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Chutes and Ladders in Markov Chains

Persi Diaconis' and Rick Durrett?

Received May 29, 2000

We investigate how the stationary distribution of a Markov chain changes when
transitions from a single state are modified. In particular, adding a single
directed edge to nearest neighbor random walk on a finite discrete torus in
dimensions one, two, or three changes the stationary distribution linearly,
logarithmically, or only locally. Related results are derived for birth and death
chains approximating Bessel diffusions and for random walk on the Sierpinski
gasket.

KEY WORDS: Markov chains; stationary distribution; Bessel diffusions;
Sierspinski gasket.

1. INTRODUCTION

Given an irreducible Markov chain X, with finite state space X and transi-
tion probability p(x, y), pick a state w and define a new Markov chain X,
with transition probability p(x, y) = p(x, y) when x # w. The other row
P(w,-) is for the moment arbitrary, but we will usually take p(w, z) =1 for
some z. In this case, as in the children’s game Chutes and Ladders, a marker
that lands at w in on the next step transported to z.

The main question we will adress here is: how much can the stationary
distribution of our Markov chain be changed by altering one row of the
transition probability? The answer is simple if we have random walk on a
graph and add one new two-way edge connecting sites w and z. If the
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original degrees of the vertices x of the graph were d(x) and we define the
degrees for the new graph by

_ d(x) XF#zZ,w
a(x)_{d(x)—i-l xe{z, w}

and let D=3 d(x), then the new stationary distribution is 7(x)=
d(x)/(D+2). When x#w,z 7i(x)=n(x)-D/(D+2). When xe {z,w},
n(x) = 9905 < 1(X) + 553

As we will see, adding a one way edge to a random walk on the torus
can lead to a large change in the stationary distribution. To begin to
develop our results we let 7, =inf{n > 1: X, = w} be the usual hitting time
of w, let V,=inf{n >0: X, = x} be the time of the first visit to x, and let
T,=inf{n>1:X,=w}. By Markov chain theory (see e.g., (4.3) on p. 303
in Durrett®) the following formulas define (unnormalized) stationary
measures for the chains X, and X,

w(x)= ), P(X,=x,T,>n)
=0

ﬂw(x) = Z Pw(A_/n =X, 7_-'w > n)
n=0

The basic equation which underlies most of our results is the following fact
proved in the Appendix.

Perturbation Formula. If x#w

B« PV.<T)
PR A YT )

If x =w then g, (w)/u,(w) =1/1. When p(w, z) = 1 the formula reduces to

aSx) PV, <T)

() P0.<T,y Vhem x#w (*)

To see that changing one row in the transition probability can have a
significant effect on the stationary distribution, we begin with a simple
example that will be treated in detail in Section 2.

Example 1 (Random walk on [0, L] with reflecting boundary condi-
tions). Here p(x, x+1)=p(x,x—1)=1/2 for 0 <x < L while p(0,0) =
p(0,1)=p(L, L—1)= p(L, L) =1/2. With these boundary conditions the
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walk is doubly stochastic, so the stationary distribution is uniform. Let
w=0 and z=[L/2]. In words when the walk hits the left boundary it is
transported back to the center of the state space.

Using simple martingale arguments, we can evaluate the numerator
of ()

w<x<z

1
P T)=
(Ve <T) {z/x z<x<L

and the denominator

PWV.<T,)=

|
==

The fact that the stationary distribution is uniform and u,(w) =1 implies
u,(x) =1, so plugging into () gives

2x O0<x<z
2z z<x<L

a0 =
In words, the stationary distribution is linear on [1, z] and constant on
[z, L]. Rates of convergence for the modified chain appear in Diaconis and
Saloff-Coste,® Example 2F. A detailed study of stationary distribution and
rates of convergence for chains obtained by making similar small pertur-
bations of nice chains appears in Wilmer.©
From the explicit formula for f,, it is easy to understand its limiting
behavior as L — oo. Rescaling {0, 1, 2,..., L} to become {0, 1/L,..., 1} and
normalizing this to make a probability distribution we have

n(x) =32xAl) where = denotes weak convergence

To prepare for our later results, we will take a more complicated approach
to reach the same conclusion. Let X =simple random walk on {0, 1/L,
2/L,..., 1} with jumps at times k/L?, and let X} be our modification with
w=0,z=[L/2]/L, and p(w, z) = 1. It is easy to see, but tedious to prove
rigorously that

Claim. As L — oo, X{ = B, where B, is Brownian motion with reflec-
tion at 1 and a jump to 1/2 when the process hits 0. B, has stationary dis-
tribution 7(x) =% (2x A 1).

