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Lessons on Pattern Formation from Planet WATOR
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It is well known that if reacting species experience unequal di!usion rates, then dynamics that
lead to a constant steady state in a &&well-mixed'' environment can in a spatial setting lead to
interesting patterns. In this paper, we focus on complementary pattern formation mechanisms
that operate even when the di!usion rates are equal. In particular, we can say that when the
mean-"eld ODE has an attracting periodic orbit then the stochastic spatial model will have
large-scale spatial structures in equilibrium. We explore this mechanism in depth through
the dynamics of the simulator WATOR.
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1. Introduction

Predator-prey systems in nature show a variety
of spatial and spatio-temporal patterns. In part,
these are attributable to underlying physical
features of the environment, such as soil factors
or turbulent #ow patterns (Levin, 1992); in part,
they are self-organized, emerging from the rules
of individual behavior (Flierl et al., 1999). What-
ever the causes, such patterns are of fundamental
ecological and evolutionary consequence, hold-
ing the key to understanding the maintenance of
biological diversity.

The usual mathematical approach to exploring
spatial patterns is through the use of reaction}
di!usion equations. These equations can support
a wide range of solutions, from spatially uniform
patterns, to non-uniform stationary ones, to
plane waves and spiral waves. In all of these, the
local interaction rules control the range of pos-
sible global behaviors, though unequal di!usion
rates can complicate the picture.

One of the fundamental issues in any branch
of science is how processes on small scales can
-Author to whom correspondence should be addressed.
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produce patterns on much larger scales. In
a seminal paper, Turing (1952) showed that, in
reaction} di!usion equations, spatial patterns
can arise from a combination of chemical
reaction and di!usion provided the di!usion
rates di!er su$ciently. Turing's paper is at the
core of many theories of the development of bio-
logical pattern and form, see Murray (1989,
1990).

Following Turing's example, a reaction-di!u-
sion system is said to exhibit di+usion-driven
instability if the homogeneous steady state is
stable to small perturbations in the absence of
di!usion, but unstable to small spatial perturba-
tions when di!usion is present. In Turing's case,
the appearance of patterns is due to a combina-
tion of short-range activation and long-range in-
hibition. Segel & Jackson (1972) were the "rst to
show how the e!ects of random dispersal in pred-
ator}prey models could lead to similar di!usive
instabilities.

These ideas were developed further by Levin
(1974), Levin & Segel (1976) and Segel & Levin
(1976), who studied systems with an autocatalytic
or &&Allee e!ect,'' meaning that, for some range of
( 2000 Academic Press
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densities, the per capita rate of growth is an
increasing function. This could be due, for
example, to an increased e$ciency of predation
when densities of prey increase. Stable patterns
can arise through di!usive instability when there
is an Allee e!ect in the prey density (Segel
& Jackson, 1972; Levin, 1974), or in the predator
density if the prey di!usion rate is su$ciently
high (Levin, 1974).

In the other direction, Mimura (1979) and
Mimura et al. (1979) showed that if the density of
prey N and predator P satisfy

N
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"d
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#N (h(N)!P),
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#P (N!k(P)),

where h(N) is decreasing in N and k(P) is increas-
ing in P then the solution tends to be spatially
homogeneous asymptotically. Comparing with
the work of Levin and Segel, we can say that an
Allee e!ect is necessary for patchiness to result
from a di!usion-driven instability in this system.
For a survey on pattern formation by this mecha-
nism, see Levin & Segel (1985).

A second recipe for spatial structure to arise in
exploiter}victim systems can be found in the
work of Hassell et al. (1991). They considered
mathematical models for host}parasitoid interac-
tions, where in each patch the densities of host
and parasitoid follow the di!erence equations of
the Nicholson}Bailey model

N
t`1

"jN
t
e~aPt ,

P
t`1

"qN
t
(1!e~aPt)

and in each generation speci"ed fractions (k
N

and
k
P
) of the host and parasitoid populations

migrate to adjacent patches. They found that
these models exhibited a remarkable range of
behaviors, from spiral waves and spatially cha-
otic variation to static &&crystal lattice'' patterns.

Nowak & May (1992, 1993), Nowak et al.
(1994) and May (1994, 1995) followed up on this
important work by considering the classical
Prisoner's dilemma game in a spatial setting.
They found that the simple introduction of a
spatial dimension to the competition, with no
memories among the players and no elaboration
of the available strategies, could generate chaoti-
cally changing spatial patterns in which cooper-
ators (victims) and defectors (exploiters) both
persist inde"nitely in the population. For
a stochastic spatial approach to these &&evolution-
ary games'', see Durrett & Levin (1994).

