, d) is a
constant that only depends on o and d.

Aldous and Steele (1992) complemented this result by showing that for the uni-
Torm distribution when o = d, Mg — c(d, d) in L2, The central limit theorem had
to wait for a while until Alexander (1996) and Kesten and Lee [137] independently
showed that if x is the uniform distribution, then forany & > 0

n~ @202 1 EM,) = normal(0, o7 ) (1.2.7)

where again QM 4 1s a constant that only depends on @ and 4.
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Reversing direclion yet again, we will motivate the last two topics in this section,
by noting that (i) Eden’s growth model can be thought of as a continuous time
process in which vacant sites become occupied at 2 rate equal to the number of
occupied neighbors, and (i1) if we assign the passage times to the sites instead and
ook at the embedded discrete time chain, then Eden’s model becomes a process
in which at each step a randomly chosen vacant site on the boundary of the wet
region becomes occupied. )

Taking (ii) first, we consider 2 new, more complicated modei, called diffusion
limited aggregation or DLA, in which boundary sites are added according t© a
non-tniform rule. Let Ag = [0}, i.e., just the origin. Having defined A, forn > 0,
An1is formed from A, by releasing a particle at oo and letting it perform a nearest
neighbor symmetric random walk on Z4 until it reaches a site on the boundary
of Ap. Simulations of this process produce starfish [ike creatures. The intuition is
easy to see: ence amms with narrow valleys between them form, random walks are
more likely to attach near the tips rather than traversing the fiords to get stuck in
the interior.

It is a very difficuit unsolved problem to show that arms form and the diameter
of DLA grows at rate n05+¢_ Kesten proved a result in the opposite direction in
[93] showing that the arms of DLA can’t grow any faster than Cn*/3, In hindsight
the answer is easy to see: the enhancement of adding ar the tip is maximized if
the configuration is always an interval (or a plus sign), and in this case the growth
rate for the radivs is 2/3. The proof of this result involves interesting estimates
for hitting probabilities of random walks on 74 194] and has led 1o relationships
between solutions to discrete and continuous Dirichlet problems {112). Physicists,
in their quest for new and exciting pictures generalized the original model to
include versions where the probability of attachment 15 a power 7 of the “harmonic
measure,” i.e., the hitiing distribution for the random walk. Kesten [113] kept up
with them as best as he could, proving results 1o explain their simulations.

Returning now to (i), Kesten and Schonmann [133] considered a variant of
Eden’s growil model in which each site on 74 becomes occupied at rate 1 if the
site has at least € occupled neighbors, at rate ¢ if al least one but < 6 occupied
neighbors, and at rate O if it has no occupied neighbor. In the case § = 2 they
were 2ble 1o show that the asymptotic growth rate for the model was Oy, ie.,
was bounded above and below by constant multiples of this quantity, and that the
limiting shape after rescaling is a cube as € — (0. The model with § = 3 is not
interesting in two dimensions, but in & = 3 presents an infriguing open problem
that seems 1o have connections to so-called bootstrap percolation. See Alzenman
and Lebowitz (1988).

1.3~ Random Walks

Having taken two trips through the most recent twenty years of Kesten's work, we
now go back to 2 time when symmetric random walk transition probabilities were
better known as Toeplitz matrices: [11, 12, I8]. The natural place to start is with
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*Kesten’s Ph.D. thesis in which he considered symmetric random walks on groups.
Let G be a countable group and let p = (p:)reg be a symmetric probability
distribution whose support generates G. Consider the random walk on G in which
every step comresponds to right multiplication by x with probability p,. Kesten’s
thesis explored connections between the spectrum of the transition probability (as
an operator on L2((5)) and the structure of the group G. The operator is self-adjoint
(since the random walk is symmetnic) and has norm < 1, so its spectrum 15 a subset
of {—1, 1]. Kesten showed that the spectral radius (G, p) is the maximal value in
the spectrum and

MG, p) = lim alf*

Frigy dva)
where a3, is the probability that the walk is back at the origin after 2n steps. Thus
AG, p) < 1if and only if @2, — O exponentially fast.

Kesten was especially interested in determining when A(G, p) = 1. He showed
that this 1s a property of G alone and does not depend on the choice of p. He
studied what happened for finite direct products and proved comparison resulis
between groups and their normeal subgroups and quotients. Using that machinery
he showed that if G is an Abelian group, then A(G, p) = 1, while if M.{G, p) = 1,
then G has no free subgroups on more than one generator. He calculated A (G, p)
explicitly if G 1s free and p assigns equal probability to the generators and their
inverses. Later 1n [5] he showed that A(G, p) = 1 if and only if G is amenable.

