
ary

cs
d

ca

he

re w

s b

um

tec

ed

ds.

et

iti

–20

hi
Theoretical Population Biology 60, 107–116 (2001)
doi:10.1006/tpbi.2001.1522, available online at http://www.idealibr

Exponential Distance Statisti
the Effects of Population Sub

Nancy M. Sundellg and Richard T. Durrett†
gApplied Mathematics and †Mathematics, Cornell University, Itha

Received September 20, 2000

Statistical tests are needed to determine whet

the genetic differentiation of subpopulations. He

a sum of an exponential function of the distance

genetic distance (e.g., nucleotide differences, n
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s statistic of Hudson

cases was slightly less powerful than both a trad

and the Snn test of Hudson (Genetics 155, 2011

tests to three data sets, we found in some cases

other tests. © 2001 Academic Press

INTRODUCTION

In many situations one wants to determine whether the
geographical structure of a species contributes to the
observed genetic variation. Many types of data can be
used to study this question including restriction site map-
pings, nucleotide sequences (mitochondrial and nuclear),
and microsatellites. One of the original methods used to
measure the extent of genetic differentiation of subpop-
ulations is Wright’s (1951) FST, the calculation of which
involves the mean and variance of gene frequencies. Nei
later defined the statistic GST to be the ratio of intersub-
populational gene diversity to the total gene diversity
107
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(Nei, 1973). In general, this is an extension of FST to the
case of multiple alleles (see Takahata and Nei, 1984).
Both FST and GST are called haplotype statistics, they only
use informationabout geneor haplotype frequencies.One
drawback of these statistics is that they fail to consider
the number of differences between pairs of haplotypes.

With the availability of nucleotide level data came the
introduction of the statistics cST (Nei, 1982), NST (Lynch
.com on
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r spatial structure has had a significant effect on

e introduce a new family of statistics based on

etween individuals, which can be used with any

ber of nonshared alleles, or separation on a

t genetic differentiation in Wright–Fisher island

for various sample sizes, rates of migration and

We found that our new test was in some cases

al. (Mol. Biol. Evol. 9, 138–151, 1992), but in all

onal q2 test without lumping of rare haplotypes

14, 2000). However, when we applied our new

ghly significant results that were missed by the

and Crease, 1990), and, for microsatellites, Slatkin’s
(1995) RST. Hudson (2000) recently introduced the sta-
tistic Snn which is a measure of how often the nearest
neighbors of a sequence are found at the same location.
Other tests include the traditional q2 test based on allele
frequencies (Nei, 1987, p. 227) and the exact probability
tests which are based on the classical Fisher test for R×C
contingency tables (Raymond and Rousset, 1995;
Goudet et al., 1996). Hudson et al. (1992) introduced a
permutation approach for determining significance levels
for these tests, thereby increasing their power.

Another related technique is the analysis of molecular
variance, which examines correlations of haplotypic
0040-5809/01 $35.00
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diversity among demes (Excoffier et al., 1992; Michalakis
and Excoffier, 1996). The method involves constructing a
hierarchical analysis of molecular variance directly from
the matrix of squared distances between all pairs of
haplotypes. The main advantage of this method is that
the distance matrix can be constructed using assumptions
about the evolutionary process causing the haplotype
differences.



One disadvantage of the methods mentioned above is
that they all require an a priori definition of hierarchical
structure. Holsinger and Mason-Gamer (1996) define a
new statistic, similar to Nei’s GST, which can be used to
group populations based on estimates of the average
time to coalescence for pairs of haplotypes. They then
construct a tree depicting the pattern of genetic differen-
tiation among subpopulations and test the statistical
significance of the groupings.

Other methods utilizing phylogenies of individuals or
alleles have been developed to determine the amount of
gene flow between populations. Slatkin and Maddison
(1989) outline a method using the phylogeny of nonre-
combining segments of DNA. After constructing the
phylogeny, they estimate the minimum number of
migration events, the expected value of which is shown to
be a function of Nm. While this method was developed to
study the amount of gene flow, it can be used to infer the
presence of genetic differentiation as well. One difficulty
with their approach is that in order to use it, the underly-
ing population structure must be well approximated by
an island model.

Templeton (1998) developed a method incorporating
evolutionary genealogical information into the calcula-
tion of a statistic. Using a haplotype tree, he defines a
nested series of branches (clades) which are then used to
analyze the spatial distribution of genetic variation. This
analysis involves the comparison of the average distance
of individuals in a particular nested clade from the
geographical center of that nested clade to the average
distance of individuals to the geographical center of the
entire clade (Turner et al., 2000).

