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Abstract

Single nucleotide polymorphisms (SNPs) are useful markers for locating genes since they occur
throughout the human genome and thousands can be scored at once using DNA microarrays.
Here, we use branching processes and coalescent theory to show that if one uses Kruglyak’s
(Nature Gen. 12 (1999) 139–144) model of the growth of the human population and one assumes
an average mutation rate of 1×10−8 per nucleotide per generation then there are about 5.7 million
SNP’s in the human genome, or one every 526 base pairs. We also obtain results for the number
of SNPs that will be found in samples of sizes n¿2 to gain insight into the number that will be
found by various experimental procedures. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The information in DNA is encoded in a sequence of nucleotides, four chemicals
that are usually referred to by the <rst letters of their names: A, C, G, and T. Single
nucleotide polymorphisms (SNPs) are as the name suggests, single nucleotides in a
genome that are polymorphic, i.e., in which each allele has a frequency of less than
99% in the population as a whole. SNPs are of interest as genetic markers for locating
genes. To look for a gene that causes a disease like type I diabetes, one would take a
sample of several hundred individuals with and without the disease and then look for a
correlation (in genetics this is called linkage disequilibrium) between the disease state
of individual and the state of these markers. A signi<cant correlation in one region of
the genome would then suggest that it contains the disease causing gene and further
sequencing eAorts would be concentrated there.
Given that the human genome consists of about 3 billion nucleotides, it is clear that

this strategy will require a large number of SNPs, but it is an important question to
determine the order of magnitude of the number required. Current technology allows
DNA microarrays to be constructed so that state of thousands, or perhaps tens of
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thousands of SNPs can be determined in a single procedure, (Landegren et al., 1998)
but is that enough? In a recent article in Nature Genetics, Kruglyak (1999) used
simulations based on the coalescent to suggest the range at which SNPs have useful
levels of linkage disequilibrium (i.e., correlation) are unlikely to extend beyond 3
kilobases (kb) in the general population. Since the human genome consists of 3 billion
bases, this means that even if SNPs are evenly spaced, approximately 500,000 SNP’s
are needed, a very depressing number for makers of DNA chips.
The purpose of this article is to do a mathematical analysis of two related questions:

“How many SNPs are there in the human genome?” and “What percentage of these
will a sample of size n <nd?” The second question in the case n = 6 is related to
Celera’s original strategy for sequencing the human genome, as described by a lecture
of Gene Myers at a Cornell Theory Center Symposium on October 14, 1999. At that
point, he said that they would achieve “10 times coverage”, i.e., each nucleotide will
be sequenced on the average 10 times. To make the assembly process easier, one
individual will be used for the <rst 6 times coverage of the human genome. Since
humans are diploid organisms (i.e., have two copies of the genetic information) this
will with probability 31

32 lead to a sample of size 2 at each site. To <nd more SNPs,
Celera will then use multiple individuals for the <nal 4 times coverage. This gives an
average of a little less than four samples per nucleotide, making a total of about 6.
The exact details of Celera’s strategy are not important here. We will derive results

that are valid for all n¿2, since they allow us to make predictions about the results of
other sampling strategies. For example, n=20 is related to experimental work of Wang
et al. (1998) and n = 5 is related to the strategy Celera ended up using. To answer
the questions posed above, we need a model of the growth of the human population.
Following Kruglyak (1999) we will assume that humans had a constant population
size of 10,000 individuals until 5000 generations ago and then expanded at a constant
exponential rate to its present day size of 5 billion. Solving the equation

�5000 = (5× 109)=(10;000) = 500;000; (1.1)

we <nd � = 1:00263. For those who might complain that the current population is
actually 6 billion, we note that this changes the answer to 1.00266. Another possible
objection is that according to the World Book encyclopedia, “the world’s population
grew slowly before AD1, then almost doubled by the year 1000. At its present rate
of growth the world’s population doubles every 41 years”. Taking the estimated world
population of 138 million in AD1, using a human generation time of 20 years leads
to the new equation

�4900 = (138× 106)=(10;000) = 13;800; (1.2)

which solves to give �=1:00194. Since all three computations lead to roughly the same
growth rate, we will choose �=1:0026 to keep the closest connection with Kruglyak’s
work.
For convenience, we will let T = 5000 and index generations by integers m6T so

that the expansion began at time m= 0. Recalling that humans are diploid organisms,
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the number of copies of the nucleotide under consideration in generation m is then

Nm =

{
20;000 for m60;

20;000�m for m¿0:
(1.3)

Kruglyak builds his genealogical relationships by working backwards in time and using
the discrete time coalescent with a varying population size (see e.g., GriMths and
TavarNe, 1994). In words, each of the Nm nucleotides in generation m picks its parent
uniformly from the possible choices in generation Nm−1. Of course, all of the choices
at one time are made independent of each other and independent of what has already
been done at times T; T − 1; : : : ; m+ 1.
In addition to working backwards in time, we will <nd it convenient to work forward

from time 0, using a branching process in which each individual in generation t gives
birth to an independent number of children in generation t + 1 with mean �. To see
what distribution to take for the number of children, we note that in the coalescent a
given nucleotide in generation t will be chosen with probability 1=Nt by each of the
Nt+1 nucleotides in generation t + 1, and Nt is large, so the number of descendants
will have roughly a Poisson distribution with mean �=Nt+1=Nt . For readers who might
complain that observed human family size distributions are not Poisson, we note that
(i) this choice of distribution is needed to keep a close connection with the coalescent,
and (ii) the assumption can easily be dropped. As we will indicate in Section 2, the
answers depend only on the <rst two moments of the number of oAspring X; � = EX
and a= EX (X − 1)=2.
While working forward in time we are only interested in individual nucleotides that

have oAspring alive at the present, time T =5000. It is a well-known fact in the theory
of branching processes (this and other “well-known” facts can be found in Chapter 1
of Athreya and Ney (1972)) that if we let pk be the probability of k children and
de<ne the generating function �(�)=

∑∞
k=0 pk� k then the probability a family has died

out by generation k is �k =�k(0), and if �¿ 1 then as k → ∞, �k converges to �, the
unique solution of �(�)= � that lies in [0; 1). In the case of interest here, the Poisson
distribution with mean � has generating function

�(�) =
∞∑
k=0

e−� �k

k!
� k = exp(−�(1− �)); (1.4)

so the <xed point equation is � = exp(−�(1− �)).
For a given value of � Eq. (1.4) can only be solved numerically. However, our � is

close to 1, so expanding � to second order in a Taylor series around 1, we can solve
it approximately with the simple result that the survival probability �= 1− � has