Sketch of Proof. It is easy to see that B, will behave like Brownian
motion before it hits 0 and at that time will be transported to 1/2. Weak
convergence then follows by checking tightness, etc. To prove the second
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claim we note that the stationary distributions for the approximating
chains converge to the proposed limit, so it must be a stationary distribu-
tion for the limit. Uniqueness of the stationary distribution for B, which
follows from Doeblin’s theory of Markov chains, then completes the proof.

|

The reader will see the reason for our interest in this claim when we
come to Example 4, and will encounter there a problem more interesting
than filling in the details of the argument above.

Example 2 (Random walk on the torus A(L)=(Zmod L)? in
dimensions d > 2). Skipping over the problematic borderline case of d =2
we begin with d > 3. Suppose for simplicity that the distance from w to z
on the torus p(w, z) - co. Here and in what follows, w and z may depend
on L but we suppress that dependence from the notation. To approximate
the numerator in (%) we will prove

P;(V.>T,) 3PV, =) (LD

where by ~ we mean that sup, error —» 0 as L — co. Here P~ refers to the
random walk on the torus, and P, to the random walk on Z*. The intuition
behind this result is that if the random walk gets a distance L/2 from its
starting point without hitting x then is is unlikely to hit either point before
its distribution becomes uniform on the torus, and after that each point will
be hit first with probability 1/2. This will be proved in Section 3.

Similar reasoning leads to the relationship

PyV.<T) = P(V,<T,)+;P,(V.=00,T,=0) (1.2)
Using (1.1) and (1.2) in () it follows that for x # w

ﬂw(x) ~ 1 _%PZ(V;C = w)

1)~ PV, <T) +1PV T, = ) 49
If p(x, w), p(x, z) » oo then
Au(x) 1 (1.4)

1(x) . PT, = o)

In words, in dimension d > 3 the effect of the change is confined to the sites
within O(1) of w and z.

To obtain quantitative results we have simulated the process on a
100 x 100 x 100 torus with w = (25, 25, 0) and z = (75, 75, 0) for 10° steps.
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Figure 1

Figure 1 shows the number of visits to (i,7,0) for 0<i<100. Now
u(x)=1 for all x, and (1.4) implies the total mass j(A(L))~
L?®/P(T, =) so using P(V,=0)=0and P(V,<T,) ~0in (1.3) we have
that the stationary distribution @(z) ~2/L? in agreement with the simula-
tion. At x =w, ji,(w) = u,(w) = 1, so #(z) ~ P(T, = )/ L>. The numerical
value P,(T, = 0) ~ 0.6595 (see, e.g., Durrett,® p. 196) again agrees well
with the simulation. Note that except for i within 1 or 2 of 25 or 75, there
is very little departure from the uniform distribution.

Turning now to the borderline case d = 2, it is well known that there is
a constant ¢, so that

P(Ty>t) ~c,/logt as t— o0 (1.5)

It will be shown in Section 4 that

(1.6)

log* Ix|?
Px(Vo>t)z{0g—|x|/\l}

logt

where by ~ we mean that sup, error — 0 as ¢ — oco. Suppose for simplicity
that

lim inf p(w, z)/L >0

L—> o
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In this case we will show that

P:(V.>T,) x5 PV.>L? (L.7)
Combining this with (1.6) it follows that the numerator in (%)

1 log* |z—x|?

PV <TH)~1— 22— 1.8
<Dy Sl (1.8)

Similar reasoning shows that the denominator
PV, <T,) =3 P(T,>|x—wl’) (1.9)

Using (1.8), (1.9), and (1.5) in (%) leads to the result

¢ M) _(, log*lz=x|\ (log" x—w| (110
2log L u,(x) log L log L

Again, the ~ means lim, , , sup, error — 0.

To see what (1.10) says let p <1 and note that if |z—x| = L” (and
hence |x—w| = O(L)) then the answer is ~ (2—p)-1, while if |w—x| = L?,
the answer =~ 1-p. In words, the effect of the change is confined to within
o(L) of w and z, while the size of the perturbation is linear in the logarithm
of the distance from {w,z}. The last result implies that as L — oo the
stationary distribution on the rescaled torus A(L)/L approaches Lebesgue
measure but it also indicates that the convergence of the stationary distri-
bution of the uniform limit is slow. Figure 2 shows the occupation time
distribution for a 100 x 100 torus with w = (25, 25) and z = (75, 75) run for
10 steps. To compare the asymptotic formula in (1.10) with the stationary
distribution estimated from simulation, we have compared the values of the
two at points of the form (i, i) in Fig. 3. The qualitative shape is the same
but there are some important quantitative diferences.