This famous result is now known as Kesten’s criterion for amenability.

Kesten retumned to randorm walks on groups in [32] where he considered, among
other things, the question of recurrence. Kesten’s resuits and questions inspired a
generation of workers, culminating in Varopoulos’s beautiful solution to “Kesten’s
conjecture”: Simple random walk on a finitely generated group G 1s recurrent if
and only if & is virtually Abelian of rank < 2.

From the first few entries in his publicaiion lisi, you can sce that even as a
voung man Kesten was already hard at work solving other people’s problems. An
interesting thread in his carly work is what one might call ergodic number theorv.
Kac and Kesten [3] considered the transformation Tx = 1/x — [1/x] of the unit
interval, where [1/x}is the integer part of 1 /x and [1/ 7™ 1 x] gives the digitsin the
continued fractionrepresentation of x. Using Lévy s result that 7 is rapidly mixing,
they were able to show that the nimber of times a specified digit occurs among
the first » digits in 2 continued fraction representation: is asymptotically normally
distributed. This was published in the Bulletin of the American Mathematical
Society, aithough they later learned that the result was due to Doeblin (15403,

A second set of results in this direction concern uniform distribution mod 1. Let
J{&) be the indicator function of the intervai [, 1] extended to be periodic with
period 1, thatis, £+ 1) = f(£). In [8] and [13] Kesten showed that if X and ¥
are independent and uniform on [0, 1], then

dogm)™ Y (F(¥ +kX) —1} (1.3.1)

k=]
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has a limiting Cauchy distribution. This contrasts sharply with the behavior Kac
(1946) observed for facunary series, where n™ /2 373 _ [ £ (2 X) —1} converges to
a normal distzibution. Fine {1954) sharpened Kac’s resuit by proving convergence
of finite dimensional distributions for the process indexed by £, whiie Clesielski
and Kesten [15] established tightness to complete the proof of weak convergence
t0 a limiting Gaussian process. Related results and refinements were proved by
Kesten in {14, 24, 29], and [30]. -

Like 2 good mystery story, parts of Kesten's early work fereshadow later
developments. Inspired by work of Bellman (1954) for 1.1.d. sequences, Fursten-
berg and Kesten [19] considered products "Y I — xaxsa—i...x! where the
¥ are an ergodic stationary sequence of k x k matrices, and showed that 1f
E(log™ 1X1]) < oo, then with probability one

lim 7 Viog{"Y'| = lim n"'Elog ["Y']. (1.3.2)

Fra i =) m—=reo

Nowadays this is a textbook application of Kingman’s (1968) subadditive ergodic
theorem. See e.g., pages 367-369 of Durrett (1995b). While the above law of
large numbers for the norm of the matrix, |77 and related results for Em.ouﬁ&
n Nw are widely known and definitive, the corresponding central limit question has
not been much investigated (see [9] and Ishitani (1977)} and still kas room for
improvement. For more recent work on products of rendom matrices see Kesten
and Spitzer [76], Coher and Newinan (1984), and the collection of papers from a
1984 AMS Summer Research Conference edited by Cohen, Kesten, and Newrnan
(1984). .

A second harbinger of the future, again related to subadditivity, is Kesten’s work
on self-aveiding walks in [22] and 123]. Let ¥, be the nummber of self-aveoiding walks
on the integer lattice in  dimensions that staxt at the origin. The obvious inequality
¥m¥n < Xmin Jeads one easily to the conclusion that

O™ = Ba = inf ()™ (133)

m>1
Tt has Jong been conjectured (see Hammersley (1961) and references iherein) that
the Tativ ¥ut:/xs — PB4 Kesien [22] proved more and less than this when he

showed that
[ns2/xn — B3 < O3, (134

The result in (1.3.3) clearly allows one to compute upper bounds on s by
caleulating x,, for small values of 7. Results about the limit fy are much harder
1o come by. Kesten 23] attacked 'this guestion by considering x,2,{d) = the
number of n-step walks on the integer lattice in d- dimensions with ne loops of 2r
steps or less. He showed thal Bz2, = limy—co{Xn.2r ()" existed wsa mmammoo_
Ba2r — fa = 0{d ") asd -» co. Takingr =2 leads to an asymplolic expansion

= _L 2 3.5
Ba=2d—1 E.TQQEV. (1.3.5)

In the ﬁ,_ﬂnm and a half decades since Kesten’s paper there has been an explosion
of tesults on self-avoiding random walks and related processes. See the books by
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Meadras and Slade (1993) and Lawler (1991}, and the paper by Lawler on “loop-
erased walk" in this volume.