� ≈ � − 1
a

= 0:0052: (1.5)

With a little help from a computer one can <nd that �= 0:00518203.
Let Zm be the number of individuals in generation m in the branching process. The

expected value EZm=Z0�m, so if we let ẐT
m be the number of individuals in generation

m with oAspring at time T and �k be the probability an individual in generation 0 has
oAspring in generation k, we have

EẐT
m = Z0�m�T−m; (1.6)
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a result that was derived earlier by GriMths and Pakes (1988). To compare this result
with the prediction of the coalescent let Ŷ T

m be the number of individuals in generation
m that have oAspring in generation T . In Section 6 we will show that

Theorem. If T → ∞ and M → ∞ then

max
M6m6T

∣∣∣∣∣ Ŷ T
m

Nm�T−m
− 1

∣∣∣∣∣→ 0 in probability: (1.7)

Having proved the equivalence between the coalescent in an exponentially growing
population and the corresponding Poisson branching process, we will feel free to use
either process to investigate mutations at positive times. This and the ordinary coales-
cent in a population of constant size are the three models we will consider here. All
of our estimates of the number of SNPs are based on an estimate of the per nucleotide
per generation probability, u, of a mutation, so we make the

Important announcement. To remove the mutation probability from later calculations,
we will instead calculate the expected total time in the genealogy.

The reader can then multiply by their favorite estimate of the mutation rate to get
a concrete estimate of the number of SNPs. Along the way we will do this with our
favorite estimate u= 1× 10−8 which comes from Drake et al. (1998).

Having announced our plan, we have 8=2×2×2 things to do. We have to compute
the total time in the genealogy at positive times and at negative times, in the whole
population and in a sample of size n, and in addition for these four combinations we
have to compute the expected amount of “good time,” times when the mutation will
be a SNP, i.e., have frequency between 1% and 99%.

1.1. Results for the entire population

1.1.1. Total time for t¿0
The expected total time in the tree between times 0 and T is

T∑
m=0

N0�m�T−m = NT

T∑
k=0

�−k�k : (1.8)

Using our approximation � ≈ 0:0052 and recalling �−T = 1=500;000 we have

�
T∑

k=0

�−k = �
1− �−(T+1)

1− �−1 ≈ ��
� − 1

≈ 2:

The second part of the sum must be evaluated numerically. Stopping the <rst time the
survival probability �k ¡ 0:0052, which occurs at k = 2178, we have

T∑
k=0

�−k(�k − 0:0052)+ ≈ 8:78:
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Combining the last two results with (1.8), and recalling that the number of the copies
of the nucleotide at time T is NT = 2(5× 109) gives

the expected total time in the tree in 06t6T is 1:078× 1011: (1.9)

Taking u=1× 10−8 as our estimate for the mutation rate, it follows that the expected
number of mutations per nucleotide is approximately

(1× 10−8) · 2(5× 109) · 10:78 = 1078:

This is a huge number of mutations. However, an average of (1×10−8)2(5×109)=100
of these mutations occurred in the most recent generation. In a moment, we will see
that almost all of the 1078 mutations per site exist at very small frequencies.

1.1.2. Good time for t¿0
Our next step is to calculate the probability that a mutation will have a frequency

greater than 1% in the population today. Suppose, for simplicity, that the mutation
occurs at time 0. Our estimate of the survival probability in the branching process
implies that on the average a fraction 0.0052 of the 20,000 individuals at time 0, or
104, will have descendants alive at time T . To estimate the probability that a mutation
at time 0 will have a frequency greater than 1% at time T , we use a result of Jagers
(1975), see (2.2) below, to conclude that since our branching process is close to critical,
the number of descendants at time T , conditioned to be positive, and divided by its
mean, has approximately an exponential distribution.
If we ignore the variability of the total of the 104 normalized family sizes, an

assumption we will justify in Section 2 by computing the exact distribution, then it
follows from Jagers’ result that the probability of ending up at a frequency greater than
1% is approximately exp(−1:04)=0:3534. As one moves forward to generation m, the
number of individuals with oAspring alive at time T grows to N0�m�T−m¿104�m.
Using the lower bound, we see that the probability a mutation will have a frequency
greater than 1% is approximately exp(−1:04�m), which decays to 0 very rapidly. The
last fact implies that the diAerence between �T−m and � is unimportant in this case.
Summing we see that the number of opportunities in generations 06t6T for a

mutation with frequency of at least 1% is

≈
T∑

t=0

104�t exp(−1:04�t) = 13;595: (1.10)

Since any mutation at a positive time will be contained inside one of the 104 families
at time 0, there is only a very small probability that the mutation will end up with
99% of the population, and we will ignore this. Multiplying (1.10) by our mutation
rate estimate of u= 1× 10−8 gives a per nucleotide probability for SNPs of

p= 1:3595× 10−4 or 1 SNP from [0; T ] every 73;556 bp:

As some readers may have noticed, this density is much less than the <gure of 1
SNP per Kilobase (Kb) that is often quoted. (See Wang et al., 1998; Lai et al., 1998;
Brookes, 1999.) There is no contradiction, however. As we will soon see, most of the
mutations that are SNPs occurred at times t ¡ 0.
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1.1.3. Total time for t ¡ 0
To count the expected number of mutations at times t ¡ 0 we will use the theory

of the coalescent. To follow the arguments below, the reader need know only that if
time is written in units of N0 generations, then in the limit as N0 → ∞ the number of
lineages in the coalescent decreases from k to k−1 at rate k(k−1)=2 (see e.g., Kingman,
1982a; Hudson, 1990). To begin to compute the expected number of mutations at times
t ¡ 0, we note that each of the original N0 = 20; 000 nucleotides will have oAspring
at time T with probability 0.0052, so the number that succeed has approximately a
Poisson distribution with mean 104. When there are K success in the population we
have to work backwards in time until their lineages coalesce. The result cited above
implies that the time required, when measured in units of N0 generations, has mean

K∑
k=2

k
2

k(k − 1)
≈ 2 lnK:

We will argue in Section 3 that it is permissible to replace K by its mean in the
formula above. However, as the reader can easily check by computing each side of
the equation for K =104, to get an accurate answer one must use the sum rather than
its approximation. Multiplying by N0 = 20; 000 we arrive at the following estimate for
the total time in the tree at times t ¡ 0 for the population:

20;000
104∑
k=2

2
k − 1

= 20;000× 10:43358 = 208;672:

Taking u=1×10−8, the expected number of mutations per nucleotide at times t ¡ 0 is

p= 2:08672× 10−3 or one mutation from t ¡ 0 every 479 bp:

1.1.4. Good time for t ¡ 0
To determine the frequency of the mutations at times t ¡ 0 in the population at the

present time T , we use Ewens, (1972) sampling formula in Section 3 to conclude, see
(3.11), that on the average 3:3268× 10−4 mutations per nucleotide fail to end up with
a frequency between 1% and 99% of the population. This reduces the probability given
above to

p= 1:75345× 10−3 or 1 SNP from t ¡ 0 every 570 bp:

Dividing by our mutation rate estimate u= 1× 10−8 we see that

the expected amount of good time in the tree for t ¡ 0 is 175;345: (1.12)

Adding the 13,595 from (1.10) for the good times t ∈ [0; T ], we get an expected total
good time in the tree of 189,940. From this we get

Our main result. Assuming a mutation rate of u=1× 10−8 gives an estimate for the
density of SNPs of p= 1:8994× 10−3 or 1 SNP every 526 bp.