To further estimate the dependence of our answers on the dimension,
we will consider objects with non-integral dimension. In Section 2, we will
consider birth and death chains that approximate Bessel processes. A more
interesting possibility is

Example 3 (Random walk on the Sierpinski gasket). To construct
a sequence of graphs G, that approximate the Sierpinski gasket, we start
with the six vertex graph G, given in Fig. 4 and then for n > 2 replace the
three outer triangles v,, m;, m, with {i, j, k} = {1, 2, 3} by copies of G,_,.
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A picture of Gj is given in Fig. 5. Let X be the random walk that at points
with four neighbors jumps to each with probability 1/4, and does not move
with probability 1/2. As in Example 1, with this choice of boundary
behavior the chain is doubly stochastic and has a uniform stationary dis-
tribution.

To perturb the chain we let w and z be two corners of G, and let
P(w, z) = 1. The key to our analysis of this example is

Decimation Invariance. Let X}’ € G,, m < M and define hitting times
by Sy=0andfork>1, S, =inf{n>S,_,: X2 €G,}. Then {X¥(S,), k >0}
and {X7, k > 0} have the same distribution.

For this property and much more on the Sierpinski gasket, the reader
can consult Barlow and Perkins.®

From decimation invariance it follows immediately that if x € G,, and
m < M then

PY(V.<T,)=P}(V.<T,) (1.11)
and hence lim,, , , PX(V, < T,) exists.

To begin to analyze the denominator in (%) suppose w is the top
vertex and let x;, y, be the points on the left and right side of the outer
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triangle at distance 2*~' from w (see Fig. 5), and let S,=inf{n: X, €
{xs, i} }. Using symmetry and a simple computation for the random walk
on G, one can show

P(S.<T,) =3 (3/5)¢" (1.12)

Proof. Since this is the only fact we need to prove to complete the
treatment of Example 3, we give the details here. Using the notation
introduced in Fig. 4, let A(x) be the probability that starting from x we
visit v, before v, or v;. Clearly A(v,) =1, h(v,) = h(v;) =0, and symmetry
implies A(m,) = h(m;). Let a = h(m,) = h(m;) and b = h(m,). By considering
what happens on one step

b=a/2 a=j;(a+tb+1)

Plugging the first equation into the second we have a=3a/8+1/4 and
solving gives a =2/5, b= 1/5. Using decimation invariance and symmetry
now we see that starting from x, or y, the probability of hitting
{Xi+1» Vis1} before w is 3/5. To get the induction started we note
P,(S, <T,)=1/2 and the desired result follows. O

From this we see that if x € G,, then (5/3)™-PM¥(V, < T,) is constant
for m > M and hence

lim (5/3)-PM(V,<T,) exists (1.13)

M-
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Combining the results in (1.11) and (1.13) it follows that if x # w, then
there is a function y(x) so that

M pMWV,.<T,)

s <1~ V) (1.14)

Thus as in one dimension the perturbation makes a significant change in
the stationary distribution.

It does not seem possible to get an explicit formula for . Figure 6
shows a simulation of the process on G; run for 10 million times steps.
Here w is the lower left corner, z is the top vertex, and the equilateral
triangles have been replaced by right triangles to facilitate storage in a
rectangular array in the computer. Figure 7 takes a closer look at the
stationary distribution on the boundary of the triangle. Notice the lack of
monotonicity on the bottom edge.

Figure 6
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By analogy with the result in one dimension we

Conjecture. Y(x) is a stationary measure for Brownian motion on the
Sierpinski gasket with a jump to z when it hits w.

We leave this problem and the generalization of our results to
Lindstrom’s® nested fractals for someone skilled in diffusions on fractals.

To try to bring out the patterns in the results we have found, let
o, = E,T,/E.T,, the total mass ji,(S)=E]T, and u,(S)=E,T,=1/n(w). In
our examples this is as follows:

wA(S)  B(S)

d=1 L cL?
d=2 L? cL*log L
d>2 L? cL?
gasket 3" 5"

From this one can see that all of our results have the form:

,(x)
,(x)

~Y(x)

Ay -
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Random walks in d =1 or on the Sierpinski Gasket when rescaled con-
verge to diffusions ¥, that hit points, so

Yi(x) = ¥(x)

where /(x) is the stationary distribution of ¥, modified by a jump from the
limit of the w’s to the limit of the z’s. On the other hand, random walks in
d = 2: converge to a limiting Brownian motion Y, that does not hit points,
so Y (x) > 1 when x#z,w. It would be interesting to prove a general
result that encapsulates the dichotomy described in the last two sentences.

