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In models of competition in which space is treated as a continuum, and population size as continuous,
there are no limits to the number of species that can coexist. For a finite number of sites, IV, the results are
different. The answer will, of course, depend on the model used to ask the question. In the Tilman-May-
Nowak ordinary differential equation model, the number of species is asymptotically Clog N with most
species packed in at the upper end of the competitive hierarchy. In contrast, for metapopulation models
with discrete individuals and stochastic spatial systems with various competition neighborhoods, we find a
traditional species area relationship CN?, with no species clumping along the phenotypic gradient. The
exponent a is larger by a factor of 2 for spatially explicit models. In words, a spatial distribution of
competitors allows for greater diversity than a metapopulation model due to the effects of recruitment

limitation in their competition.
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1. INTRODUCTION

One of the central problems in ecology is how the
large number of species on Earth can coexist, and what
sets limits on diversity. Almost 40 years ago, Hutchinson
(1961) noted that the coexistence of hundreds of species
of algae in lakes is not consistent with the competitive
exclusion principle, which predicts that in homogeneous
and equilibrial systems, the number of coexisting species
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cannot exceed the number of resources. As many
authors have shown, a slow approach to equilibrium,
or temporal or spatial heterogeneity, can significantly
increase the possibilities for biodiversity. In our studies,
we will restrict our attention to systems that are
physically homogeneous in their underlying properties,
but are not due to endogenous heterogeneity arising
from competition among species.

A problem with the competitive exclusion principle is
that the simplicity of its statement can be misleading.
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Species may compete for a common resource, without
being limited simply by its availability, because they
differ in the way they utilize the resource. Space, for
example, is the direct object of competition among
species in a wide variety of systems, e.g., forests,
grasslands, coral reefs, and the marine benthic zones.
Asynchronous gap formation, however, either due to
extrinsic influences or to the natural deaths of indivi-
duals, can create opportunities for colonization and an
almost infinite subdivision of successional gradients
(Levin and Paine, 1974). Although space remains the
ultimate limiting resource in such systems, not all space
is equally available to all species. Time since disturbance
provides an axis of differentiation for species; and
individual species are limited not by the total amount of
space, but in effect by the amount of space of a
particular successional stage.

Tilman (1994), building on the metapopulation
framework of Levins (1969; see also Hastings, 1980),
studies a model of such systems that assumes a purely
hierarchical competition scheme. It has long been
known that for such systems, at least in the absence of
stochastic influences (and see Turelli (1986), even for
many forms of stochasticity) there is no limit to the
number of competing species that can coexist (May and
MacArthur, 1972). Specifically, Tilman studies coex-
istence among a sequence of species in which the lower-
numbered species are superior competitors. Letting p;
be the fraction of patches occupied by type i and taking
the limit of an infinite number of patches, he arrives at
the following dynamics:

dpi i i—1
i Bipi (1 - Zl Pj) —6ipi — Pizl Bipj- (1)
= =

where f8; and J, are the colonization and death rates for
the ith species. The first term on the right-hand side
represents births by type i onto sites that are vacant or
occupied by inferior competitors. The second and third
terms represent loss of sites of type i due to deaths or
takeover by lower numbered species.

The first equation in (1) says dp;/dt=
pip(1 — p1)—01p1, so in equilibrium we have
p; = (B — 1)/B;. In general, the equation for each
p; only involves p;,..., p;, so the equations can be
solved recursively for the equilibrium frequencies. The
algebra of the exact solution is somewhat messy, but one
can easily verify that an arbitrarily large number of
species can coexist. If we take §; = 1 for all 7, and each f;
is in turn chosen large enough, then each p > 0. The
differential equation (1) actually only applies in the limit
of an infinite number of patches, so what Tilman’s
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computation shows is that in an infinite area infinitely
many species can coexist. Infinite coexistence is of
course impossible, and is an artifact of (i) the assump-
tion of pure hierarchy, (ii) the myth that the parameters
for a particular type are constant, and (iii)) the
assumption of instantaneous takeover of patches by
superior competitors, implicit in the ODE framework.
Elsewhere (see Durrett and Levin, 1998) we have relaxed
the assumption of a strict competitive hierarchy.