Dividing 3 × 109 by 526 gives our estimate of 5.7 million SNPs in the human
genome. These results in (1:9)–(1:12) are summarized in Table 1 for comparison with
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Table 1
Summary of computations

Population Sample

Total time in [0; T ] 1:078× 1011 29,891
Good time in [0; T ] 13,595 458

Total time for t ¡ 0 208,672 89,074
Good time for t ¡ 0 175,345 82,881

Total time, total 119,595
Good time, total 189,940 83,356

1.2. Results for a sample of size n

As we have mentioned earlier, we will begin by considering the special case n= 6,
because of its connections to Celera’s strategy. A second reason is that restricting our
attention to n= 6 will give us the opportunity to have concrete numerical answers in
addition to our sometimes complicated formulas.

1.2.1. Total time for t¿0
As in the case of the entire population, we will begin at the present time T and

work backwards. To get an upper bound on the size of the genealogy of a sample of
size six, we can suppose that the six lines stay distinct until time 0, after which they
coalesce in the usual way. The total time in the genealogical tree between 0 and T
will then be 6·5000 = 30;000. The last result is an upper bound, but it turns out to
be quite a good one. Let X (t) be the number of lineages surviving to time t. One
can recursively compute (even with a small computer) the probabilities P(X (t) = k)
working backwards from time T to conclude

T−1∑
t=0

EX (t) = 29;891: (1.13)

This result shows that the naive upper bound of 30,000 is very good. This outcome
is no surprise since genealogies in exponentially growing populations are known to be
“star-shaped”, see e.g., Slatkin and Hudson (1991).

1.2.2. Good time for t¿0
Using the reasoning that led to (1.10) we can conclude that for the sample of size

6, the expected amount of good time (i.e., instances at which a mutation will be a
SNP at time T ) in the tree during [0; T ] is

T−1∑
t=0

EX (t) exp(−1:04�t) = 458: (1.14)

Multiplying by 1×10−8 leads to an estimate of 4:58×10−6 SNPs per nucleotide from
mutations in [0; T ] or 1 every 218,340 nucleotides. However, this number was doomed
to be disappointing by the corresponding computation for the whole population: the
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expected number of polymorphic mutations from [0; T ] is only 1 SNP from [0; T ] every
73,556 nucleotides.

1.2.3. Total time for t ¡ 0
To begin, we note that if all the six lineages do not coalesce before time 0, then by

the reasoning that led to (1:11) the expected total time in the tree before 0 will be

2
(
1
5
+

1
4
+

1
3
+

1
2
+ 1
)
20;000 = 91;333:

Note that even though there are six individuals rather than 104 as in (1:11), the total
time here is about 44% of the time 208,672 for the whole population given in (1:12).
The <rst correction that must be made in the previous calculation is to realize that

the six lineages from time T will undergo some coalescence during [0; T ]. Let X (t) be
the number of distinct lineages at time t. Recursively computing P(X (t) = k) starting
from P(X (T ) = 6) = 1 gives

k 6 5 4 63
P(X (0) = k) 0:74881 0:22742 0:02284 9:2× 10−4:

Taking this into account, however, does not make a big change. The expected total
time in the tree drops only a small amount to 89,074, a loss of about 2.5%.

1.2.4. Good time for t ¡ 0
The next factor to consider is that not all mutations will have a frequency of 1%.

Using a result of Joyce and TavarNe (1987) that relates the coalescent to the binary
branching process, and some elementary computations with the distribution of order
statistics, see Section 5, we can compute that the expected total amount of good time
in the tree at times t ¡ 0 to be 82,881. See Table 1 which summarizes our results for
the population and the sample of size 6.
Our mutation rate estimate is 1× 10−8 per nucleotide for the human genome, which

has 3× 109 nucleotides, so there are an average of 30 mutations per generation. Mul-
tiplying the total time 119,595 by 30 gives our prediction that a sample of size 6 will
have 3.58 million variable nucleotides. Of course, only the mutations at good times
will produce SNP’s so

83;566
119;565

= 70%

of the variable nucleotides or 2.51 million are SNPs.
Having worked to do computations for the special case of a sample of size 6, it

is now straightforward to generalize to samples of any size. The results are given in
Table 2.
During the time it took to write this paper and have it refereed, Celera sequenced the

entire human genome 4.6 times (rather than their initially proposed 10) using DNA
from <ve individuals, three females and two males who have identi<ed themselves
as Hispanic, Asian, Caucasian, or African American. To provide an overestimate of
the number of SNPs they found, we will assume that they have 5 times coverage of
the genome with each nucleotide sequences from <ve diAerent chromosomes. They
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Table 2
Results for varying sample size

Good time Good time Total Sample vs. Fraction
in [0,T ] for t ¡ 0 good time population that are SNPs