The host}parasitoid and Prisoner's dilemma
examples just discussed are remarkable because
in each case a self-organized spatial heterogeneity
stabilizes an interaction that is unstable in
a single homogeneously mixing population. In
this paper, we will extend these considerations to
situations in which a homogeneously mixing sys-
tem has an attracting periodic orbit. It has long
been known that in this situation the correspond-
ing reaction}di!usion equation will have inter-
esting spatial structures. Kopell and Howard
showed that if the ordinary di!erential equation
(ODE) for the homogeneously mixing system has
a stable periodic orbit then the corresponding
reaction di!usion equation will have plane wave
solutions (Kopell & Howard, 1973) and spiral
wave solutions (Kopell & Howard, 1981).

As Kopell & Howard (1974) explained, they
were motivated by the observation of spiral
waves in the Belousov}Zhabotinsky reaction.
For more details about this fascinating system,
see the book by Winfree (1987) or Sections 10.1
and 12.3 in Murray's (1989) book. Here we have
a di!erent inspiration: the study of predator}prey
systems. Furthermore, we will pursue our study
in the context of stochastic spatial models rather
than reaction-di!usion equations, since such sys-
tems more realistically represent the interaction
between discrete individuals (Durrett & Levin,
1994).

The "rst experimental spatial system for study-
ing predator}prey dynamics was created by
Hu!aker (1958) who used rectangular arrays of
partially peeled oranges and rubber balls to study
the interactions between two species of mites. He
and many others who later performed similar
experiments found that while small systems
were highly unstable and broke down after
one or two population cycles, larger systems
were considerably more robust. Pimentel et al.
(1963) complemented Hu!aker's classic work,
again demonstrating experimentally how self-or-
ganized spatial heterogeneity can lead to the
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persistence of unstable predator}prey interac-
tions.

Hilborn (1975) provided the "rst real theoret-
ical examination of Hu!aker's experimental
system, creating a computer model to mimic it.
Hilborn's model is what we would now call a
metapopulation model. See Hanski & Gilpin
(1996) and Hanski (1998). The environment was
made up of patches linked through movement,
with every patch having equal access to every
other. Within each patch, population density was
modeled according to a system of di!erence
equations. Hilborn found a range of behaviors,
from system collapse to long-range persistence,
depending on parameter values. Increasing the
size of the system increased persistence, as an-
ticipated by Maynard Smith (1974).

Nachman (1987a, b) seems to have been the
"rst to simulate Hu!aker's system as a truly
spatial model. Since that time a number of papers
have investigated the impact of the spatial
distribution of competitors on the behavior of
predator}prey systems (see DeRoos et al., 1991;
McCauley et al., 1993; Wilson et al., 1993;
Satulovsky & Tome, 1994; Rand et al., 1995;
Neubert et al., 1995; Wilson, 1996; Comins &
Hassell, 1996; Satulovsky, 1996; Pascual &
Caswell, 1997).

In our previous work, we have shown that
the outcome of spatially explicit interactions de-
pends fundamentally on the way a system is
modeled. The metapopulation approach of Hil-
born (1975); see also Chesson (1981, 1985), can
capture many of the features of the spatial local-
ization of interactions, but can also produce re-
sults that di!er qualitatively from explicit spatial
formulations, such as reaction}di!usion equa-
tions. A concrete example of this occurs in the
Prisoner's Dilemma case of Durrett & Levin
(1994). The problem in that example, and in
real populations, is that individuals are not in"ni-
tesimals. Thus, when two interacting species
reach densities that are low enough, they lose
contact with each other and cease to interact, in
contrast to the situation represented by the reac-
tion}di!usion equation. The problem is more
severe for spatially distributed systems than
well-mixed ones, because population densities
must inexorably reach low levels at many points
in a habitat.
In this paper, we complement previous work
by examining an individual-based stochastic
spatial model. The system we study is a simpli"-
cation of a discrete time (probabilistic) cellular
automaton called WATOR, short for WAter
TORus. This model was developed by David
Wiseman at the University of Western Ontario
and was discussed in A.K. Dewdney's Computer
Recreations column in Scienti,c American in
December 1984. It has the novel feature that the
predator's level of hunting is controlled by
a parameter q, and increasing q beyond 3 can
lead to a limit cycle in the corresponding ODE
via Hopf bifurcation.