STATISTICS

Here we introduce new statistics which can be used on
any data for which we can define and compute a measure
of distance between individuals. This includes phy-
logenetic trees, restriction site mappings, nucleotide
sequences, and microsatellites.

We begin by noting that many statistics used for
detecting the influence of population structure have the
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general form

C
L

k=1
wk C

nk −1

i=1
C
nk

j=i+1
F(d(xik, xjk)), (1)

where L is the number of subpopulations, nk is the
number of individuals in subpopulation k, wk is a
weighting function defined for each subpopulation, F(x)
is a function, and d(xik, xjk) is the distance from individ-
ual i in subpopulation k to individual j in subpopulation
k. The definition of the distance function, d(xik, xjk),
depends on the type of data being used. For a phyloge-
netic tree this distance could be defined as the number of
internal nodes on the shortest path connecting two indi-
viduals or the sum of the lengths of the branches along
this same path. For a set of nucleotide sequences the dis-
tance could be defined as the number of pairwise differ-
ences between the sequences.

We propose a family of statistics with F(x)=u −x

where 1 < u <.. For simplicity we take wk=1 for all
subpopulations k, but as in Hudson et al. (1992), the
performance could be improved by optimizing the
weights. Our statistics have the form

Du= C
L

k=1
C
nk −1

i=1
C
nk

j=i+1
u −d(xik , xjk). (2)

If u=1, we see that Du is equal to the total number of
pairs of individuals in the same subpopulation. Because
this value gives us no information about the genetic
population structure we require that u > 1. It is, how-
ever, interesting to look at the limit as u approaches 1.
If we let u=1+e with e small, then (1+e) −d(xik , xjk) %
1− ed(xik, xjk), and the statistic becomes

D1+e % C
L

k=1
C
nk −1

i=1
C
nk

j=i+1
(1− ed(xik, xjk)). (3)

Since ;L
k=1 ;nk −1

i=1 ;nk
j=i+1 1 is a constant, this suggests

that we define a new statistic that drops this constant
term and eliminates the − e multiplier from the second
term:

D1= C
L

k=1
C
nk −1

i=1
C
nk

j=i+1
d(xik, xjk). (4)

This can be written in the general form (1) by defining
wk=1 and F(x)=x.

This new D1 statistic is similar to the weighted Ks sta-
tistic discussed by Hudson et al. (1992). Letting N=; nk
be the total number of individuals sampled we can define
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their statistic

Ks= C
L

k=1

1
(nk−1)

C
nk −1

i=1
C
nk

j=i+1

2d(xik, xjk)
N

. (5)

This can be written in the general form (1) by defining
wk=1/(nk−1) and F(x)=2x/N. We see that the Ks
statistic is the D1 statistic multiplied by a factor involv-
ing the sample sizes of the subpopulations. Hudson



et al. (1992) also define the more powerful statistic, Kg
s ,

which substitutes log(1+d(xik, xjk)) for d(xik, xjk). This
corresponds to F(x)=(2/N) · log(1+x). They found
that the Kg

s statistic was more powerful when using the
weight wk=

nk −2
nk(nk −1)

. (This formula is slightly different
from that of Hudson et al. (1992) and has been re-
written to accommodate the general form (1) for
sequence statistics used here. Neglecting the constant,
the statistic being calculated is the same.)

It is also interesting to look at the statistic Du in the
limit as u approaches positive infinity. As u Q., the
only terms that make a significant contribution to the
calculation of Du are those for which d(xik, xjk) is equal
to the minimum of all the observed distances for indi-
viduals in the same subpopulation. This suggests
another statistic,

D.= C
L

k=1
C
nk −1

i=1
C
nk

j=i+1
1{d(xik , xjk)=dmin}, (6)

where dmin is the minimum value of d(xik, xjk) over all k
and i ] j. Thus, D. is equal to the number of pairs of
individuals in the same subpopulation which are
separated by the minimum observed distance dmin. This
statistic can be written in the general form (1) by setting
wk=1 and F(x)=1{x=dmin}. In this case the function
F(x) depends on the data set being used.