2 157 36,786 36,943 0.196 0.750
3 234 55,180 55,413 0.293 0.751
4 309 67,180 67,489 0.357 0.735
5 384 75,984 76,369 0.404 0.718
6 458 82,881 83,339 0.441 0.701
7 531 88,514 89,045 0.471 0.684
8 603 93,251 93,854 0.497 0.668
9 674 97,321 97,995 0.519 0.653
10 745 100,876 101,620 0.538 0.639
12 882 106,834 107,717 0.570 0.612
14 1,017 111,679 112,697 0.596 0.589
16 1,149 115,732 116,881 0.619 0.567
18 1,277 119,193 120,471 0.638 0.547
20 1,403 122,197 123,600 0.654 0.529

claim to have found 2.4 million SNPs. (This information comes from press releases on
Celera’s web page: www.celera.com.) Consulting the table our prediction is that they
have found 40.4% of the 5.7 million SNPs in the human genome or 2.3 million.
At the top of Table 2 we see that in the case n=2, 75% of diAerences between two

chromosomes are SNPs, and that one individual already has about 20% of the SNPs
in the genome. At the other end of Table 2, the case n= 20 gives results relevant to
the experimental set up of Wang et al. (1998), who screened genetic material from
10 humans to look for SNPs in 26,568 sequence tagged sites (STSs) used in the
construction of a physical map of the human genome at the Whitehead Institute. As
Table 2 indicates, if one were to simply accept sites that were polymorphic in the
sample then one would <nd 65.4% of the SNPs in the region surveyed, but one would
also <nd an almost equal number of variable nucleotides that are not SNPs.
Wang et al. (1998) did not use this naive experimental design. To quote from their

paper: “Each STS was ampli<ed from four samples: three individual samples and a pool
of 10 individuals. Candidate SNPs were declared when two alleles were seen among
a subsample of three individuals, with both alleles present at a frequency of greater
than 30%”. In principle, one could also use our methods to compute the probability
of success with that strategy, however, we have not yet attempted to wrestle with the
details. Of course, no algorithm can <nd SNPs that are not variable in the sample so
the 65.4% <gure is an upper bound on the performance of any selection algorithm.
Wang et al. (1998) found 279 “candidate SNPs” after screening 279,165 nucleotides,
which corresponded to a rate of one SNP per 1001. Multiplying the good time in
the tree for a sample of size 20 given in Table 2 times our mutation rate 1 × 10−8

we conclude that the per nucleotide probability of a good SNP in this region of the
genome is 1:236 × 10−3 or one every 809 bp, in good agreement with what Wang
et al. (1998) found.
Up to this point all of our calculations have been done using the 1% de<nition of

polymorphism. However the basic computational machinery generalizes to other cutoA
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Table 3
Varying the threshold for polymorphism

Good time Good time Relative
% for [0; T ] for t ¡ 0 to 1%

1 13,593 175,345 1.000
5 42 117,342 0.621
10 87,461 0.463
15 68,931 0.365
20 54,970 0.291
25 43,430 0.230
30 33,340 0.176

Fig. 1. Good time in the tree as a function of generation number for the 1, 5, 10 and 30% de<nition of
SNP.

levels. Table 3 gives results for cutoAs of 5–30% compared to the number present
with the 1% de<nition. In the <rst column numbers that are ¡ 1 are left blank. Note
that when the threshold is increased to 0.05, 38% of the 0.01 level SNPs are no longer
considered polymorphic. At the other extreme insisting on between 30% and 70%
reduces the total number to 17.6% of the original collection. Using u = 1 × 10−8 for
a mutation rate we have a prediction of one SNP every 526 bp, so using SNPs where
the most common allele is at most 70% would produce one every 2988 bp, which
matches the density Kruglyak (1999) says we need.
The methods used to generate Table 3 can without any additional eAort give us how

the good time in the tree is distributed over time. Fig. 1 shows results for the 1%,
5%, 10%, and 30% de<nitions of SNPs. Comparison with the histograms in Kruglyak
(1999) shows that our analytical approach provides more re<ned results than simu-



R. Durrett, V. Limic / Stochastic Processes and their Applications 93 (2001) 1–24 11

lation alone. Combining this information with an estimate of the recombination rate
per generation one can obtain an estimate of the range over which there is signi<cant
linkage disequilibrium, however we have not carried out the details of the calculation.
The remainder of the paper is devoted to justifying the claims and doing the com-

putations reported in the introduction. We will study the number of mutations in the
whole population in [0; T ] in Section 2, and the number of mutations at times t ¡ 0 in
Section 3. Sections 4 and 5 are devoted to the number of mutations at corresponding
times in a sample. Finally in Section 6, we prove (1.7) to justify our claim that the
branching process and the coalescent approaches give the same answer for the expected
number of mutations.

2. Mutations in the population at times 06t6T

Let X have a Poisson distribution with mean �. DiAerentiating the de<nition of the
generating function

�′(1) = EX = � and a ≡ �′′(1)=2 = E(X (X − 1)=2):

Expanding in a Taylor series about 1, we have

�(1− x) = �(1)− �′(1)x + �′′(1)
x2

2
+ · · ·= 1− �x + ax2 + · · · :

Setting 1− x = �(1− x) and rearranging we have for � ≈ 1

(� − 1) x ≈ ax2 so x ≈ � − 1
a

:

Letting �k =1−�k denote the probability of the family line surviving for k generations
and �= 1− � be the limit of �k = P(Zk ¿ 0), this says that in the Poisson case with
mean � = 1:0026

� ≈ � − 1
a

≈ 0:0052: (2.1)

Our next task is to compute the distribution of the frequency at time T of a mutation
that occurs at time t. We begin with special case t=0. Each individual at time 0 starts a
copy of the branching process Zt . Well-known results imply that when �¿ 1 as t → ∞,
Zt=�t → W a random variable with EW = 1 and P(W ¿ 0) = P(Zt ¿ 0 for all t). A
less widely known result, but one very useful for us is Theorem 3:3:1 of Jagers (1975).

Theorem. For any (¿ 0 let K( be a class of Galton–Watson processes with repro-
duction variances less than ( and uniformly convergent second reproduction moments
(i.e.; for each )¿ 0 it should be possible to choose k) so that∑

k¿k)

k2pk ¡) (2.2)

for all reproduction laws in the class). Suppose that the number 1 belongs to the
closure of the set of reproduction means of processes in K(. Write a= �′′(1)=2 and
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interpret c�;n = (1 − �−n)=(� − 1) as n for � = 1. Then uniformly for all process in
K( as n → ∞ and � → 1

(a) ac�;nP(Zn ¿ 0) → 1;
(b) E(Zn=ac�;n|Zn ¿ 0) → 1;
(c) P(Zn=ac�;n ¿u|Zn ¿ 0) → e−u:

If we apply this result with K( equal to the Galton–Watson processes in which the
oAspring distribution is Poisson with a mean � ∈ [ 12 ; 2], it follows that when � is close
to 1, the limit distribution has P(W = 0) = 1− � and

P(W ¿x) ≈ �e−�x: (2.3)

As should be clear from the formulation of Jagers’ theorem, (2:2), this result holds
for a general distribution, but the value of the survival probability � given in (2.1)
changes.
Let K be the number of individuals in generation 0 with oAspring at time T . Each

of the original N0 = 20;000 nucleotides, will have oAspring at time T with probability
0.0052, so the number that succeed has approximately a Poisson distribution with mean
104. If we let V1; V2; : : : be independent with P(Vi ¿x) = e−x then the fraction of
oAspring in family 1 has approximately the same distribution as V1=