The remainder of the paper is devoted to proofs. In Section 2 we
analyze Example 1 and random walks approximating Bessel diffusions.
Section 3 considers random walks on the torus in d >3 with the more
difficult borderline case d = 2 in Section 4. Before turning to these tasks we
should note that, as Robert Israel and Oscar Rothaus have pointed out to
us, one can approach the “rank one” perturbation we have studied by
matrix theory. Specifically, one has the following (see the Appendix for the
proof):

Matrix Perturbation Formula. Let u be a column vector, v be a row
vector with 3, v(y) = 0, and define the perturbed matrix

P(x, ) = p(x, y)+u(x) vo(y)

Let L= {f:Y, f(x) =0}. Define the row vector a by a(/ — p) = v and the
number y by nu/(1 —au). The stationary distribution for p is

7(x) = n(x) + ya(x)

To recover a version of our perturbation formula we can take u(x) =1 if
x=w and 0 otherwise, and define v(y) = p(w, y)— p(w, y). The two for-
mulas are equal since they compute the same thing but they are not iden-
tical. The new formula is in terms of the Green’s function (I —p) ' while
the former is in terms of the hitting probabilities. In our main example,
random walk on the torus, one can use Fourier analysis to compute
(I—p)~ ! explicitly. Having already solved our problems once with our
perturbation formula we leave it to others to use the matrix perturbation
formula given here to prove our results.

2. ONE DIMENSIONAL RESULTS

Let X, be an irreducible birth and death chain on {0, 1, 2,..., r}. Imi-
tating the concept of the natural scale of a diffusion, we pick an increasing
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¢ with ¢(0) = 0 that makes ¢(X,) a martingale, and call ¢ the natural scale.
If the birth rates are p; and the death rates are g; we can write ¢ explicity
(see Durrett,® Example 3.4, p. 395) as

n—1 m

plm) = Z—:0 =1 IqT]

Let w=0, and set p(w, z) = 1. Standard martingale arguments tell us that
forz>0

xe[l,z]

1
P(V.<Ty) = {¢(Z) /é(x)  xe[z L]

while for z = 0 we have

p(0, 1) (1)

RV <T) ="

Plugging these results into (*) we see that for x > 0

A)_ 1

- : 2.1
so(x)  p(0,1) ¢(1) (xnz) 2.1)

From this we can immediately get results for Example 1. In that case
we have @(x) = x and py(x) =1 for all x so

1 =0
() = { * 22)

2(xAz) x>0

Example 4 (Bessel random walks on [0, 7]). Let y > 0 and define

1 3
p(m,m+1)=§<212;> o<m<r

1
p(m,m_1)=§<’:l:;y) O<m<r

with p(0,0)=1—p(0, 1) and p(r,r) =1—p(r,r—1).

To explain the name of this chain note that if » = co then computing
infinitesimal means and variances and using a theorem of Stroock and



912 Diaconis and Durrett

Varadhan (see e.g., Durrett® Section 8.6) we have X, 2n/n converges
weakly to Z, where Z, has infinitesimal generator

Comparing with the generator of the radial part of d-dimensional Brow-
nian motion shows that y = (d—1)/2.

Returning to the Markov chain itself, we will introduce a perturbation
with w=0 and p(0,z) =1 so our first task is to compute u,(x). By
definition u,(0)=1. The detailed balance condition implies u,(x) =
to(x—1) p(x—1, x)/p(x, x—1) so we have

x p(m— lm) * m—14+3y m+2y
[MI>—=11 ——
o1 p(m, m— o1 M 1+2y m+y

Ho(x) =

The mth term in the product is 1+2y/m+O(1/m?), so
Uo(x) ~Cx¥?  as x—o® 2.3)
To check this recall the connection with the radial part of d-dimensional

Brownian motion and note that 2y =d —1.
To compute the natural scale ¢ we begin with the definition

¢(k) = p(k, k+1) ¢(k+1)+p(k, k—1) p(k—1)

and rearrange to get

plk, k—1)

Pk+1)—¢(k) = m

[(k)—p(k—1)]

Taking ¢(0) =0, ¢(1) = 1, and iterating we have for m > 1

dom+ D=9 =11~ = L 3,

The kth term in the product is 1 —2y/k+O(1/k?) so

d(m+1)—¢(m) ~Cm™% 2.4



Chutes and Ladders in Markov Chains 913

From this we see that
if y>1/2 (ie.,d>?2) then @(m) — ¢(o0)
if y=1/2 (i.e.,d=2) then ¢(m)~ Clogm (2.5
if y<1/2 (ie.,d<?2) then ¢(m)~Cm'™?

where the C’s here are not the same as those in (2.4) and will change from
line to line in what follows. Plugging into (2.2) now we see that for x >0

Ho(x)
Ho(x)

=Co(xAz) (2.6)

Consider now a limit in which r - o0 and z/r>be (0,1]. If d>2
then (2.5) and (2.6) imply that the effect of the perturbation is confined to
points close to 0. In d = 2 we have (for large x)

Ho(x)
Ho(x)

~ Clog(xAz) 2.7

(2.3) tells us that uy(x) ~ Cx so dividing by r log r and rearranging we have
(again for large x) that

ffx) _Clogxnz) x

~ 2.
rlogr logr r 28
In d <2 we have (for large x)
P cenz)= 2.9)
Ho(x)

(2.3) tells us that uy(x) ~ Cx'~?* so dividing by r and rearranging we have
(again for large x) that

Aox) _ CGenz)' ™ x*

r r

(2.10)

Note that when d = 1 and hence y = 0 this reduces to our previous formula.