Our aim in this investigation is not only to
analyse this interesting phenomenon but also to
continue to develop a program begun in Durrett
& Levin (1994) of classifying the behavior of
stochastic spatial models. There it was proposed
that the behavior of stochastic spatial models
could be determined from the properties of the
mean-"eld ODE that is obtained by pretending
that the states of all sites are always independent.
WATOR "ts into Case 3, which is de"ned (see
Durrett, 1999) as &&periodic orbits in the mean-
"eld ODE'', so their scheme predicts: &&in the
spatial model, densities oscillate like the ODE on
small length scales, but on large length scales are
almost constant (after an initial transient). That
is, there is an equilibrium state with an interesting
spatial structure''.

In Section 2, we introduce Dewdney's original
discrete time WATOR model, then strip away
irrelevant complications to formulate the simpli-
"ed continuous time version we will study. In
Section 3, we derive the mean-"eld ODE that
results by pretending that adjacent sites are al-
ways independent, "nd the only interesting "xed
point, and then investigate the stability of this
"xed point to show the existence of a Hopf bifur-
cation producing a periodic orbit.

In Section 4, we introduce the reaction}di!u-
sion equation that occurs as the fast stirring limit
of the stochastic spatial model and use this con-
nection to prove that on an in"nite lattice our
stochastic spatial model has a stationary distri-
bution in which predator and prey coexist. In
Section 5, we will use simulations to investigate
the structure of this equilibrium state. Note that
in contrast to Turing's results, spatial patterning
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occurrs here in a system with equal di!usion
rates.

2. The WATOR Model

We begin by describing the original WATOR
model in detail to make the point that models are
often easier to formulate in continuous time.
Time is discrete (t"0, 1,2) with the action tak-
ing place on the square lattice, the points in the
plane with integer coordinates. Each site can be
in one of three states: 0"vacant, 1"prey ("sh),
and 2"predators (sharks). Furthermore, each
shark and each "sh has an age, and each shark
has a hunger index, which indicates the number of
days since it has eaten.

The array is updated by sequentially applying
four procedures called FISHMOVE, FISH-
BIRTH, SHARKMOVE, and SHARKBIRTH
to the entire grid. To be able to describe these, we
declare the neighbors of a site x to be the eight
sites y adjacent or diagonally adjacent to x:

y y y

y x y

y y y.

Later, we will use other choices of neighborhood;
therefore, note that the rules below do not de-
pend on the exact de"nition of neighbor.

FISHMO<E: For each site that is occupied by
a "sh, the program makes a list of unoccupied
neighbors and moves the "sh to one of these
chosen at random. The "sh gets one day older.

FISHBIR¹H: If the "sh's age is fbreed, the
program puts a new "sh at the old position and
gives age 0 to both mother and daughter. From
the ages, one can see that we are thinking of these
"sh as two children rather than mother and
daughter.

SHARKMO<E: A shark "rst chooses ran-
domly without replacement q of its neighboring
sites. There are two cases to consider:

(a) If the shark "nds no "sh, it moves to a
randomly chosen neighboring site that is
unoccupied. The hunger index for that shark is
increased by one. If the hunger index now exceeds
the cuto! starve, the shark dies. Otherwise, it gets
one day older.

(b) If the shark "nds one or more "sh, it picks
one at random, moves there and eats it. The
hunger index is set equal to 0, but it does age
one day.

SHARKBIR¹H: If the shark's age is sbreed,
the program puts a new shark at the old position
and gives age 0 and hunger index 0 to both.

The description above is taken (with some
minor editing) from page 20 of Dewdney's col-
umn. As in many discrete time systems, there is
the question of what to do when collisions occurs,
e.g. when two "sh choose to move to the same
vacant site, or when two sharks try to eat the
same "sh. For this reason, and because the den-
sity of sharks or "sh can change considerably (e.g.
by 10 or 20%) in one of these steps, we will
reformulate the model in continuous time.

A second simpli"cation that we will make is to
eliminate the age variables and replace them by
coin #ips, i.e. rather than a "sh giving birth after
a "xed number of days, it will breed (on the
average) once every fbreed days. In discrete time
this can be done by #ipping a coin at each time
and for each site with a probability 1/fbreed of
getting heads. In continuous time, each site will
try to breed at times of a Poisson process with
rate 1/fbreed, in which the times between occur-
rences are exponentially distributed with mean
fbreed days. Treating the events that a!ect the
sharks in a similar way, we arrive at the following
model. Again the reader can see that the descrip-
tion makes sense for any de"nition of neighbors.

(i) Fish are born at vacant sites at rate b
1

times
the fraction of neighbors occupied by "sh.