∑K
i=1 Vi. Writing

S =
∑K

k=2 Vi and V = V1 we have

P
(

V
V + S

¿x
)
= P

(
V ¿

x
1− x

S
)

=
∫ ∞

0
e−xs=(1−x)P(S = s) ds= Ee−xS=(1−x): (2.4)

Now Ee−�Vi =1=(1+�)=1−x when �=x=(1−x). Writing - instead of 104 to prepare
for later generalizations, and summing over the possible values of our Poisson random
variable K , except for K = 0 which has probability e−104, we have

Ee−xS=(1−x) =
∞∑
k=1

e−- -k

k!
(1− x)k−1 =

e−-x − e−-

1− x
: (2.5)

Note that as x → 1, the right-hand side does not go to 0 but to -e−- = P(K = 1).
Changing variables -x = y leads to

P
(

V
V + S

¿y=-
)
=

1
1− y=-

(e−y − e−-): (2.6)

We will use this formula with y=-= 0:01, so we will (i) ignore the <rst factor which
is 1=0:99 and (ii) ignore exp(−-) = e−100y which for y¿1 is much smaller than e−y.
Implementing these two ideas, we have the very simple conclusion

P
(

V
V + S

¿
y

E(V + S)

)
≈ e−y: (2.7)

We could have arrived at this end much more easily if we had simply replaced V+S in
the denominator by its mean. However, now we know that this simple approximation
is accurate for the values of y and - we are concerned with.
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To illustrate the use of (2.6) we note that at time 0, E(V + S) = 104, so if we are
interested in families that are more than x = 0:01 of the population then y = 1:04 and
the probability is about e−1:04 =0:3534. As we mentioned in the introduction, we don’t
worry about the probability that V=(V + S)¿ 0:99 which by (2.6) with - = 104 and
y=-= 0:99 is

100(e−102:96 − e−104):

As we move forward from time 0 the probability of being larger than 1% drops to 0
very quickly. The population doubles every 267 generations, so in generation 267r, we
have -=104× 2r . The value x=0:01 corresponds to y=1:04× 2r , so the probability
of ending up with at least 1% of the population at the rth stage is exp(−1:04 × 2r).
Numerical results show that this rapidly gets very small

r 0 1 2 3 4
probability 0:3534 0:1249 0:0156 2:4× 10−4 5:9× 10−8:

In words, each time the population doubles the probability of success is squared.
The last calculation shows that there will be a negligible contribution from times

t¿1000 so by a remark in the calculations used to evaluate the sum (1.8), we can
replace �k by its limit �. Thus, to compute the number of opportunities for mutations
at times t¿0 we have to evaluate

T∑
t=0

104�t exp(−1:04�t): (2.8)

Replacing the sum by an integral from 0 to ∞ and then changing variables x = �t ,
dx = (ln �)�t dt we have that sum above is

≈ 100
ln �

∫ ∞

1
1:04 exp(−1:04x) dx =

100
0:0026

e−1:04 = 13; 595: (2.9)

Of course, one can skip the approximation and the calculus, by evaluating the sum in
(2.8) numerically to <nd that it is 13,593.70.

3. Mutations in the population at times t ¡ 0

To count the expected number of mutations at times t ¡ 0 we can use coalescent
theory. Let K be the number of individuals at time 0 that have oAspring alive at time
T . Well-known results about the coalescent imply that as we work backwards from
time 0, the amount of time required for coalescence, when measured in units of N0

generations, has mean
K∑

k=2

2
k − 1

≈ 2 lnK: (3.1)

We would like to replace K by its mean. To justify this we expand f(x) = 2 ln x in
Taylor series around the point x0 = EK to conclude that

E(2 lnK) = 2 ln EK +
2
EK

E(K − EK)− 1
(EK)2

E(K − EK)2 + · · · : (3.2)
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We have E(K − EK) = 0, E(K − EK)2 = 104, and EK = 104, so the <rst correction
term vanishes and the second is 1

104 = 0:0096 compared with 2 ln 104 = 9:2888, so we
can safely ignore it.
The diAerence of the two sides of (3.1), which some readers will recognize as

roughly two times Euler’s constant / ≈ 0:577, is not small enough to ignore, so we
will instead evaluate the sum

104∑
k=2

2
k − 1

= 10:43358 (3.3)

and conclude that the expected total time in the tree at times t ¡ 0 is approximately

10:43358× 20;000 = 208;672: (3.4)

Taking u = 1 × 10−8 for our estimate of the mutation rate, the expected number of
mutations per nucleotide is 1:043358× 10−3 or one every 958 bp.

To determine the distribution of the frequencies of these mutations, we use Ewens,
(1972) sampling formula. Recalling that our N is the total number of copies and letting

�= 2Nu= 2× (2× 104)× (1× 10−8) = 4× 10−4;

it says that the probability of an allelic partition (a1; a2; : : : an) is given by

n!
�(n)

n∏
j=1

(
�
j

)aj 1
aj!

: (3.5)

Here ai is the number of alleles with i representatives in the sample of size n and
�(n) = �(�+ 1) · · · (�+ n− 1). When an = 1 this becomes

1
�+ 1

2
2 + �

· · · (n− 1)
(n− 1) + �

; (3.6)

which is the probability that coalescence always comes before the next mutation. Plug-
ging in �= 2× 10−4 and n= 104, we see that the probability of no mutation is

p0 = 0:997915590 = 1− (2:084410× 10−3):

The reader will see the reason for the high degree of precision in a minute.
Consider now the case in which aj =an−j =1 for some j¡ 52 and ai =0 otherwise.

Replacing the product in (3.6) by its value computed above, (3.5) becomes

p0�
n

j(n− j)
: (3.7)

When j=52 the answer is 1
2 of this. Summing the probability of a j to n− j split for

j = 1 to 52 gives that the probability of one mutation is

p1 = 2:082367× 10−3: (3.8)

Using this with the value of p0, we see that the probability of two or more mutations is

q2 = 2:043× 10−6:

Note that q2 is much smaller than p1, the probability of one mutation, consistent with
the observation that “in humans, tri-allelic and tetra-allelic SNPs are rare to the point
of nonexistence”. See e.g., Brookes (1999).
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Table 4
Probabilities that the total of j out of 104 families is at most 1% of population at time T

j f(j; 104) j f(j; 104)

1 0.64839 6 6:58× 10−4

2 0.27902 7 9:11× 10−5

3 0.08687 8 1:09× 10−5

4 0.02088 9 1:16× 10−6

5 0.00405 10 1:11× 10−7

Suppose now that j of the K lineages at time 0 have the mutation. Here we are
assuming that K is <xed, as would occur if we were looking at the conditional dis-
tribution of the good time t ¡ 0 conditional on the number of families at time 0 that
have oAspring at time T . We have argued earlier that variability in K can be ignored
so we will set K = 104. Our next step is to compute f(j; K) = the probability a <xed
set of j of the K families end up with at most 1% of <nal population. To do this let
21; : : : ; 2K be independent mean one exponentials, and let Sj = 21 + · · ·+ 2j.