The D. statistic is similar to the Snn statistic of
Hudson (2000). Snn measures the frequency at which the
individuals most similar to a given individual are found
in the same subpopulation as the given individual. Let
Ti equal the number of nearest neighbors of individual
i, where the nearest neighbors are defined to be those
individuals separated from individual i by the minimum
observed distance. Also, let Wi equal the number of
nearest neighbors of individual i which are in the same
subpopulation as individual i. Hudson defines the Snn
statistic to be

Snn=
1
N

C
N

i=1

Wi
Ti

, (7)

Population Subdivision Statistics
where again N=; nk is the total number of individuals
sampled. Snn differs from the D. statistic in that each
individual contributes to the calculation of the statistic
regardless of the relative distances to the nearest
neighbors. For the D. statistic, only those individuals
which have the closest nearest neighbors contribute to
the calculation.

We predict that the Du statistics will be asymptoti-
cally normal. To explain the reason for the normal
distribution we note that (i) under a random labeling of
individuals x(s),

Du= C
{s, t}

F(d(s, t)) · 1(x(s)=x(t)),

where the sum is over pairs of distinct individuals, and
(ii) the random variables ts, t=1(x(s)=x(t)) which are 1 if
the labels of s and t agree and 0 otherwise are almost
independent. For example, if we have K groups of a
size L for a total population size of N, calculations with
the multinomial distribution show that for distinct
individuals s, t, u, v,

Cov(ttu, tuv)=−
L−1
N−1

·1 N−L
(N−1)(N−2)

2

\ −
1

N−2

Cov(tst, tuv)=
L−1
N−1

·1 2(N−L)
(N−1)(N−2)(N−3)

2

[
2

(N−2)(N−3)
.

This shows that Du is a sum of weakly dependent
random variables and suggests that the Central Limit
Theorem should apply.

However, since the normal distribution is an approx-
imation we will use the permutation-based method
outlined by Hudson et al. (1992) to derive critical
values for our tests. This involves randomly assigning
the individuals in the data set to locations, keeping the
number of individuals present in each location con-
stant. This procedure is repeated many times and the
statistics calculated from the random permutations are
compared with the value of the statistic for the data.

POWER ANALYSIS

To determine the power of our Du statistics for
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1 [ u [., we constructed sample populations under
neutral Wright–Fisher island models and stepping stone
models. For the Wright–Fisher island model the
coalescent process described by Hudson (1990) was
used to construct sequences. We used some of the same
parameter values as Hudson et al. (1992) and Hudson
(2000) so that we could compare our results with theirs.
The parameters involved in these simulations were
N=the population size, m=the fraction of migrants in



each subpopulation in each generation, and m=the
neutral mutation rate per generation. The infinite-sites
model, which assumes that all mutations occur at new
sites, was used. Subpopulations consisting of N diploid
individuals were used and there was no recombination.

For the stepping stone model we considered three
different spatial neighborhoods: the four nearest
neighbors, a 5×5 neighborhood centered at the point,
and uniform dispersal across the entire grid (mean
field). The parameters involved in these simulations
were the grid size, the number of individuals per site,
and the number of mutations.

The power of the Du tests to detect genetic differen-
tiation was calculated by generating 4000 sample popu-
lations using each of the two models and different sets
of parameters. For each of the samples, Du was cal-
culated with u=1, 1.01, 1.1, 2, 10, 100, and .. The
significance of the statistics was calculated using 4000
permutations of the locations so that our setup would
be identical to that of Hudson (2000). The power of the
test was estimated as the percentage of the sample
populations for which the null hypothesis was rejected.
We rejected the null hypothesis when P [ 0.05.

The power of these new statistics was compared to
the power of the sequence-based statistics Kg

s (using the
more powerful weighting scheme) and Snn defined
earlier as well as to the traditional q2 test statistic (Nei,
1987, p. 227):

q2=C
L

i=1
C
K

j=1

(nij−nip̂j)2

nip̂j
. (8)

Here, L is the number of locations, K is the number of
different sequences or haplotypes in the entire sample,
ni is the sample size from location i, nij is the number of
copies of sequence j observed in location i, p̂j=
(1/N) ;L

i=1 nij is the frequency of sequence j in the
sample, and N=;L

i=1 ni is the total number of indi-
viduals sampled. To allow for the presence of rare
haplotypes, we computed the significance of the q2 sta-
tistic directly using a permutation approach, rather
than using a limit theorem to assert that this has
approximately a q2 distribution with (L−1)(K−1)
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degrees of freedom. The permutation approach allowed
us to get the most information out of the q2 test since
lumping of rare haplotypes can result in a loss of power
of the test (Hudson, 1992; Roff and Bentzen, 1989,
1992).