In this paper, we will test the robustness of some of
these assumptions by investigating the number of species
that can coexist on a finite number of sites N, and by
requiring that equilibrium abundances exceed a thresh-
old level. It is also important to examine the effects of
relaxing the hierarchy assumption as we have done in
Durrett and Levin (1998). Nonetheless, we think that it
is important to elucidate the effects of these assumptions
separately, and hence we restrict our attention in this
paper to the hierarchical model.

For mathematical simplicity, instead of assuming J; =
1 we will investigate the special case of Tilman’s model
in which all species have the same colonizing ability,
f; = 1 for all i. This case was used by May and Nowak
(1994) to study the distribution of types in the discrete
time system in which one repeatedly does the following:

(i) introduce a new species with death rate 6 chosen at
random from (0, 1), and
(i1) recompute the equilibrium distribution.

The long-term behavior of this process should reflect
the behavior of a system where migrations into the
system are rare, and the system has a chance to relax to
equilibrium between migrations. May and Nowak
analyzed this system using heuristic arguments and
computer simulations. Figure 1 shows a simulation of
May and Nowak’s process until time 100 million, and
also the state at the final time. Note the slow growth in
the total number of species as a function of time, and the
packing of the species near the maximum value of the
death rate in the final state.

To create the graph in Fig. 2, we have examined the
system every 100 time steps between times 100,000 and
100 million and averaged our observations. Here we
have divided the axis of death rates into bins of width
0.01 and counted for each bin: (a) the number of species,
(b) the average abundance per species, and (c¢) the total
abundance of species in the bin. We then divided these
quantities by 0.01 to compare with the predictions of
May and Nowak (1994) that the density functions are
given by (a) 4/(1 — 9), (b) (1 —3)/24, and (c) 1/2. The
results in Fig. 2 show good agreement between our
simulations and their theory.
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Simulation of May and Nowak’s process for 100 million units of time. The top panel shows the number of species versus time, and the

bottom panel gives the state at the final time. Note the packing of many species of small abundances near 1.

May and Nowak have a simple heuristic argument
that explains these curves. Observe that inserted species
have no effect on those with higher death rates and may
or may not eliminate those with a lower death rate. The
exact calculation of which species are eliminated is
complicated. However, if we suppose that each new
species eliminates those below it independently and with
a fixed probability «, then the equilibrium density will be
1/a(1 — ). The value of o cannot be guessed intuitively,
but extensive simulations suggest that it is about 0.114.
Simple bookkeeping demands that (a) times (b) equals
(c), so the shape of (b) follows from that of (c), which in

turn, as May and Nowak (1994) showed, can be derived
from a simple heuristic.

Since fol A/(1 = 8)dd = oo the number of species in
the May—Nowak model does not reach equilibrium but
grows with time. If one observes that after ¢ species have
been introduced, the species with the largest death rate is
at ~ 1 —1/t, one can guess that the number after ¢
insertions in their model grows like

l*l/[ A
/ ——do=AInt =~ 20log, ¢.
0

s 2
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FIG. 2. Average behavior of May and Nowak’s model between times 100,000 and 100 million. The axis is divided into bins of width 0.01 and in
the three panels we display (a) the number of species, (b) the average abundance per species, and (c) the total abundance in the bin.