It is a standard fact that {Sj=SK ; 16j¡K} has the same distribution as the order
statistics from a sample of K − 1 random variables uniform on (0; 1). The last ob-
servation leads easily to the following formula for the density function. If 16j¡K
then

P(Sj=SK = x) = (K − 1)
(

K − 2
j − 1

)
xj−1(1− x)K−1−j: (3.9)

A little calculus shows that

P(Sj=SK6y) = 1−
j−1∑
i=0

(
K − 1

i

)
yi(1− y)K−1−i ; (3.10)

which can be checked by induction or by noting that the right hand side is the prob-
ability that at least j particles will end up in (0; y) when we throw K − 1 at the unit
interval.
Setting y = 0:01 and K = 104 in (3.10) we can compute Table 4.
In our numerical computations we will suppose that this probability f(j; 104) = 0

for 106j652, and thus make a very small error in our computations. Taking this into
account, the loss from the mutation probability is

10∑
j=1

�
104

j · (104− j)
f(j; 104) = 1:66634× 10−4; (3.11)

which reduces the previous frequency of 10:4227× 10−4 given in (3.6) to

p= 8:76724× 10−4 or 1 every 1140 bp: (3.12)

Dividing by our mutation estimate u= 5× 10−9, we see that the expected good time
in the tree for t ¡ 0 is 175,345.
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4. Mutations in the sample at times 06t6T

Our <rst task in this section is to compute the expected number of mutations hitting
a genealogy of six individuals. To get an upper bound, we can suppose that the six
lines stay distinct until time 0, after which they coalesce in the usual way. The total
time in the tree will then be 6 × 5000 = 30; 000 between 0 and T . To get an exact
result we have to compute how much coalescence occurs between the six lineages in
[0; T ]. When there are k lineages at time t+1 a coalescence will occur at time t with
probability(

k
2

)/
Nt +O(1=N 2

t ):

From this it follows that if we represent the time interval [t; t + 1] as a segment of
length 1=Nt then on the new time scale, our process is almost the continuous time
coalescent in which k lineages coalesce after an exponentially distributed amount of
time with mean 1=( k2 ).
This idea which is due to Kingman (1982b), see page 104, allows us to reduce our

computation for a population of variable size to one for the ordinary coalescent run
for an amount of time

3=
T−1∑
t=0

1
Nt

=
1
N0

T−1∑
t=0

�−t =
1− �−T

N0 · (1− �−1)
≈ �

N0(� − 1)
=

1:0026
52

: (4.1)

Reindexing time so that time 0 is the present, and so that s represents s units of time
in the past, let Tk be the <rst time at which there are only k lineages. Since ( 62 ) = 15,
it is clear that the probability of no coalescence is

P(T5 ¿3) = exp(−153) = 0:7488538: (4.2)

Since ( 52 ) = 10, breaking things down according to the value of T5 we have that the
probability of ending up with 5 lineages at time 3 is

P(T4 ¿3¿T5) =
∫ 3

0
15e−15re−10(3−r) dr = 3e−103

∫ 3

0
5e−5r dr

= 3(e−103 − e−153) = 0:2285897: (4.3)

This already accounts for 97.6% of the probability but we can go further by noting

P(T4 ¿s) = P(T5 ¿s) + P(T4 ¿s¿T5) = 3e−10s − 2e−15s (4.4)

and ( 42 ) = 6 so the probability of ending up with 4 lineages at time 3 is

P(T3 ¿3¿T4) =
∫ 3

0
30(e−10r − e−15r)e−6(3−r) dr = 30e−63

∫ 3

0
(e−4r − e−9r) dr

= 30e−63
(
1
4
(1− e−43)− 1

9
(1− e−93)

)
= 0:0228590; (4.5)

which now accounts for 99.9% of the probability.
To compute the eAect coalescence has on reducing the tree between times 0 and T ,

we suppose that there is a constant coalescence probability 15=Nt . If a reduction in the
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Table 5
Probability that j of the 6 lineages survive to time 0

j Coalescent Recursion

6 0.74885 0.74881
5 0.22736 0.22742
4 0.02285 0.02284
3 9:1× 10−4

2 1:4× 10−5

1 5:3× 10−8

number of lineages occurs at time k then we have lost one lineage for k + 1 times
(0; 1; : : : k) so the expected loss is at most

15
N0

T−1∑
k=0

�−k(k + 1): (4.6)

Using the fact that the mean of geometric with success probability p=1− �−1 is 1=p
the above is

≈ 15
N0(1− �−1)2

=
15�2

52× 0:0026
= 111:52: (4.7)

Subtracting this from the upper bound of 30,000 gives an adjusted estimate of 29,888.48
for the total time in the tree of the six individuals during [0; T ].
Using the logic that led to (2.7), we can compute the number of opportunities at

times t¿0 for mutations that lead to polymorphic SNP’s, by evaluating

T−1∑
t=0

EX (t)exp(−1:04× �t);

where X (t) is the number of lineages at time t. To do this we have written a program
to work backwards from time T to time 0 computing P(X (t)= k) by the discrete time
recursion

P(X (t−1)=k) =


1−

(
k
2

)
N (t−1)


P(X (t)=k)+

(
k + 1
2

)
N (t − 1)

P(X (t) = k + 1):

(4.8)

Table 5 gives the values of P(X (0)=k) and compares with the values computed earlier
using the continuous time coalescent.
The small discrepancy between the two sets of answers is due mainly to the fact

that the coalescent computation is for the continuous time limit, while the recursion
happens in discrete time. However, there is also some round oA error which eAects the
sixth signi<cant digit in these computations.
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Using the values of P(X (t) = k), from the discrete time recursion our program
computes

T−1∑
t=0

EX (t) = 29;891:08;

T−1∑
t=0

EX (t)exp(−1:04× �t) = 458:13: (4.10)

The <rst result shows that our lower bound of 29,888.48 from (4.7) is very accurate.
The second answer is considerably lower than the 13,595 for the total population given
in (2.9), however, the most important source of mutations is yet to come.