Power estimations using the Wright–Fisher island
model were made for three different sets of population
parameters and five different sample sizes of two sub-
populations (Table I). Looking at the Du statistic for
TABLE I

Fraction of 4000 Simulations (Wright–Fisher Island Model) Rejecting
the Null Hypothesis

4Nma 2.0 2.0 2.0 5.0 2.0
4Nm 5.0 5.0 5.0 5.0 1.0

(n1, n2) (10, 10) (35, 5) (25, 25) (25, 25) (25, 25)

Kg
s 0.626 0.602 0.935 0.684 0.766

D1 0.512 0.403 0.814 0.520 0.708
D1.01 0.529 0.413 0.824 0.532 0.724
D1.1 0.577 0.489 0.895 0.610 0.740
D2 0.701 0.717 0.975 0.807 0.779
D10 0.666 0.724 0.966 0.817 0.770
D100 0.664 0.718 0.963 0.811 0.766
D. 0.542 0.683 0.954 0.792 0.756

Snn 0.733 0.779 0.996 0.925 0.871

q2 0.600 0.793 0.993 0.909 0.857

a N=population size, m=migration rate, m=mutation rate,
ni=sample size for population i.

different values of u, we saw that the power increased
as u increased, reaching a maximum at u=2 or 10. The
power decreased for values larger than these. The most
powerful Du test was more powerful than the Kg

s test in
all of the cases examined. Comparing the Du test and
the q2 test, we see that the latter was more powerful in
the majority of cases. The Du test was often more
powerful than the q2 test when the sample size was
small. Finally, we see that the Snn statistic was the most
powerful in all cases examined. However, the difference
between the maximum power of the Du test and the
power of the Snn test was quite small for some of the
simulations and less than 0.11 for all of them.

Power estimations using the stepping stone model
were made for six different cases (Table II). All of the
simulations were completed on a grid of size 25×25
with 50 individuals per site. In each case all individuals
from two of the subpopulations were used in the cal-
culation of the statistics. The spatial neighborhood,
number of mutations, and the distance between
sampled subpopulations varied between the simula-
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tions. Again we saw that the power of the Du statistic
increased as u increased, reaching a maximum for some
u \ 10. When the number of mutations was small
( [ 50), the power decreased as u approached infinity.
The power of the Kg

s test appeared to lie either between
that of D1.1 and D2 or between D2 and D10 and was less
than D10 in all cases studied. In all of the cases
examined we found that the q2 test was more powerful
than the Du statistics. Again, the Snn statistic was the



TABLE II

Fraction of 4000 Simulationsa (Stepping Stone Model) Rejecting the
Null Hypothesis

Spatial neighborhoodb mf 5×5 4 4 4 4
Number of mutations 100 100 100 50 10 10
Compared site (0,0) to (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (9, 9)

Kg
s 0.988 0.970 0.925 0.881 0.654 0.814

D1 0.948 0.923 0.890 0.854 0.645 0.809
D1.01 0.950 0.929 0.900 0.857 0.647 0.812
D1.1 0.978 0.956 0.912 0.867 0.649 0.812
D2 0.992 0.978 0.934 0.884 0.651 0.813
D10 0.992 0.979 0.936 0.889 0.656 0.815
D100 0.992 0.979 0.936 0.889 0.657 0.814
D. 0.992 0.979 0.936 0.887 0.655 0.812

Snn 0.999 0.994 0.964 0.927 0.710 0.852

q2 0.999 0.993 0.960 0.920 0.676 0.826

a All simulations were completed on a 25×25 grid with 50 indi-
viduals per site.
b mf=mean field, 5×5=5×5 neighborhood, 4=4 nearest

neighbors.

most powerful for all of the cases examined. However,
the difference between the maximum power of the Du
test and the power of the Snn test was again quite small
and was less than 0.06 for all cases examined.

It is important to note that none of the power cal-
culations considered genes with recombination. Hudson
et al. (1992) found that without recombination, the test
based on q2 was more powerful than all of the sequence
statistics they examined. However, in many cases with
recombination, the sequence statistics (including Kg

s )
were found to be more powerful than the haplotype-
based q2 statistic. This suggests that the Du test may be
more powerful than the q2 statistic when using genes
with recombination, which is consistent with the fact
that our test produces more significant results than the
q2 test when applied to real data.