(ii) At rate 1 each shark inspects q neighboring
sites, chosen without replacement from the neigh-
bor set. It moves to the "rst "sh it "nds and eats
it. A shark that has just eaten gives birth to a new
shark left on its starting square with probability
b
2
. A shark that "nds no "sh does not move and

dies with probability d.
(iii) There is stirring (also called swimming) at

rate l: for each pair of nearest-neighbor sites
x and y we exchange the values at x and at y, at
rate l.
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The stirring mechanism automatically preserves
the restriction of at most one individual per site
and has the mathematical advantage that the
trajectory of any single particle is just a continu-
ous time random walk. Of course, if one watches
the movements of two particles there is a (very
small) correlation between their locations due to
the occasional stirring steps that a!ect both par-
ticles at the same time.

3. Mean-5eld Theory

Stirring breaks down the correlations between
neighbors that develop from the birth and death
steps in the predator}prey interaction. When the
rate of stirring is much larger than the total of all
the birth and death rates, we expect that adjacent
sites will always be almost independent. This fact
can be proved rigorously and will be the basis of
our analysis in the next section. However, for the
moment, we simply view this claim as motivation
for writing down the mean-,eld ODE that is ob-
tained by letting u

i
(t) be the fraction of sites in

state i at time t, and computing the rate of change
by supposing that all sites are always indepen-
dent:

du
1
/dt"b

1
u
1
(1!u

1
!u

2
)!u

2
M1!(1!u

1
)qN,

(1)

du
2
/dt"b

2
u
2
M1!(1!u

1
)qN!du

2
(1!u

1
)q.

Here, the "rst term on the right represents the
birth of "sh onto vacant sites. To explain the
second and third terms, we note that
u
2
M1!(1!u

1
)qN gives the fraction of sites occu-

pied by sharks times the probability a given
shark will "nd at least one "sh when it inspects
q neighbors, so multiplying by the probability of
birth b

2
gives the rate at which new sharks are

produced. For similar reasons, the fourth term
represents the sharks who "nd no "sh to eat, and
died with probability d.

To begin to understand the ODE we note that
in the absence of "sh, sharks can not breed and
their density drops to 0. Conversely, in the ab-
sence of sharks, "sh do not die and will "ll up the
space. The last two results give the direction of
motion of the ODE on two sides of the right
triangle that we use for the possible states of the
system: !"M(u

1
, u

2
): u

1
, u

2
*0, u

1
#u

2
)1N.

Since "sh do not die in the absence of sharks,
there is a boundary equilibrium at (1, 0). Consid-
ering the second equation in eqn (1) and setting
u
1
"1!e

1
and u

2
"e

2
where the e

i
are small

shows that (1, 0) is always a saddle point. This
behavior suggests the presence of a "xed point
(u6

1
, u6

2
) with both components positive, a fact

which can easily be con"rmed by algebraic ma-
nipulation. To do this neatly, and to pave the way
for later calculations, we will "rst rewrite the
system in eqn (1) as

du
1
/dt"A(u

1
)!u

2
B(u

1
),

(2)
du

2
/dt"u

2
C(u

1
),

where A(u
1
)"b

1
u
1
(1!u

1
),

B(u
1
)"b

1
u
1
#M1!(1!u

1
)qN

and C(u
1
)"b

2
!(b

2
#d)(1!u

1
)q. In order for

du
2
/dt"0 we must have

C(u6
1
)"0 or u6

1
"1!A b

2
b
2
#dB1@q. (3)

Having found u6
1

we can now set du
1
/dt"0 to

"nd

u6
2
"A(u6

1
)/B(u6

1
). (4)

To investigate the nature of the "xed point at
(u6

1
, u6

2
), we let v

i
"u

i
!u6

i
be the displacement in

the i-th component. Assuming the v
i

are small
and using eqns (3) and (4), we arrive at the lin-
earized equation

dv
1
/dt"Fv

1
#Gv

2
,

dv
2
/dt"Hv

1
,

where F"A@(u6
1
)!u6

2
B@(u6

1
), G"!B(u6

1
), and

H"u
2
C@(u6

1
). This ODE is analysed in Appendix

A with the following result.

Theorem 1. ¹he interior ,xed point is always
locally attracting when q)3. Conversely, if q'3
and the values of b

2
and d are held constant,



FIG. 1. An example of the WATOR ODE with a limit cycle, (the smooth outside curve). The irregular curve gives the
observed frequencies in a 64]64 viewing window.
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decreasing b
1

leads to a Hopf bifurcation that
produces a limit cycle.