Returning to ordinary random walks on the integer lattice, let p¥(x, y) be the
probability of going from x to y in k steps, let T be the time of the first visit to the
origin, 0, and let 7, = Fo(T > n). Kesten, Ornstein, and Spitzer [17] proved that
for all x = 0,

. P (T >nm
Iim

% Po(T = 1) =a(x), (1.3.6)

where 2{x) = M\,mwc PO, 0) — pF{x, 03, which exists by earlier work of Spitzer
(1962). Note that the last result holds for ANY random walk. This was the first
of many ratio limit theoremns for arbitrary random walks. See Kesten and Spitzer
[20], and Kesten [21, 38]. These three papers cover more than 100 pages in Journal
d’Analyse Mathématigque, $0 it would be difficult to sven sketch their contents here,

Inspired by the ploneering work of Hunt (1957-1958) developing a potential
theory for transient Markov process, the 60's were the golden age of potential
theory of random walks. Using the notation of the previous paragraph, this can be
defined as the study of the potential kemels 3% 1 p(0, x} and 552, pk(0, 0) —
p*(x, 0), the former appropriate for the transient and the latter for the recurrent
case. Spitzer’s beautiful {1964) book contained definitive results for random walks
on the d-dimensional integer lattice, which Kesten and Spitzer [26] generalized
to countably infinite Abelian groups. Omstein (1969) angd Port and Stone (1969)
generalized this work to B4 and to locally compact Abelian SIOUpS.
= The work of Kesten and Spitzer [26} referred (o in the previous paragraph led 1o
Kesten’s paper on “The Martin boundary of recurrent random walks on countzble
greups” which appeared in the Proceedings of the 5th Berkeley Symposium. The
breadth and depth of talent at that meeting can be illustrated by noting that Part IT of
Vohuane I featired papers by Blumenthal and Getcor, Breiman, Dynkin, Kakuiani,
Narlin and McGregor, Kesten, Kendall, Kunita and Watznahe, Lamperti, Neveu,
Crnstein, Ray, Rosenbiatt, Smith, and Spitzer.

Kesten gave 2 45 minute talk st the 1970 International Congress in Nice [39]
on “Hitung of scts by processes with stationary independent increments." The
highlight of that talk was his result announced earlier in the Bulletin of the AMS
[36] and presented in detail in 2 129 page volume of the Memoirs of the AMS
[37] giving necessary and sufficient conditions for processes with independent
increments to hit peints with positive probability. As Kesten [36] explains in his
announcement (see that paper for precise references) he was motivated by carlier
work of Lévy, Erdds, Kac, and Port, who resoived the question for symmetric
stable processes, and by a convolution eguation of Chung that PA. Meyer had
shown was related to the probabilities of hitting points. From the list of people
who had worked on the problem and the fact that Nevey and McKean had already
published false solutions of Chung’s problem, you can see that its solution was
an impressive achievement. With his characteristic modesty, Kesten told me when
1 was quizzing him about some of the details of his early work, that “I was very
happy when I was able to solve that problem.” Kesten did other work in this general
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area COnCerning “positivity intervals for stable processes™ [19], finding results m._m_m
generalized the arcsine law, and on “Lévy processes with a nowhere dense range
which considered related questions concerning the complement of the range.

Continuing to track Kesten’s career through his prestigious _moﬁ.E.am. [e1i23 E.wﬁ
stop is his 1971 Rietz Lecture given at the annual meeting of the Hg.m in mon.OﬂEnm
Colorado, September 20-23, 1971, As the associated paper {45] Euﬁmﬁm,.gm intent
was to survey generalizations or analogues of classical limit Enoﬁmam .a?ow ao.:o.m
make 2 priori moment or smoothness assumptions on .m._n :maol.u:mm aHmﬁvcao?
e.g., Tesults that held for any random waik. Three topics were an:m.mma“ (1) Hm..mo
limit theorems, which we have touched on above; (ii} a concentration .mmsmmon
inequality that gives an upper bound on the Eo,cm&mmﬁ a random Em.ww lies in an
interval of length L, and (iii} the set of aeccumulation points of normalized random
walk, i.e, given a normalizing sequence ¥y,