2. MODIFICATIONS OF THE
MAY-NOWAK MODEL

May and Nowak’s results, like Tilman’s, are for
a system with infinitely many patches. The first and
simplest thing one could do to guess the number
of species that will coexist in a discrete version of
the May—-Nowak model is to observe that if there are
N sites, then no species can have abundance smaller
than 1/N. This implies that no species can have
0>1—1/N. Using the reasoning that led to (2)

and realizing that other species may be eliminated
by this requirement, we see that in equilibrium the
number of species will be at most 20log,, N. To gauge
this numerical prediction, we note that Tilman’s
experiments at the Cedar Creek Natural History
Area have found approximately 200 species coexisting
on a I-ha plot. If we model Tilman’s study area as
a grid with sites that are 1 cm on a side, then we
have roughly 10® sites. Ignoring the fact that this
is just an upper bound, the predicted value of 160
species is the right order of magnitude. While the
number of species may be correct, their distribution in
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parameter space is not. It follows easily from (2) that
half of the species are between 1 —e % =09817
and 1.

Skeptical readers (including the three authors) can
observe that by choosing our grid size carefully we can
make the prediction match the Cedar Creek numbers
exactly. Thus, one only gets a legitimate test of the
predictions if one compares observations between at
least two scales. To do this, consider, in addition, North
America, which for simplicity we will consider to be a
rectangle 5000 x 2000 km, or 107 km?. This is 10° times
as large as Tilman’s 0.01 km? plot. However, due to the
logarithmic nature of the answer, the prediction for the
number of species in the larger area is only twice as large
instead of the observed 100-fold increase. This multi-
plicative increase suggests a power-law CN“. Since there
is a 100-fold increase when the number of sites is
increased by a factor of 10°, a = 2/9. Of course, Cedar
Creek may not be near its species packing limit. This
would decrease the power somewhat, but it would need
to have almost 10,000 species (i.e., 500 times as many) in
1 ha to make the logarithmic growth correct.

To explore the generality of the prediction of
logarithmic growth of species with area in models of
the May—Nowak type, we will consider a variant that
introduces one consequence of having a finite number of
sites: existing species will be lost due to fluctuations. To
see the effect of this change we have simulated a version
of the May—Nowak model in which species with
equilibrium abundance of <0.001 are eliminated. The
simulation in Fig. 3 shows that the truncated process
reaches an equilibrium in which an average of about 40
species are maintained. Though the number of species
has been reduced by truncation, the patterns of their
distribution are not changed. The bottom panel in
Fig. 3 shows the result of averaging the behavior of the
system from time 100,000 to 100 million. The result is
similar to that in Fig. 2a. We have not done the
analogues of the second and third curves in Fig. 2 since
simulations show that the last one will be constant at
1/2, and given this information the second one is the
reciprocal of twice the first.

3. DIVERSITY IN DISCRETE AND
SPATIAL MODELS

In the previous section, we considered various
modifications of the May—Nowak model. All of these
systems have two undesirable properties—packing of
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species at the top end of the competitive hierarchy and a
logarithmic increase of species with area—so we will
now consider two types of stochastic models with
discrete individuals. In each system there is a finite set
of sites S, and the state of the system at time ¢ is
described by a function &;: § — [0, 1], where &,(x) gives
the death rate of the individual at x at time ¢ and
£,(x) = 0 indicates an empty site. Our first, metapopula-
tion, model takes place on S = {1,2,...,N}, and evolves
as follows:

(1) The particle at x dies, i.e., becomes 0, at rate &,(x).

(i1) Each site gives birth at rate 1 to an offspring of
the same type.

(iii) An offspring born at x is sent to a site y chosen
at random from the grid.

(iv) If &,(x) > &,(p) then the value at y changes to &,(x).

(v) Each site changes at rate p to a type chosen
uniformly from [0,1].

Rules (i), (ii), and (iv) are the natural generalization to
this setting of the constant fecundity case, ff; =1, of
Tilman’s system. Rule (v) incorporates migration of new
types into the system as in the May—Nowak process.
Rule (iii) is the dispersal function of a metapopulation
model. In our second, spatially explicit, model
S=[1,LP = {(m, n): 1<m, n<L}. All the rules stay
the same but (iii), which becomes:

(iii") An offspring born at x is sent to a neighbor y
chosen at random.