Population Subdivision Statistics
APPLICATIONS

Drosophila Microsatellite Data

Our first example is a data set collected by
Wetterstrand (1997) on 16 microsatellite loci in 99 iso-
female lines of Drosophila melanogaster individuals,
sampled from five different locations: Australia
FIG. 1. The neighbor joining tree for the Wetterstrand (1997)
microsatellite date for Drosophila melanogaster. Individuals were
sampled from five locations: Australia, China, Ecuador, the United
States, and Zimbabwe. The tree is based on the proportion of shared
alleles between individuals and is taken from Wetterstrand’s 1997
M.Sc. thesis with permission.

(n=20), China (n=20), Ecuador (n=19), Zimbabwe
(n=20), and the United States (n=20). Using the
proportion of nonshared alleles as a distance, she built
a neighbor joining tree. The result, taken from her
thesis, is given in Fig. 1. We defined the distance
between individuals on her tree as the number of inter-
nal nodes crossed on the shortest path connecting the
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two individuals.
The test statistics for the Du, Kg

s , and Snn tests were
calculated and the significance was determined using
100,000 permutations of the locations of the individ-
uals. All of the tests indicated significant genetic dif-
ferentiation of the five subpopulations (P < 10 −5). The
100,000 random colorings of the tree for the D2 statistic
gave a distribution that appeared to be close to normal
with mean 9.3 and standard deviation 1.4 (see Fig. 2).
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dar
FIG. 2. Histogram of the D2 statistic for 100,000 random permuta
joining tree. The curve is the normal distribution with mean 9.3 and stan

Drosophila DNA Sequence Data

Our second example is a data set of Hamblin and
Veuille (1999) containing DNA sequence data from
Drosophila simulans individuals. Data for a 735 bp
region at the vermilion locus was collected from 82 D.
simulans individuals from seven different locations:
Cameroon (n=12), Italy (n=12), Kenya (n=13),
Lesser Antilles (n=12), Tanzania (n=11), the United
States (n=12), and Zimbabwe (n=10). To analyze
their data, we defined the distance between two indi-
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viduals to be the number of pairwise differences
between their sequences. We computed all of the statis-
tics for the vermilion locus for a variety of population
comparisons (Table III). The first comparison was of
all seven populations. Since the United States and
Lesser Antilles (an arc of islands in the Caribbean Sea)
are both separated from the other populations by the
Atlantic Ocean, it should not be surprising that the
result was highly significant: the statistic for the data
s of the locations of individuals on the Wetterstrand (1997) neighbor
d deviation 1.4. The D2 statistic for the observed tree is 29.

was smaller than all 10,000 permutations for the Kg
s

and D1 statistics and larger than all 10,000 permuta-
tions for the remaining statistics (P < 0.0001).

Reducing our focus to the Italian and four African
locations, we again found highly significant results for
all statistics (P < 0.0001). Dropping the Italian popu-
lation, the comparison among the four African popu-
lations led to a significant result for Kg

s , Du with
u [ 100, and Snn (P < 0.0475). However, q2 and D.
gave nonsignificant results (P > 0.06). For all of the
three-population comparisons we found significant

g
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results using the Du statistic with u [ 1.1 and K s

(P < 0.03). Using the first letter of the name of the
country as an abbreviation, we found that the CKZ
and CTZ comparisons were also significant using the
Du statistic with u [ 100. The Snn and q2 statistics were
only significant for the CKZ comparison. The Du and
Kg
s statistics therefore suggest that none of the possible

three-way groupings of African populations can be
considered homogeneously mixing at the vermilion
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TABLE III

Results of the Tests for Population Subdivision

Statistic Kg
s D1 D1.01 D1.1

Vermilion
All 0.0001b 0.0001 0.0001 0.0001
AIa 0.0001 0.0001 0.0001 0.0001
A 0.0012 0.0002 0.0002 0.0009
CKZ 0.0003 0.0002 0.0002 0.0003
CTZ 0.0046 0.0016 0.0017 0.0031
KTZ 0.0104 0.0033 0.0036 0.0077
CKT 0.0266 0.0162 0.0162 0.0193
KZ 0.0012 0.0008 0.0008 0.0013
CK 0.0067 0.0037 0.0037 0.0058
TZ 0.0186 0.0115 0.0121 0.0226
CZ 0.0222 0.0116 0.0116 0.0122
CT 0.0391 0.0259 0.0261 0.0330
KT 0.8545 0.8605 0.8467 0.8006