5. Mutations in the sample at times t60

If there are exactly six lineages at time 0 then using the reasoning that led to (3.1)
the expected total time in the genealogy before time 0 will be

2×
(
1
5
+

1
4
+

1
3
+

1
2
+ 1
)
× 20;000 = 91;333: (5.1)

Taking into account the possibility there may not be six lineages at time 0 and using
the coalescence probabilities computed in the previous section, we then arrive at the
corrected value for the expected total time for the sample before time 0,

2×
(
2:28333−

5∑
k=1

P(Tk63)
1
k

)
× 20;000 = 89;074; (5.2)

which is about a 2.5% reduction from the previous value.
As in Section 3, not all of the mutations will lead to an allele that has a frequency

of 1% at time T . To begin to attack this problem we will <rst give a new more
complicated solution of the problem of computing the expected number of mutations
for the whole population at times t ¡ 0. The key is the following

Lemma. Consider the coalescent starting with ‘ lineages. If we pick one of them at
random when there are k6‘ lineages then the probability it will contain m of the ‘
starting lineages is

s(k; m) =
(

‘ − m− 1
k − 2

)/(
‘ − 1
k − 1

)
: (5.3)

Proof. It is well known and easy to check that we can build up the relationships
between particles in the continuous time coalescent by running a continuous time binary
branching process in which each particle splits into two at rate 1. (See Joyce and
TavarNe, 1987.) Consulting p. 109 of Athreya and Ney (1972) we see that starting from
a single particle at time 0, the number of particles in a binary branching process at
time t has a geometric distribution with success probability p = e−t . Let Zi

t ; 16i6k
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be independent copies of the branching process. If j1; : : : jk be positive integers that
add up to ‘ then

P(Z1
t = j1; : : : Zk

t = jk) = (1− p)‘pk :

Recalling that there are ( ‘−1
k−1 ) possible vectors (j1; : : : ; jk) of positive integers that add

up to ‘ it follows that

P


Z1

t = m

∣∣∣∣∣∣
k∑

j=1

Zj
t = ‘


 =

(
‘ − m− 1

k − 2

)/(
‘ − 1
k − 1

)
:

When the mutant has m copies at time 0, the probability it will end up at most 1%
of the population is given by the quantity f(m; 104) de<ned at the end of Section 3
for m652. We also have to worry about the possibility of the mutation ending up
with more than 99% of the population, so we will set f(104 − m; 104) = f(m; 104)
for 16m¡ 52. Breaking things down according to the number of particles and using
(5.3) we see that the expected amount of time t60 where a mutation will produce a
polymorphic SNP is

20;000
104∑
k=2

2
k(k − 1)

k
105−k∑
m=1

s(k; m)[1− f(m; 104)]; (5.4)

where we have kept the redundant factor of k to prepare for the analogous formula
given in (5.6) for the sample. Evaluating the sum gives 175,345 which is identical to
the answer found at the end of Section 3.
To compute the answer for the sample, we begin with the case in which there is

no coalescence of the six lineages during [0; T ]. To do the computation in this case,
it is useful to think of the original 104 lineages as consisting of six green particles
(the sample) and 98 white particles, and that the coalescence of a green particle with
another particle (green or white) yields a green particle. Let Xk be the number of green
particles when only k of the original 104 lineages remain. Our <rst step is to compute
pk;j = P(Xk = j) starting from p104;6 = 1, using the discrete time recursion

pk; i = pk+1; i

(
1− (i − 1)i

k(k + 1)

)
+ pk+1; i+1

i(i + 1)
k(k + 1)

: (5.5)

Once this is done we can compute that the amount of time t60 where a mutation will
produce a SNP is

20;000
104∑
k=2

2
k(k − 1)

�(k)
105−k∑
m=1

s(k; m)[1− f(m; 104)]; (5.6)

where �(k) =
∑6

i=2 i ·pk; i. We have excluded the term pk;1 from the sum de<ning the
“mean” �(k) since the mutation must be polymorphic in the sample to be detected.
Doing the sum in (5.6) yields the answer 84,919. To check our work we replaced
1 − f(m; 104) by 1 in (5.6) to compute that the expected total time in the tree for
times t ¡ 0 was indeed 91,333.33 as we computed in (5.1).
The calculations in the last paragraph are for starting with exactly 6 lineages at

time 0. To get the expected value for 6 particles at time T , we have to consider what
happens starting with 5 or 4 particles at time 0. The results are given in Table 6.
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Table 6
Components of the <nal answer for times t ¡ 0 for sample size 6

Particles Probability Total time Good time Size bias

6 0.748812 91,333 84,919 88,831
5 0.227422 83,333 77,712 81,142
4 0.023764 73,333 68,587 71,486

Average 89,073 82,881 86,658

6. Equivalence of the coalescent and branching process approaches

In this section we will prove (1.7). When moving back from generation m to gener-
ation m− 1, each of the Ŷ T

m surviving lineages will pick each of the 1=Nm−1 ancestors
with equal probability. Noting that the expected number of ancestors chosen is Nm−1

times the probability a given ancestor is selected we have

E(Ŷ T
m−1|Ŷ T

m) = Nm−1

[
1−

(
1− 1

Nm−1

)Ŷ T
m
]
: (6.1)

Using the facts that Nm=Nm−1=� and for large k; (1−1=k)y ≈ exp(−y=k) this formula
can be written as

E

(
Ŷ T

m−1

Nm−1

∣∣∣∣∣ Ŷ
T
m

Nm

)
≈ 1− exp

(
−�

Ŷ T
m

Nm

)
=  

(
Y T
m

Nm

)
; (6.2)

where  (x) = 1 − e−�x = 1 − �(1 − x) and � is the generating function for the Pois-
son given in (1.4). Thus the expected fraction of surviving lines almost satis<es the
same recursion that the survival probability �k does and it follows by induction that
EŶ T

T−k =NT−k ≈ �k . Our next task is to show that if all of the population sizes are
large then the approximation is good and furthermore the fraction observed stays close
to its mean.