3. RANDOM WALKS ON TORI

Let A(L)=(Zmod L)? be the d-dimensional torus. In this section
and the next, all differences x— y of points in A(L) are computed modulo



914 Diaconis and Durrett

L with the representatives of the equivalence classes chosen from
—L/2+1,...,L/2. For example, when we define the transition probability
for simple random walk on A(L) we set

p(x,y)=1/(2d+1) if |x—yl<1

Here our choice of x—y mod L is needed so that |x—y| is the usual dis-
tance between points on A(L). We have chosen p(x, x) >0 to make our
discrete time walk aperiodic.

We will modify random walk on the torus by setting p(w, z) = 1. The
points w and z chosen depend on L even though this will not be recorded in
the notation. To compute the asymptotic behavior of the quantities that
appear in the perturbation formula, we need several preliminary results
about random walk. Here and in what follows plain P.’s refer to random
walk on Z“ while a superscript L indicates we are considering random walk
on A(L). For Lemmas 3.1-3.4 we will consider a general d. After that we
will specialize to d > 2.

Lemma 3.1. Let |y|,=max,|y|. If p>1 there is a constant
0 < C, ;< oo which only depends on p and the dimension d so that

P(max [|[X,,— x|, >r)<C,(r//n)"

m<n

Proof. The L” maximal inequality for discrete time martingales,
M, says

E(max |M,|") < 4,E |M,]?
Applying this to M,= X’ —x' where the X’ are the components of the

random walk, noting that in this case E | X —x'|? < Bpnl’/ 2 and then using
Chebyshev’s inequality,

P(max |[X! —x'|>r) <r PE(max | X}, —x'|?)
ms<n

ms<n

< r“’~Aponf’/2 O
Lemma 3.2. There is a constant 0 < C < oo so that fort>1

sup p(x, y) <C/t?

¥y

Proof. This follows from standard estimates. O
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Lemma 3.3. There are constants 0 <# <1, 0 < C < oo (which depend
on the dimension but not on L) so that for any integer k

sup [LPy(X,2 = y)— 1| < C(1—n)*

XYy

Proof. The result for k=1 follows from the central limit theorem.
Iteration and the stationarity of the uniform distribution then does the rest
Of course Fourier analysis on the torus also gives the result. O

Lemma 3.4.

If 7 is the uniform probability distribution on A(L) then
forx#y

PHV,>V,)=1/2
Proof. By translation invariance and reflection symmetry
PV, >V,)=Pri(V,_,> V)
= PV, > Vy) = PL(V,> V)
Since PX(V, = V,) = 0 the desired result follows.

Numerator. Ind>2if |z—w|— oo then

sup  |[P;(V,>T,)—3P._ (Vo =00)| >0
x e A(L)—{w}

Proof. We begin by decomposing

PLV,>T,) = PV, > T, T,<\/D)+PXV,>T,>/L)  (.1)

and writing the second terms as

PLV,>T, |V, T,>/L)- PXV,, T,> /L) (3.2)

A simple comparison and translation imply

\PL(V,> /L) P,_(Vy>/L)| < P(max |X,,|.,>L/2)

m<./L

<C(J/L/2) >0 (3.3)
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by Lemma 3.1 with p=2,r=L/2, and nzﬁ. To replace ﬁ by oo in
the second probability we note that Lemma 3.2 implies

0

sup P(/L<V,<0)< ¥ #-»o (3.4)
y

Our assumption that |z—w| — co implies P,_, (V= 0) — 1, so it follows
from (3.3) that

PXT,> /L) -1 (3.5)

This shows that the first term in (3.1) tends to 0.
To start to work on (3.2) we notice that combining (3.3)—(3.5) gives

sup |PLV,, T, > /L) = P,_(Vy = 0)| » 0 (3.6)

Let U,=inf{n>L*log L: X, = y}. Using Lemmas 3.3 and 3.4 now, we
have

sup |PLU,>U, |V, T,>/L)— =0 (3.7)

as L —» oo. To estimate the probability of hitting x or w at some time in

between /L and L’log L we note that using the local central limit
theorem for the random walk on Z“

PY(X,, =y for someme [L"? L*log L])

LzlogL
<P( max |X,—z|>LlogL)+Q2logL+1)* Y s> (3.8)
m<LlogL s:ﬁ

To check this note that when max,, .21, |X,,—2| < Llog L there are at
most (2 log L+1)? points in Z“ which are possible values at some time m
and that map to y on the torus.