Figure 1 gives a picture of a case of the ODE
with a limit cycle: q"8 with b

1
"1/3, b

2
"1/10,

and d"1/3. The limit cycle is the smooth outer
curve.

4. Reaction Di4usion Equations and WATOR

To make connections between our model and
reaction}di!usion equations, we will suppose
that the stirring rate l is large and consider our
process on a scaled version of the square lattice in
which the spacing between sites is reduced to
l~1@2. De Masi et al. (1986) have shown (see
also Durrett & Neuhauser, 1994, or Section 8 of
Durrett, 1995) that as l tends to in"nity, the
densities of "sh and sharks converge to the solu-
tion of the partial di!erential equation:

Lu
1
/Lt"*u

1
#g

1
(u

1
, u

2
)

(5)
Lu

2
/Lt"*u

2
#g

2
(u

1
, u

2
)

where the g
i

are the right-hand sides of the
mean-"eld ODE in eqn (1). Our next result,
proved in Appendix A, says that sharks and
"sh coexist in the reaction-di!usion equation.

Theorem 2. Suppose that the initial conditions
u
i
(x, 0) are continuous, always in the set ! of

sensible values, and have u
i
(0, x)*g

i
'0 on

[!d, d]2. ¹here are constants i, e
i
'0 and

t
0
(R, which only depend on g

i
and d so that

u
i
(x, t)*e

i
whenever DxD)it and t*t

0
.

Here DxD"(x2
1
#x2

2
)1@2 is the usual Euclidean

distance.
Theorem 2 says that the densities of all types

stay bounded away from zero on a linearly grow-
ing set. In words, both species persist in the reac-
tion}di!usion equation. Using methods of Durrett
& Neuhauser (1994), we can convert Theorem
2 into a similar conclusion about the particle sys-
tem. Recall that n is a said to be a stationary
distribution if when the initial state m

0
has this

distribution then so does the state at time t, m
t
, for

all t'0. In words, a stationary distribution rep-
resents an equilibrium state for the process.
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Theorem 3. =hen the stirring rate is large there is
coexistence, i.e. there is a stationary distribution
for the particle system that concentrates on con,g-
urations with in,nitely many sites in each of the
possible states.

Proof. Theorem 2 implies that the assumptions
of Theorem 9.1 of Durrett (1995) are satis"ed and
the desired conclusion follows. K

5. Simulations of the Particle System

The result in Theorem 3 proves the existence of
a stationary distribution but gives no insight into
its properties. We would like to understand the
structure of a &&typical realization'' of the station-
ary distribution, whose existence is asserted in
Theorem 3. Since the information is out of the
reach of theory today, we turn to the computer.
We simulated the process on a 700]700 grid
with periodic boundary conditions. That is, sites
along the left edge of the grid are adjacent to
those on the right and those on the top edge are
adjacent to those on the bottom.
FIG. 2. The frequency of sharks (s) and "sh, (e) in a 20]2
Figures 2}5 show the densities of predator and
prey when viewed in observation windows of size
20]20, 64]64, 125]125 and 700]700 (i.e. the
whole system). As will be explained later, the
choice of window sizes is governed by the correla-
tion length. Here we chose q"8 with b

1
"1/3,

b
2
"1/10, and d"1/3 so that we can compare

with results of Pascual & Levin (1999). As pre-
dicted by Case 3 of Durrett & Levin (1994),
the oscillations in the smallest window are
pronounced and are reduced as the size of the
window increases. However, as Fig. 1 shows, the
oscillations of the densities in the 64]64 box are
considerably smaller than those in the periodic
orbit for the mean-"eld ODE. At 125]125 the
oscillations are much like those at 64]64 though
they are smoother and the magnitudes of the
peaks are reduced. At 700]700, the curves are
very smooth and show an exponentially damped
oscillation as the system converges towards it
stationary state. Since 700 is a "nite number the
oscillations will not completely go away but
reach a small level as seenat time 800}1000.

In small observation windows, all the sites
experience times of high density and low density
0 viewing window inside a 700]700 grid.



FIG. 3. The frequency of sharks (s) and "sh, (e) in a 64]64 viewing window inside a 700]700 grid.

FIG. 4. The frequency of sharks (s) and "sh, (e) in a 125]125 viewing window inside a 700]700 grid.
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FIG. 5. The frequency of sharks (s) and "sh (e) in a 700]700 grid.
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almost simultaneously, while in large windows
#uctuations in di!erent parts are out of phase
and one sees something closer to the average. The
length scale that represents the dividing line be-
tween small and large is called the correlation
length. This can be de"ned in a number of ways.
Pascual & Levin (1999) examine the time series of
the densities of "sh in boxes of various sizes and
use ideas from dynamical systems to search for
what they call the &&intermediate scale of non-
trivial determinism''. We refer the reader to their
paper for the details of its de"nition. For the
parameters indicated above, their correlation
length is 64, i.e. the size considered in Figs 3
and 1.