Theorem. If T → ∞ and M → ∞ then

max
M6m6T

∣∣∣∣∣ Ŷ T
m

Nm�T−m
− 1

∣∣∣∣∣→ 0 in probability: (6.3)

Proof. We begin by computing second moments. Let qi = (1− i=Nm)Ŷ
n
m+1 be the prob-

ability that i individuals speci<ed in advance are all not chosen by the Y n
m+1 lineages

in generation m+ 1. Writing Y T
m as a sum of indicator random variables

E((Ŷ n
m)

2|Ŷ n
m+1) = Nm(1− q1) + Nm(Nm − 1)[1− (2q1 − q2)]:

Subtracting the square of the mean, [Nm(1− q1)]2, we have

var(Ŷ n
m|Ŷ n

m+1) = Nmq1(1− q1) + Nm(Nm − 1)[q2 − q21]:

Simple algebra shows q2 ¡q21, so the oA diagonal terms are negative, and it follows
that

var

(
Ŷ n

m

Nm

∣∣∣∣∣ Ŷ n
m+1

)
6

1
4Nm

: (6.4)
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If we let fm(x) = 1− (1− 1=Nm)x�Nm then it follows from (6.1) and (6.4) that

P

(∣∣∣∣∣ Ŷ
n
m

Nm
− fm

(
Ŷ n

m+1

Nm+1

)∣∣∣∣∣¿N−1=3
m

)
6

var(Ŷ n
m=Nm|Ŷ n

m+1)

N−2=3
m

6
1

4N 1=3
m

: (6.5)

Therefore if we de<ne the “good event”

GM;n =

{∣∣∣∣∣ Ŷ
n
m

Nm
− fm

(
Ŷ n

m+1

Nm+1

)∣∣∣∣∣6N−1=3
m for all M6m6n

}
;

we have a good estimate for its failure probability

P(Gc
M;n)6

n−1∑
m=M

1

4N 1=3
m
6

1

4N 1=3
M (1− �−1=3)

: (6.6)

To prove (6.3) now we de<ne iterated functions

gn;m(x) = fm(gn;m+1(x)) for m¡n

with gn;n(x) = fn(x) and then write

Ŷ n
m

Nm
−  n−m(1) =

Ŷ n
m

Nm
− fm

(
Ŷ n

m+1

Nm+1

)
+ fm

(
Ŷ n

m+1

Nm+1

)
− fm(gn;m+1(1))

+ gn;m(1)−  n−m(1): (6.7)

The <rst diAerence on the right is controlled by (6.6). Our next step is to estimate the
third diAerence.

Lemma. There is a constant Co so that if Nm¿2 then

sup
x∈[0;1]

|fm(x)−  (x)|6Co�=Nm; (6.8)

sup
x∈[0;1]

|f′
m(x)−  ′(x)|6Co(� + �2)=Nm: (6.9)

Proof. Expanding −ln(1− x) = x + x2=2 + · · ·, we have

−)−1ln(1− ))− 1
)

→ 1
2

as ) → 0:

Using 1− x6e−x it follows that there is a Co so that

06− )−1 ln(1− ))− 16Co) if 06)6 1
2 : (6.10)

To estimate the diAerence in (6.8), we observe that (1− 1=Nm)Nm6e−1 so

fm(x)¿1− exp(−�x) =  (x):

To bound fm(x)−  (x) and hence prove (6.8), we note that

e−�x − e�xNmln(1−1=Nm) =
∫ −xNmln(1−1=Nm)

x
�e−�y dy

6 �x(−Nm ln(1− 1=Nm)− 1)6Co�x=Nm:
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To prove the second result, we note that diAerentiating the de<nitions

f′
m(x) =−�Nm ln

(
1− 1

Nm

)(
1− 1

Nm

)x�Nm

and  ′(x) = �e−�x. Adding and subtracting �fm(x), then using (6.10) and (6.8) we
have

|f′
m(x)−  ′(x)|6Co�

Nm
fm(x) + �|fm(x)−  (x)|6Co(� + �2)

Nm

which proves (6.9).

We are now ready to tackle the third term on the right in (6.7).

Lemma. If Nm¿2 then

|gn;m(1)−  n−m(1)|6Co�
n−1∑
k=m

1
Nm

: (6.11)

Proof. Using the triangle inequality

|gn;m(1)−  n−m(1)|6 |fm(gn;m+1(1))−  (gn;m+1(1))|

+| (gn;m+1(1))−  ( n−m−1(1))|:
The <rst term 6Co�=Nm by (6.8). To estimate the second diAerence we note that
 (x) = 1− exp(−�x) is increasing and concave, so we have  ′(x)6 ′(�)¡ 1 for all
x¿�.  k(1)↓�, the positive <xed point of  (x), so  n−m−1(1)¿�. To handle the other
term in the second diAerence, we note that fm(x)¿ (x) so by induction it follows that
gn;m+1(1)¿ n−m−1(1)¿�. Combining our observations, the second term is bounded
by |gn;m+1(1)−  n−m−1(1)| and the result in (6.11) follows by induction.

It remains to estimate the middle term on the right in (6.7). The <rst step is to note
that results in the proof of (6.11) imply that

We can pick 8o ¿ 0 so that  ′(x)61− 8o when x ∈ [�− 8o; 1]: (6.12)

Thus if we let 81 = �− �(�− 8o) which is ¡8o, then for x¿�− 8o,

 (x)¿ (�− 80) = �− 81: (6.13)

Lemma. If M is large then on the good set of outcomes GM;n

Ŷ n
m

Nm
¿�− 8o for M6m6n: (6.14)

Proof. We proceed by induction backwards. The conclusion is trivially true when
m= n. Suppose now that Ŷ n

m+1=Nm+1¿�− 8o. Using fm¿ , our choice of 81 implies
that

fm+1(Ŷ n
m+1=Nm+1)¿�− 81;
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so on the good set GM;n we will have

Ŷ n
m

Nm
¿�− 81 − N−1=3

m ¿�− 8o;

if M is chosen large enough so that N−1=3
M 68o − 81.

The next result takes care of the second term in the right in (6.7) and thus will
complete the proof of our main result, (6.4).

Lemma. If M is large then on GM;n we have for M6m¡n∣∣∣∣∣fm

(
Ŷ n

m+1

Nm+1

)
− fm(gn;m+1(1))

∣∣∣∣∣6
∣∣∣∣∣ Ŷ

n
m+1

Nm+1
− gn;m+1(1)

∣∣∣∣∣6
n−1∑

k=m+1

N−1=3
k : (6.15)

Proof. To prove the <rst inequality, observe that by (6.9) and the choice of 8o, if M is
large then 06f′

m(x)61 when x¿�− 8o. Using (6.14) now and the triangle inequality
it follows that on GM;n if M6k ¡n then∣∣∣∣∣ Ŷ

n
k

Nk
− fn;k

(
Ŷ n

k+1

Nk+1

)∣∣∣∣∣+
∣∣∣∣∣fk

(
Ŷ n

k+1

Nk+1

)
− fk(gn;k+1(1))

∣∣∣∣∣
6N−1=3

k +

∣∣∣∣∣ Ŷ
n
k+1

Nk+1
− gn;k+1(1)

∣∣∣∣∣ :
and the desired result follows by induction.
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