The first term on the right in (3.8) tends to 0 by Lemma 3.1, while
simple calculation shows that the second tends to 0 when d > 2. Random
walk in d > 2 has

inf P,_(Vy=o0) >0 (3.9)
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So (3.3) and (3.5) imply that PL(V,, V, > ﬁ) is bounded away from 0, and
it follows that

sup |PX(U, > U, | V,, T, > /L) = PX(V, >V, | V,, V,,> /)| >0 (3.10)

x#z

Combining (3.7) and (3.10) with (3.6), gives the asymptotic behavior of
(3.2) for x # z. The case x = z is trivial since PX(V, > T,) = 0, and the proof
of the asymptotics for the numerator is complete. O

Denominator. Ind > 2 if |z—w| — oo then

sup |PLV,.<T,)—{P(Vi_, <Ty) +3P(Vyi_,, Ty=00}| >0

x e A(L)—{w}
Proof. We begin by decomposing
PLV,<T,) = PV, <T,,V,</L)+PXT,>V,> /L) (3.11)

and writing the second term as

PYT, >V, |V, T,>/L)-PXV,, T,> /L) (3.12)

Reasoning as in (3.3), we have

\PLV, <T,, V. < /L) = P(V,_,, <Tp, Vi, </L)|
< Py(max |X,,—zll. > L/2) < C(/L/2) >0  (3.13)

méﬁ

So using (3.4) we have

sup |PLV, <T,,V,<\/L)=PV,_, <Tp)| = 0 (3.14)

XF#EW

A similar argument shows

sup [PV, T, > /L) = Po(Vs— Ty = 0)| > 0 (3.15)

X#EW

It follows from (3.7) and (3.10) that

sup [PLV,> T, |V,, T, > /L)~ -0 (3.16)

X#W

as L —» co. Combining (3.14)—(3.16) with (3.11) and (3.12) gives the desired
result. O
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4. RANDOM WALK ON TORL II. d=2

We begin with a pair of formulas that are valid for any Markov chain
with countable state space Z. Define the Green’s function by

t

G(x, 1) = ZO p(x, )

Lemma 4.1. Ifa<bandc>0

Gb(xr J’) - Ga(xs y)
Goy(¥, ¥)

< P{X,=yforsomene (a,b]}

Gb+c(x’ y) - Ga(xa y)
G(y,y)

N

Proof. Breaking things down according to Ty =min{n>a: X, =y},

Gy(x,1)—G(x, )= Y, P(T,=5)G, (y,¥)

s=a+1

b
<Gb—a(y’ y) Z PX(Y_;ZS)

s=a+1

To prove the other inequality, we note that

b
Gb+c(x’ y)_Ga(x’ y) = Z Px(’Ijv = ‘S) Gb+c—s(ya y)

s=a+1

>G(y,y) 2 P(T,=s) o

s=a+1

From Lemma 4.1, we get the following useful result about hitting
times for simple random walk on Z*. Here log*x = max{log x, 0}.

Lemma 4.2.

lim sup

t— o0

log™ [x|?
PX(V[]>t)—{ og” || /\1}|—>0
logt
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Proof. It is enough to show that for each # > 0 there is a finite set
F(n) so that

lim sup sup
I2® x¢F(p)

log™ 2y +
_og_lxl} < @1

logt

Px(Vo<t)—{1

The local central limit theorem implies that for each fixed x, p,(x, 0) ~ ¢,/¢
as t — oo SO

G(x,0)~cylogt 4.2)

To estimate the numerator on the left-hand side in Lemma 4.1, we note
that the local central limit theorem implies that given d > 0 we can pick K
and s, so that for s > s,

inf{p,(x,0): |x|*<s/K} = (c,—9)/s

Summing we see that if s, < K |x|* < ¢ then

! 4.3)
s

Combining the last two inequalities we have
G/(x,0) > (c,—0){log t —log(K |x|*)}

when s, < K |x|?<t. Using (4.2) now and the fact that G,(x,0) =0 it
follows that if |x|*> > s,/K and ¢ > ¢, then

G(x,0) S co—90 1_log(K |x|*) +
G(0,0) " cy+0 log t

4.4)

If § is chosen small enough, (4.4) gives half of (4.1). To prove a result
in the other direction, we use the local central limit theorem to conclude
that for ¢ > ¢, (here and in what follows, ¢z, is a “sufficient large time” that
will change from line to line).

pi(x, p) <(co+9)/1 4.5
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To upper bound the numerator on the right-hand side of Lemma 4.1, we
note that for t > ¢,

! )
G, 0) < X209 PAT < |20} + 3 (@F9)