Rand & Wilson (1995) and Keeling et al. (1997)
have taken a simpler approach; more closely re-
lated to that used in statistical mechanics. Let
S
L

be the number of "sh in the ¸]¸ box
""[1,¸]2 in equilibrium. Letting var(S

L
) be the

variance of S
L
; they look at v(¸)"var(S

L
)/¸2

and de"ne (see Keeling et al., 1997, p. 1591) the
coherence length l

c
to be &&the point where v (¸)

asymptotes to a constant value''. For the para-
meter values under consideration, Pascual &
Levin (1999) have computed that l
c
"125,

i.e. the size box in Fig. 4.
The de"nition of l

c
in the previous para-

graph has an obvious problem: de"ning the
value as the point where the asymptotic value
is reached is highly unstable. In a number
of examples, it is known that all correlations
are positive (see e.g. Harris, 1977), so v(¸) in-
creases to its limit. In this case, as the amount
of data gets large, the estimate of l

c
PR.

This problem is easy to "x; however, we can
rede"ne l

c
to be the point where v (¸) "rst exceeds

90% (or some other "xed fraction) of its asymp-
totic value.

There is a second improvement in the de"ni-
tion we would like to propose. To explain this, we
let m(x) be the number of "sh at x (which will be
1 or 0), and let o(z)"(m(x), m (x#z)). Elementary
formulas from statistics imply

var(S
L
)" +

x,y|"
o(y!x)

" +
(z1,z2 )|(~L,L)2

o(z) (¸!Dz
1
D) (¸!Dz

2
D). (6)



FIG. 6. Average covariance between sites inside a box of size ¸.
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From this it follows easily that as ¸PR

var(S
L
)

¸2
P +

z|Z2

o(z). (7)

The last result and the fact that the variance of
S
L

is a weighted average of the o(z) suggests that
letting f

c
be the point where

+

z|*~L,L+2
o(z) (8)

"rst exceeds some "xed fraction of its limiting
value, say 75% gives a simpler and clearer way of
de"ning the correlation length. For a concrete
example see Fig. 6. The asymptotic value for the
average covariance over a box of side ¸ is about
2. Keeling et al. (1997) would say that this limit is
reached when ¸+20 or 25. In contrast, we
would compute that the average crossed 3/4's of
its limiting value, i.e. 1.5, at length 11.

To close our discussion of the correlation
length, we should emphasize that we are proposi-
ng a de"nition that is simpler and more stable,
not trying to argue that our new formula gives
the &&right answer''. Indeed, statistical mechanics
tells us that the role of the correlation length is to
indicate the order of magnitude of the place
where correlation lengths start to decay exponen-
tially. Like the distinction between feet and me-
ters, the exact units in which this is measured is
not important. To see that there is an important
di!erence between the de"nitions of f

c
and l

c
,

note that if o(z)"(1!h)DzD then f
c
+K/h while

l
c
+M/h, where K is a constant dictated by our

choice of 90% as a cuto!, and M is a value
dictated by reaching the asymptotic limit. Both
are multiples of 1/h, however, as one has more
data and hence a more estimate of the limiting
curve M will continue to get larger.

6. Conclusions

When the mean-"eld dynamics involving two
interacting species exhibit stable oscillations,
corresponding interacting particle system models
may sustain heterogeneous patterns even in the
presence of equal movement rates. We demon-
strate this by considering the predator}prey
system WATOR. Proceeding "rst to a reaction}
di!usion approximation, we conclude from
existing theory that a non-trivial stationary
distribution exists for the particle system. We
then turn to simulations to show how character-
istics of that distribution vary with window size,
relating these to several di!erent de"nitions of
the correlation length.