AlF, y) = DMUHHMM:.J\: in = mi {1.37)

where the bar denotes closure, and F is the distribution function for a single step.
The main result in category (ii) is the one proved in [35]. Its name is a mouthful:
“& sharper form of the Doeblin-Lévy-Kolmogorov-Rogozin inequality” g&.ﬂﬁa
fond memories of it, since it was very useful in Bramson, Durreti, and Swindle
(1989) by providing uniform upper bounds for the sequence of Enmomp imunm
we considered. Restricting our attention to the simplest case of one u:ﬁwb&ou&
random walks, the results in (iif) start from the simple observation that if »q has
finite mean 4, then the faw of large numbers implies A(F, n) = .:ﬁ. The mEmW
pomts +co and —oo are obvicusly possible limits. Kesten showed 1n {341 that if
A(F, i) contains at least two points, then it must contain o0 m.ma —o0. Conversely,
any closed set 4 of [—00, co] that contains +co and —oc is A(F, n) for some
distribution F. .
Turning to smaller normalizations, we note that if F has mean O and finie
variance ¢ 2, then Strassen’s (1964) version of the law of the iierated logarithm

mmplies
ALF, (2nloglogn)V/?)y = [—o, 5] (1.3.8)

In [41] Kesten solved his own open problem by showing that ﬁmMmmBEm Fis mmm
a point mass at 0) (a) if @ < 1/2 and A(F, n~) has & finite mS.: momum then it
contains all real numbers, while (b) if A(F, alHDu has a finite limit point, then
it contains a half line of values {—c0; &) or [b, oo). It is natural to conjecture, as
Kesten did in [41], that in case (b) A(F, n 12y = [—o0, oo, but this seems 1o be
an open preblem. o

Erickson and Kesten [49] introduced the notion of strong iimit points of E.dmoH.d
walks as the set of values B(F, n™%) so that n; *S,, -+ b for some deterministic
sequence . If e < 1/2and F isuota peintmassat, B(F, n7%) = 3. Depending
upon F and the value of o, B(F, n~%) may be &, {oo}, {--oc}, MP o0], ﬁloo_. 0],
ar R. Four theorems and five examples in [49] carefully described the possible
behaviors, thotgh in words we have heard more than once in Kesten’s work “we
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@o M_.oﬁ give the proof of Theorem 4 since it is rather lengthy.” For more on stron.
limit poinis, see Kesten and Maller [144]. ®

Our next topic, Randem Walks in Random Environments, are not randorm walks
mm all. In the formulation of Solomon’s Ph.D). thesis (1975) they are discrete time
birth and death chains X, on the integers in which x — x4 1 has probability o
msn.d x — x — 1 has probability 1 — «,, where the environment o, is a woncoznw
o.m independent and identically distributed random variables, and we suppose for
m:d.@mo#w herethat 0 < ¢ <oy € 1~¢ < Lleto = (1 —ag)jop. ltisa
mqﬂmrﬁmo.néma exercise in the theory of birth and death chains 1o show %m.: X, is
Hoonn,.msﬁ ifandonly if EIno = 0. However, this simple problem and some H,&mm&
guestions about branching processes in random envircnments inspired Kesten [48]
to produce some very nice results on “random difference equations.”

Wm.ﬁcﬂmmm to the original problem, things become very interesting when one
considers limit theorems. Solomen (1975) showed that

HEe <1then lim X,/n=(1— Eg)/{1+Ec}.

A=

HE(@™!) < 1then lim X,/n=—(1~E@ /(1 +E@™H.

n—r00
If(Eo)y <1< E(@)then lim X,/n=0.
n—=0oo
Kesten, Woﬁo% znd Spitzer [53] probed the middle ground where £ lno < 0 hut
Eo > 1. In this case if one defines « by Eo© = 1, then

. lim PGTX, <x)=1- Lol Ve, {1.3.9)
where L, is the stable law with index «. Other non-nommal limit theorems were
found for 1 < « < 2 1n [53] and generalized by Kesten and Kawazu {77]. Ritter
(1876} proved some results ebout the critical case Elno = 0 in his Emwwm MEM
a oo.BEQw solution had to wait until Sinai (1982) showed that {log :vlmvy,\ Muo?
verges in distributicn 1o 2 nondegenerzie limit defined in terms of M mmmnm%b& mm
2 mwoa.".ﬁﬁm.aomom associated with the eavironment. The distwibutior of the limit
was later calculated by Kesten [84].