We examine the second process on a torus, for
convenience. That means that y is a neighbor of x if
(y1 —x1, y» —x2) € A, where the differences of the
components y; —x; are computed modulo L. The use
of modulo arithmetic gives us periodic boundary condi-
tions. In words, sites on the left edge of the square are
neighbors of those on the right, and those on the top are
neighbors of those on the bottom. Here, we will only be
concerned with two kinds of neighborhoods ./": the four
nearest neighbors A7) = {(1,0),(0,1),(—1,0),(0,—1)}
and the 5 x 5 neighborhood A" = {z: max; |z;| <2}.

The first step in understanding the behavior of these
models is to simulate the systems for one fixed set of
parameter values. Let the side length of the square
L =400, and the number of  individuals
N = 400%> = 160,000. That is, we are considering a 400
x400 spatial grid or a metapopulation model with
160,000 sites. Figures 4-6 give the results of the
simulations for the discrete metapopulation model and
for the spatial model with the 5 x 5 neighborhood .47,
and the four nearest neighbors .47 defined above. In
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FIG. 3. Simulation for 100 million time units of a version of the May—Nowak model in which species with equilibrium abundance smaller than
0.001 are eliminated. The top panel gives the number of species versus time, the middle gives the state at the final time, while the bottom gives the
average number of species observed in bins of width 0.01, just as in Fig. 2a.

each case, the number of migrants per generation
Nu=1.

The first thing to notice is that the number of species
is about 45 in the first case, 100 in the second, and 120 in
the third. This pattern is not surprising. In the

metapopulation model all sites are adjacent to each
other, so each individual interacts equally with all of the
others. In the spatial models, different species can
become isolated from each other, lessening interspecific
competition. Comparing the results for the 5x 5
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FIG. 4. Simulations of a 160,000 thousand site metapopulation model for 160,000 units of time. As the top panel shows there is a stationary
distribution for the number of species. The middle panel gives a snapshot at the final time. The bottom panel gives a graph of the average number of
species with death rates <x. This graph is almost linear so the underlying species are almost uniformly spread on (0,1).

neighborhood and the nearest neighbors shows that
reducing the dispersal distance increases isolation and
further decreases interspecific competition.

The middle panels of Figs. 4-6 show snapshots of the
systems at time 160,000. The first noticeable difference is
that species are scattered over (0, 1) in the first case, over
roughly (0,2/3) in the second, and over roughly (0, 0.6)

in the third. This pattern occurs since in each system
species with a ¢ larger than the critical death rate cannot
survive even in the absence of competition. The
metapopulation model has §. = 1 while the two spatial
models have §, =~ 2/3 and J. =~ 0.6, respectively. To the
naked eye the distribution of the species in the spatial
models may appear to be more clumped in Figs. 5and 6



272 Buttel, Durrett, and Levin

120

1104

100+

Number of Species

O
(=]
1

80 T T T T T
10000 35000 60000 85000 110000 135000 160000

Time

0.08 Time = 160,000

0.06

0.04

Fraction of Grid

0.02

0.00
0.05
0.10
0.16
0.20
0.25
0.31
0.35
0.41
0.46
0.50
0.56
0.61
0.65
0.707
0.757]
0.81 7
0.867
0.907
0.95 ]

Species Type
120

100 +

80 1

60

40

Average Number of Species

20

0 T T T T T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Death Rate

FIG. 5. Simulations of a 400 x 400 spatial model with dispersal uniform over a 5 x 5 neighborhood for 160,000 units of time. As the top panel
shows there is a stationary distribution with more species on the average than in the metapopulation model in Fig. 6. The middle panel gives a
snapshot at the final time. Species cannot survive above the critical value for the corresponding contact process, which in this case is & 0.66. The
bottom panel again gives a graph of the average number of species with death rates <x. This graph is almost linear up to J., so the underlying species
are almost uniformly spread on (0, J.).

than in the metapopulation model in Fig. 4. However, distribution of species is approximately uniform on
comparing the bottom panels of these three figures (0,9.).
which average the distribution of species between times To investigate the behavior of the number of species