Work on this project began in 1991. Semyon Krug-
lyak, then an undergraduate at Cornell, but now
a postdoc at the University of Southern California, did
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some of the "rst simulations in the Fall of 1992. Later
that work was taken over by Linda Buttel who per-
formed the simulations shown. Buttel has been par-
tially supported by the Cornell Theory Center, and
by NSF grant BIR-9423339 from the computational
biology program. During this period Durrett has been
supported by NSF grants from the probability pro-
gram. Levin was supported by the Sloan Foundation
Grant 97-3-5.
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APPENDIX A

Analysis of the ODE and the PDE

Here, we analyse the linearized equation

dv
1
/dt"Fv

1
#Gv

2
,

(A.1)
dv

2
/dt"Hv

1
,

where F"A@(u6
1
)!u6

2
B@(u6

1
), G"!B(u6

1
), and

H"u
2
C@(u6

1
). Letting M be the matrix with "rst

row (F, G) and second row (H, 0) we have

trace(M)"F"A@(u6
1
)!u6

2
B@(u6

1
),

(A.2)
det(M)"!GH'0.
The determinant being positive implies that the
two eigenvalues j

1
and j

2
are either (i) both real

and of the same sign or (ii) a complex conjugate
pair. In either case, when the trace is positive,
both Re(j

i
) must be positive, and when the trace

is negative both Re(j
i
) must be negative. It fol-

lows from this that if the trace changes sign at
a point where the determinant is positive, then
two eigenvalues are a purely imaginary conjugate
pair.

The last paragraph describes the Hopf bifurca-
tion mentioned in the theorem. To investigate the
trace to see when the sign change occurs, we use
the equilibrium equation u6

2
"A(u6

1
)/B(u6

1
) and

write

F"A@ (u6
1
)!

A(u6
1
)

B(u6
1
)
B@(u6

1
)

"

A@B!AB@

B
"BA

A

BB
@
, (A.3)

where in the last two expressions we have omit-
ted the argument u6

1
since it is always the same.

Our next step is:

Lemma A.1. B/A is convex on [0, 1].

Proof. The ratio

B(x)

A(x)
"

1

1!x
#

S
q
(x)

b
1

where

S
q
(x)"

1!(1!x)q

x(1!x)
. (A.4)

The function 1/(1!x) is convex on [0, 1], so to
complete the proof we can verify by induction
that S

q
(x) also has this property. When q"1,

S
1
(x)"1/(1!x) and the result is true. If q*2

the di!erence

S
q
(x)!S

q~1
(x)"

(1!x)q~1!(1!x)q

x(1!x)

"(1!x)q~2
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is convex on (0,1). Since S
q~1

(x) is convex by
the induction hypothesis, the desired conclusion
follows. K

Lemma A.1 implies that if B(x)/A(x) is increas-
ing for small x then it is increasing for all x'0.
Taking reciprocals we have proved.

Lemma A.2. If the derivative of B/A is positive at
0 then A/B is decreasing for all x'0.

With eqn (A.3), this implies that the trace is
always negative, i.e. the "xed point is locally
attracting. Our "nal task then is to evaluate the
derivative of B/A at x"0. Expanding (1!x)q
using binomial coe$cients, we see that

(1!x)S
q
(x)"

1!(1!x)q

x
"

q
+

j/1
A

q

jB (!x)j~1.

Writing R(x)"B(x)/A(x) and using eqn (A.4), it
follows that

R(x)"(1!x)~1M1#(1!x)S
q
(x)/b

1
N

"(1!x)~1G1#
1

b
1

q
+

j/1
A
q

jB (!x) j~1H. (A.5)

Di!erentiating and then setting x"0 we "nd

R@(0)"A1#
q

b
1
B!

q(q!1)

2b
1

"1!
q(q!3)

2b
1

. (A.6)

If 0)q)3 then R@(0) is always positive. For
q'3, R@(0) will be negative for small values of b

1
.

The instability of the interior "xed point im-
plies that orbits that start near it will begin to
spiral outwards. To complete the proof of the
existence of a periodic orbit we have to stop this
trajectory from reaching the "xed point
(u

1
, u

2
)"(0, 0). To do this, and to prepare for the

study of the PDE, we construct a function h that
will be a ¸yapunov function near the extinction
boundaries, u "0 and u "0.
1 2
Lemma A.3. If the positive constants a, b, c,
f and e are chosen appropriately then

g(t)"h (u
1
(t), u

2
(t))"!a log u

1
(t)

!b log u
2
(t)#cu

1
(t)#fu

2
(t) (A.7)

is decreasing when u(t)3!e"Mu : 0)min Mu
1
, u

2
N

)e, u
1
#u

2
)1N.

Proof. We begin by choosing the "rst four con-
stants. We make our choices now to demonstrate
that is possible to simultaneously satisfy all our
desires. Let b"1 and c"1. Pick a large enough
so that

(i) !ab
1
#bd(0,

(ii) c(a/2,

(iii) !(ab
1
/2)(1!u6

1
)#bd(0.