If one drops the assumption of nearest neighbar jumps in 4 = 1, the problem
becomes technically more difficult. Keys (1984) thesis gives memxm_ for the finite
range w:om& Ind = 1. The answers are not as explicit as in the nearest :w?mwoﬂ.
case since 9.&\ are most naturally framed in terms of Lyapunov nx@ommmnm of
random matrices, which typically cannot be computed explicitly. While the finite
range case in d = 1 is hard, the nearest neighbor model ind > 1 proved to be
ﬂ.?oﬂ impossible. Some remarkably clever arguments were used by Kalikow in
his (1981} thesis to prove transience of some lopsided modelsind = 2 Em.ﬁwsuw
:.Eo was known in 4 > 2 until Bricmont and Xupiainen (1991) Q.@@B smmm
rigorous renormalization group methods to show that the critical &B_oummom was 2
i.¢., one has centzal limit theorem behavior in d > 2. For an overview of this mum.
related work see the text of Kupiainen’s (1990) talk a¢ the International Con
of Mathematicians in Kyoto. g
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Kesten's two papers with Papanicolaou, {60] and [64], studied a different type
of motion in 2 random environment. The first studied turbulent diffusion, that is
solutions to dx{#)/dr = V(x{#)) with V(x} =v 4 eF(x) where v # 0, € s
small, and F is a mean zero stationary random vector field When F satisfied
suitable hypotheses they were able to show hat as € — 0, x6{() = x(t/e?) —
vt /2 converged to a diffusion process with constant coefficients that came from
averaging F. The second paper, [64], used similar methods to study stochastic
acceleration d2x (2} /dt® = e F(x(1)).

Readers who recall that Kesten’sresult “ p, = 1/2"is in {67] realize that we have
now almost reached the beginning of Kesten’s work on percolation and first passage
percolation. He still wrote beautiful papers on questions about random walks: [58]
proves a conjecture of Erickson to the effect that any genuinely d-dimensicnal
random walk S, in d > 3 goes to infinity at least as fast as simple random walk.
However, increasingly his work on random walk was motivated by ideas from
physics. An example Is his work with Spitzer 162] on random walk in random
scenery. They studied the lizniting behavior of sums of the form Wy, = 2 1 (58
whete Sy, is a rendom walk on the integers and the £{x) are i.i.d. and independent of
Si. They found that n~34W,, converged weakly to a limit A, that had stationary
increments and was self-similar, i.e., A, has the same distribution as A,

Physics was not the only science to provide Kesten with problems. He had been
for some time interested in models for population growth. See [40, 42, 46], and
[55). In [65] and [66] he studied the number of alleles in the stepwise mutation
model. Simalations of Chta and Kimura had suggested that the number of different
alleles A(N) found in a population of size N remained bounded in distribution
as N — oo, but Kesten showed that it went to infinity very slowly. To state his
result, we begin with the rapidly increasing sequence defined by 3y = 0 and

ya1 = explyz) for k = 0. This begins
vime, y2=15.15, 7 =3,814,279, > 1075060
so the inverse function A(n) = max{k : vy =< 1} grows very slowly. Kesten’s result
says {in the symmetric nearest neighbor case) that

PUALNY — MNY = log{N}) = O

25 N —» oo. A second contact with hiology can be seenin his work with Ogura [69]
giving recurrence properties of Lotka-Volterra models with random fluctuations.

From biology we move next to the study of river networks. The problem studied
in [1071 came from 2 sabbatical visit to Cornell by Ed Wayrnire. The problem may
be formuiated in a purely mathematical way as follows. Consider the family tree
of a branching process starting from  single progenitor and conditioned to have v
edges (total progeny). To each edge ¢ we associate a weight W (e) which we think
of as the length of the edge. Interest then foctses on the height of the tres, i.e., the
maximum sum of weights that can be achieved by a self- avoiding path starting
at the progepitor. Kesten refined the results in [126, 134, 135]. Some of this later
work was inspired by connections with Aldous® {1993) continuum random tree
and LeGall’s (1991) random snake construction of super-processes.
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* Qur next paper [110] involves a sabbatical visit to Comell by Greg Lawler and
a letter from Spataru to Spitzer. Spataru’s question, after a Httle rewriting, asks:
Suppose that a casino offers p fair games. Can we make money playing the games
(a) according to a fixed schedule or (b) using a strategy that depends on our wealth?
Somewhat surprisingly the answer to (a) is yes. Let o < 1/2. If we choose p large
enough and construct the fair games carefully then our fortune at time n will have
Tizn inf 5, /n® = co. In the other direction if the fair games all have finite variance
then the answer to (b) is No. A more detailed study of these questions was carried
outin[112].