2(1—¢
s =Ixll%

(4.6)

D1

where the sum is 0 if ¢ < ||x|| %' .
Taking p=2(1—¢€)/e in Lemma 3.1 which will be > 1 if € is small,
then setting r = ||x||,, and #n = r**~9 (so r/ﬁ =r¢) we have

P (max X, — x|, > ) < C(r9) 1=/ = C | ;29
m<n

Rearranging it follows that
X159 PAT < IIxlls 9} < C
Using this and (4.2) in (4.6) we have that for ¢ > ¢,

Gy (x, 0) < C+(co+90){log t —log(|x|*" =)} *
G(0,0) ~ (co—0) log ¢

@.7)

The other half of (4.1) follows easily and the proof of Lemma 4.2 is
complete. O
From Lemma 4.2 we immediately get a result on the torus for times

that are o(L?).

Lemma 4.3. Ift > ocoandt/L*>—0

1 + _ 2
Pg(Vy>z)—{MA1}|_>o

sub log ¢

x,yeA(L)
Proof. An easy comparison shows
P_(Vo>t)=PuV,>1)=P,_,(Vo>1t)— Pyl X, = L/2 for some s < ¢)

Lemma 3.1 implies that if 7/ L? — 0 then the last probability tends to 0, and
the desired result follows. O
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Numerator. 1If lim inf |z—w|/L > 0 then

log* |z— x|
sup  |P;(V,>T,)——~—5—
x e A(L)—{w} 2 IOg L

Proof. Intuitively, our idea is show that
P(V.>T,) ~;P(V,>L? (4.8)
in three steps:

(1) Since liminf|z—w|/L>0, the random walk will with high
probability require at least L*/log L steps to get from z to w.

(i) Hitting w or x between time L?/log L and L*,/log L is unlikely.

(ili) Lemma 3.3 implies that at time L*/log L the distribution of the
random walk is almost . The desired result then follows from
Lemma 3.4.

To begin to carry out the plan announced above we note that

PHV,>T,)= PXT, <V, < L*/log L)
+PLV.>T,V.>L*/log L) 4.8)

The first term is bounded above by
PXT,< L*/log L) -0 4.9

by Lemma 3.3, since liminf, |z—w|/L > 0. The second term can be
written as

P:(V.>L?/log L)-P;(V,>T,|V,>L*/log L) (4.10)

If |z— x| < L° with 6 small then Lemma 4.3 and arithmetic show that both
terms in the desired result are small, so we can suppose |z—x| > L’ and it
follows from Lemma 4.3 that the conditioning event has a probability
bounded away from 0.

Using the Lemma 4.1 now with a=L?*/logL, b=c=L*./log L, it
follows that

- Y pizy) (41D

PY X, =yforsomese (a b]} <———
{ } GZ‘(O, O) s=a+1
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To bound the denominator on the right, we note that (4.2) implies that for
large L

G5(0, 0) > Gy(0, 0) > (co/2) log(L?) (4.12)

To bound the numerator on the right in (4.11) we note that the local
central limit theorem result in (4.5) and the convergence to equilibrium
result in Lemma 3.3 imply that there is a constant C < oo so that for all L
and s > 1

ps(z, ) <C/(sAL?) (4.13)

and hence using (4.3)

2b
Y pi(z,y) <C(J/log L+loglog L) <2C \/log L 4.14)

s=a+1
Combining (4.11)-(4.14) we have

2C /log L
B —— S

PHX,=xorwforsomese (L*/log L, L*\/log L ]} < on L
Co 108

0
(4.15)

For the third and final step in the proof let
U,=inf{n> L*(log L)"*: X, =y}
and note that (4.15) implies

sup |PHV,>T, |V, > L*/log L)~ PX(U,> U, | V. > L*/log L)| - 0
x: |z—x|>L‘5 (4 16)

Using Lemmas 3.3 and 3.4 now we have

sup |PX(U,>U, |V,> L*/log L)—1| -0 4.17)

Combining (4.8)—(4.10) with the last two results we have

sup |P;(V,>T,)—3P;(V,> L*/log L)| >0

x:|z—x|>L

Combining this with Lemma 4.3 and our earlier analysis of |z—x| < L°
completes the proof of the asymptotics for the numerator. O
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Denominator. There is a constant ¢; so that if liminf|z—w|/L >0
then

“u a 1 log* |[x—w|
et | 2log L PEV,<T,)  logL

Proof. Let K = ||x—w|,/2 where |y, is the L® metric on the torus.
Let B(w, K) = {y: |ly—wl|, < K} be the square of radius K centered at w,
and let 7, = inf{#: X, ¢ B(w, K)}. This time the heuristic answer is

Pﬁ(l/x < Tw) ~ %PW(TW > TK)

based on the reasoning that:

(1) T, > txis a necessary condition for V, < T,,

(i) If we let 0B(w, K) be the boundary of B(w, K), i.e., the set of
possible values for X, then for any J > 0 we can pick K, so that
for Ko< K < L/4 (since [|x—wl|,, < L/2)

sup |PUT,<T,)—i <26 (4.18)

y € 0B(w, K)

Once (4.18) is established, the desired result will follow from the well
known asymptotic

P(T,>1tg)~c/logK as K- o 4.19)

To begin to carry out the plan announced in the last paragraph, we
recall (i) and note that

PyV.<T,) =Pyt <T,) P,(V.<T,|tx<T,) (4.20)

Let b= AK? and let U, = inf{n > b : X, = y}. Our first goal is to show that
if A is chosen large enough then for K, < K < L/4

sup |PUU,<U,)—3 <6 4.21)

y€dB(w, K)

To do this, let v = (w+ x)/2 be the midpoint of the segment between w and x,
let i =2v—u be the reflection of u through v. It is easy to see that w=x
and X = w. Using reflection through v to couple random walks starting at u
and 4, it follows that

P(V.<V,)=Pi(V,<V)
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and hence
PV, <V,)—3=PiV,<V)—3=3—PLV.<V,) (4.22)

Since 6 = v, P(V, <V,) =1/2. Counting all of the other points in the plane
twice, then using (4.22) we have

Py(U.<U,)—1/2=3 ) Pi(X,=w){P,(V.<V,)—1/2}

uFv

+PHX, = D){PHV,<V,)—1/2}

=3 Y {PUX,=u)—PUX,=D}H{PLV,.<V,)—1/2}

u#v

Since all probabilities lie between 0 and 1, it follows that

|Py(U. <U,)—1/2|1<5 ¥ |Py(X, = u)— Py(X, = )| (4.23)

uFv

The right-hand side is awkward to estimate since the time » = AK? may or
may not be large enough to have a significant chance of going around the
torus more than once. To avoid this problem we note

2 P (X, =w)—py(X,=D)| < Y |P(X,=u)—P(X,=d)|  (424)

u#v u#v

Using the local central limit theorem now, it is straighforward though
somewhat tedious to show that the right-hand side of (4.24) is < ¢ for all
K > K,. This establishes (4.21).

To pass from (4.21) to (4.18), we let y€ 0B, a=0, b=c= AK? and
use Lemma 3.1 to conclude that

G%b(ya W)

PXT,<b)<
Y Gy (1, )

(4.25)
Reasoning as for (4.12), we conclude that there is a constant ¢ > 0 so that

2

K
GEw,w) > Y §> ¢ log(K?) (4.26)
s=1

where the second inequality follows (4.3). To estimate the numerator on the
right in (4.25) we observe that using the reasoning for (4.6), and the result
in (4.13)
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£ o 4K o
Gho.m<xiopm ey 5 65 G
x2-94q S 2

From the proof of (4.7) we see that the first term on the right is bounded.
The middle term can be summed using (4.3) and the third using arithmetic.
Plugging the result of this calculation and (4.26) into (4.25) gives

C+CelogK+C-A
clogK

PY(T,<b)<

The same reasoning applies with z in place of w. Thus, if we pick € small
then for K > K,

sup PUT, AT.<b} <o (4.27)

y € dB(w, K)

This and (4.21) gives (4.18) and the asymptotics for the denominator follow.
O

APPENDIX
Here we prove the two perturbation formulas stated in the introduction.

Proof of the Perturbation Formula. If x # w then by considering what
happens on the first step

A =L p0n D E( T s

Elementary Markov chain theory tells us that

E<21 >_Pa(Vc<n)
\ 5 ®©=0 )T P(T>T,)

Letting a =w, b =w, ¢ = x, we have

Tl P(V.<T,)
=F | P =2 x v
) W@o ““) P(T.>T,)
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and lettinga=z,b=w,c=x,

= P(V.<T,) P(V.<T))
E 1 B — V4 X w. — z X w .
Z<jzo ‘X"">> P(I,>T, P.<T,) "™

from which the desired result follows easily. O

Proof of the Matrix Perturbation Formula. We want to show that
P(x, y) = p(x, y)+u(x) v(y) has stationary distribution 7(x) = n(x) + yo(x)
where a(/ —p) =v and y =znu/(1 —au). To check this we expand out the
condition for stationarity 7p = 7 to get

TTp + yop + wuv + youv = 1+ po
Using np = = this can be rearranged to get
nuv = you(I — p—uv)
Using the definition of «(/ — p) = v now this becomes

() = yo— (yow) v

where we have introduced parentheses to remind ourselves that the two
quantities are numbers. The definition of y guarantees that this holds, so
the proof is complete. O
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