10,000 and 160,000 shows that in each case the versus the size of the grid we have considered the
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FIG. 6. Simulations of a 400 x 400 spatial model with nearest neighbor dispersal for 160,000 units of time. As the top panel shows there is a
stationary distribution for the number of species that has even more species than in spatial model with 5 x 5 dispersal neighborhood in Fig. 7. The
middle panel gives a snapshot at the final time. Species cannot survive above the critical value for the corresponding contact process, which in this
case is 0. &~ 0.6. However, as in the last two figures, the underlying species are almost uniformly spread on (0, J.).

systems with L = 100, 200, 300,..., 800, i.e., spatial
models on an L x L grid or a metapopulation model
with N = L? points. In each case we have set the number
of migrants per generation Nu = 1. Figure 7 shows the
result of a plot of the base 10 logarithm of the number of

species versus log;, L. In each case the relationship
between species S and area has the form S ~ CN®.
However, in the metapopulation model a ~ 0.17 while
in the two spatial models a ~ 0.34. Returning to
the Cedar Creek versus North America comparison,

~
~
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FIG. 7. For spatial models on an L x L grid or metapopulation system with L’ sites, the logarithm of the average number of species is
asymptotically linear in log L. That is, there is a power law relationship between species and area. Note that the powers are larger by a factor of 2 for

the spatial models compared to the metapopulation models.

we note that if @ = 1/3 then an increase in area of 10°
translates into a 1000-fold increase in the number of
species.

In Fig. 8 we examine the average number of species in
equilibrium versus migration rate Nu on a 400 x 400
grid. Here our estimate is the average number of species
between times 100L and 400L, these limits having been
chosen to guarantee that the system is in equilibrium. As
in the simulations with Nu = 1 decreasing the dispersal
distance increases the number of species in the system.
In equilibrium the number of species that leave the
system per unit time must be equal in the long run to the
number that enter the system. Mentally rotating this
graph by 90° (or mathematically looking at the inverse
function) then gives the number of extinctions per unit
time as a function of the average number of species in
the system.

Finally, Fig. 9 plots the log of the equilibrium
number of species versus the log of the number of
points in the neighborhood of a site for a 400 x 400 two-
dimensional system. Again the nearest neighbor case has
the largest number of species in equilibrium; and on this
log—log plot the number of species decreases linearly
until a threshold is reached, after which the number is
constant. Here we have used square- and diamond-

shaped neighborhoods to have more values available for
the number of neighbors, but the two sets of measure-
ments are part of one smooth curve.

4. SUMMARY

The self-organization of ecological communities and
the levels of biological diversity that emerge represent
fundamental theoretical challenges for ecologists.
Tilman (1994), expanding upon earlier models of Levins
(1969) and others, introduced a competition—coloniza-
tion trade-off that gave rise to characteristic patterns of
abundance, but no inherent limit to diversity. Since his
model was a system of ordinary differential equations,
what Tilman showed was that in an infinite area
infinitely many species can coexist.

Here, using several different models, we have inves-
tigated the number of species that can exist in a finite
area. The first, discussed in Section 2, were several
variants on the May—Nowak model. However, in each
case the equilibrium distributions of these systems have
two properties that are not found in nature: packing of
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species at the top end of the competitive hierarchy and a
logarithmic increase of species with the size of the
system.

We have also approached this question in Section 3
using a spatially explicit model, and compared the
results for nearest neighbor dispersal, a 5 x 5 neighbor-
hood, and the “mean field” situation in which dispersal
is uniform over the system. The final “metapopulation”
approach leads to a species area curve of (2.05)N%173
while the two spatial models have curves of (1.39)N03%
for nearest neighbor and (1.26)N%3* for the 5x 5
neighborhood. In words, the spatial segregation in a
metapopulation model is good for diversity, but short-
range dispersal in a spatially explicit system is much
better for quantifying the dependence of the equilibrium
number of species on the dispersal range. It is surprising
that this decrease is linear on a log—log plot until a
critical threshold is reached, after which the number is
constant.
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