Then pick f large enough so that (iv)
a(b

1
#q#1)!fd/2(0. The reader will see the

reason for our interest in inequalities (i)}(iv) later.
Di!erentiating and recalling the mean-"eld

ODE given in eqns (1) and (2) we see that

dg

dt
"A!

a

u
1

#cB
du

1
dt

#A!
b

u
2

#fB
du

2
dt

"(cu
1
!a)Gb1

(1!u
1
!u

2
)!u

2A
1!(1!u

1
)q

u
1

BH

#( fu
2
!b)Mb

2
!(b

2
#d)(1!u

1
)qN . (A.8)

1!(1!u
1
)q&qu

1
as u

1
P0, so when u

1
"0 the

r.h.s. becomes

!aMb
1
!(b

1
#q)u

2
N#( fu

2
!b)(!d)

"(!ab
1
#bd)#Ma(b

1
#q)!fdNu

2
. (A.9)
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Conditions (i) and (iv) make this negative and
bounded away from 0 for 0)u

2
)1. It then

follows from continuity that there is an e
1
'0 so

that the expression in eqn (A.8) is negative when
0)u

1
)e

1
and 0)u

2
)1!u

1
.

At the other boundary, which contains the
"xed point (1, 0), we have to argue more carefully.
Keeping in mind that u

2
will be small, but not

using this in the computation, we can rearrange
the r.h.s. of eqn (A.8) to get

(cu
1
!a)b

1
(1!u

1
)!bMb

2
!(b

2
#d)(1!u

1
)qN

#u
2A(a!cu

1
) Gb1

#

1!(1!u
1
)q

u
1

H
#f Mb

2
!(b

2
#d)(1!u

1
)qNB. (A.10)

When u
2
"0, the second line vanishes. Choice (ii)

guarantees the "rst term on the "rst line is nega-
tive. Recall u

1
)1. The second term on the "rst

line, b
2
!(b

2
#d)(1!u

1
)q*0 for u*u6

1
. For

u)u6
1
, note that choices (ii) and (iii) imply

(cu
1
!a)b

1
(1!u

1
)!bMb

2
!(b

2
#d)(1!u

1
)qN

)(!ab
1
/2)(1!u6

1
)#bd(0.

At this point, our choices have guaranteed that
the expression in eqn (A.10) is non-positive on the
boundary u6

2
"0. Since eqn (A.10) tends to 0 as

the "xed point (1, 0) is approached we have to
look separately at the points in the triangle
! near u

1
"1. Let g'0 be chosen so that if

u
1
*1!g then

(v) u
1
'u6

1
,

(vi) 1!(1!u
1
)q

u
1

)1#q,

(vii) b
2
!(b

2
#d)(1!u

1
)q(!d/2.

(v) implies that the second term on the "rst line in
eqn (A.10) is )0, so using choices (ii), (vi), and
(vii) the expression in eqn (A.10) is at most

!

ab
1

2
(1!u

1
)#u

2 Aa(b
1
#q#1)!

fd

2 B(0

the "nal (0 due to choice (iv).
This completes our analysis of the third term of

eqn (A.10), so we can now assert that there is an
e
2
'0 so that the expression in eqn (A.10) is

negative when 0)u
2
)e

2
and 0)u

1
)1!u

2
.

Taking e to be the minimum of e
1

and e
2

com-
pletes the proof of Lemma A.3. K

With the proof of Lemma A.3 completed the
hard work is done. Our next step is to modify h to
be a Lyapunov function on all of !"M(u

1
, u

2
) :

u
i
*0, u

1
#u

2
)1N by making it constant,

a short distance from the boundaries of interest.
To pick a truncation level we note that h is
continuous on ! and "nite except if u

1
or u

2
is 0,

so we can pick M large enough so that
Mu3! : h(u)*MNL!e . To make a di!erentiable
truncation of h, we introduce

t(x)"G
M if x)M

M#(x!M)2 if x*M

and set hM (x)"t(h(x)).

Lemma A.4. hM is a convex ¸yapunov function.

Proof. The Lyapunov property follows from
Lemma A.3, the choice of M made above, and the
fact that t is non-decreasing. To check convexity,
we observe that h is convex, being the sum of four
convex functions, and t is non-decreasing and
convex. It follows from this that if z, w3! and
j3[0, 1] then

t(h(jz#(1!j)w)))t(jh(z)#(1!j)h(w))

)jt(h(z))#(1!j)t(h(w)).

This demonstrates the convexity of hM and com-
pletes the proof of Lemma A.4. K

Proof of Theorem 2. With Lemma A.4 estab-
lished, the desired result now follows from calcu-
lations in Section 2 of Durrett (1993). K
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