The phenomena in the last paragraph come from the fact that the behavior of the
first 7z steps of a random walk is dictated primarily by the part of the distibution
F between F~1(1/n) and F~1(1 — 1/n) and this truncated distribution may have
a mean different from Q. This trimming of the distribution may be used for good
rather than evil. In the 70°s and 80’s statisticians realized that the removal of
outliers from a random sampie led to robust estimators with reduced variability,
and probabilists realized that trimming could produce central limit behavior from
distributions with even heavy tails.

Given Kesten's expertise with random walks, it was naturat for him to get in-
volved in this area, where much of his work has been done in collaboration with
Ross Maller. The elght papers cited in this paragraph total almost 300 journal pages,

50 we will just mention some random results to arouse the reader’s Interest. [114]

and [115] concern conditions which guaraniee that a sum of independent random
variables is much larger than the largest summand. These results are of interest in
relation t the law of large numbers, central limit behavior, and law of the iterated
jogarithm. In [115] a necessary and sufficient condition for P{S, > 0) — 1,
answering a simple sounding problem first meniioned by Révész. [125] and [131]
show that deleting a fixed finite number of terms cannot affect asvmptotic nor-
mahty of normed sums, that is, the trimmed sum has a limit if and only if the
enuimmed one does. In the other direction, [128] shows that 2 fixed imming
can have a significant effeci. The original random walk may be recurrent while
the trimmed one is transient. [141] studies questions from the rencwal theory for
random: walks with S, — co. [145] and [146] concern random walks crossing
curved, e.g., power law, boundaries.

A somewhat less technical problem, at least in its formulation, is the question:
can you distingaish sceneries by o@majauq them along arandom walk path? Given
is a sequence of random variables £, x € Z taking values in a finite alphabet and a
syminetric nearest neighbor random walk §, on the integers starting at 0. A robot
walks according 1o S, and calls out the symbols she sees: £(Sg), £(51), .... The
question is: can we reconstruct the underlying scenery from this information? Par-
tial resulls can be found in [138, 1391, and [1471. However, it was Harry’s student
Henry Matzinger who was finally able to answer the question in the affirmative in
his Ph.D. thesis. Fer three or more symbols this irvolves the pretty idea of using the
observed sequence to define a self-intersecting path on a tree in order to disentangle
the underlying sequence. We leave it to the reader to fill in the remaining details
and to contemplate the more complicated case of an alphabet with two symbols.
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In the other direction, if you can’t do the case in which the §; are i.i.d. uniform on
(0,1), you should not operate a motorized vehicle.

The fast stop on cur random walk through the theory of random walks is Kesten's
recent work [150] with van den Berg on the asymptotic density in a coalescing
random walk model. Particles perform continuous time random walks on Z7 but
interact only when a particle fumps on:to a site at which there are j particles present,
in which case the jumping particle is removed with probability p;. If we stast with
at most one particle per site and have py = 1, this is classical coalescing random
walk. In this case asymptotics for the density are known from work of Sawyer
(1979} and Bramson and Griffeath (1980). Kesten and van den Berg show (under
some natural assumptions) that in d > 6 the density of particles u(2) ~ C{d)/1.
The last sentence should be correct with 6 replaced by 3. For the reader who wants
to study this question I have some good news and some bad news: it would even be
interesting to extend the methods of [151] to prove the Bramson-Griffeath-Sawyer

resuitind = 3.

1.4 Denouement

At this point we have exhausted the avthor, but not Keslen’s publication list. I
would like to thank Maury Bramson, Ken Brown, Geoff Grimmett, Harry Kesten,
Ross Maller, Chuck Newman, Yuval Peres, and Gordon Slade for reading various
drafts and making numerous corrections. They are, of course, responsible for all
errors that remain, even in the parts that they never read. T wouid like to express my
appreciation to Harry Kesten, not only for the lessons he gave me in connection
with rewriting 1his paper, but also for his insights and his friendship for the twenty
years I have known him. He is not only a brilliant mathematician, but also one of
the nicest people you could hope to meet.
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