G6pd
AE 0.0003 0.0004 0.0004 0.0004
A 0.0058 0.0064 0.0057 0.0047
CKZ 0.0004 0.0005 0.0005 0.0004
CTZ 0.0055 0.0120 0.0110 0.0081
CKT 0.0273 0.0264 0.0232 0.0236
KTZ 0.2917 0.2721 0.2524 0.2328
CZ 0.0009 0.0022 0.0020 0.0014
CK 0.0017 0.0023 0.0020 0.0019
TZ 0.1105 0.1717 0.1526 0.1289
CT 0.2333 0.3701 0.3187 0.3155
KZ 0.3951 0.2818 0.2629 0.2562
KT 0.5660 0.5491 0.5165 0.5186

Walleye
Spacer 0.1128 0.8468 0.8437 0.8279
Control 0.0724 0.0289 0.0286 0.0278
Both 0.0717 0.1582 0.1553 0.1438

a A=Africa, C=Cameroon, E=Europe, I=It
b Estimated P value based on 10,000 random par

locus. Both the Snn and the q2 statistics fail to recognize
this and suggest that only the grouping of Cameroon,
Kenya, and Zimbabwe does not form a homogeneously
mixing population.

Looking at the pairwise comparisons of the African
populations we again see a discrepancy between the

Population Subdivision Statistics
predictions of the statistics. For all of the pairwise
comparisons except for that of Kenya with Tanzania,
the Kg

s and Du statistics with u [ 1.1 are significant.
However, the Snn statistic is only significant for the CK
comparison (P [ 0.01) and the q2 statistic is not signi-
ficant for any of the comparisons (P \ 0.1).

Hamblin and Veuille (1999) also considered data for
a 700-bp region of the third exon of the G6pd locus
from 66 D. simulans individuals from six different loca-
2 D10 D100 D. Snn q2

01 0.0001 0.0001 0.0001 0.0001 0.0001
01 0.0001 0.0001 0.0001 0.0001 0.0001
08 0.0475 0.0475 0.1055 0.0142 0.0611
10 0.0486 0.0486 0.1134 0.0006 0.0498
34 0.0343 0.0343 0.0829 0.0567 0.0539
26 0.0718 0.0718 0.1247 0.0964 0.0733
16 0.3090 0.3090 0.5897 0.2391 0.4129
48 0.0323 0.0323 0.1090 0.0877 0.1106
23 0.2015 0.2015 0.5001 0.0093 0.4478
28 0.0644 0.0742 0.1043 0.3678 0.1043
52 0.1212 0.1212 0.2627 0.0561 0.2248
60 0.1263 0.1265 0.6081 0.3191 0.4635
72 0.7654 0.8064 1.0000 0 .7873 1.000

01 0.0156 0.0225 0.0390 0.0002 0.0100
81 0.2568 0.2998 0.4349 0.0327 0.2579
08 0.1092 0.1685 0.2954 0.0093 0.1976
96 0.2002 0.2122 0.3550 0.0121 0.1661
36 0.3371 0.3556 0.5130 0.0811 0.3972
27 0.5787 0.5810 0.6634 0.3626 0.4024
08 0.0214 0.0262 0.2058 0.0051 0.1624
22 0.0658 0.0847 0.2126 0.0049 0.2029
76 0.3216 0.3219 0.4065 0.1319 0.2603
11 0.5461 0.5461 0.7753 0.1857 0.5960
58 0.6347 0.6347 0.8441 0.6098 0.7856
57 0.6550 0.6550 0.6831 0.6123 0.5980

73 0.6380 0.6278 0.6309 0.3507 0.3543
44 0.0240 0.0244 0.0246 0.0996 0.0384
93 0.0371 0.0259 0.0271 0.0240 0.0242

K=Kenya, T=Tanzania, Z=Zimbabwe.
ns.

tions: Cameroon (n=12), Europe (Italy and France)
(n=9), Kenya (n=12), Lesser Antilles (n=12),
Tanzania (n=10), and Zimbabwe (n=11). As before,
consideration of all six populations or just the five in
Africa and Europe led to very significant results for all
statistics, so we concentrated on the four African pop-
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ulations. For the four African population comparison
and the CKZ and CTZ three-population comparisons
(see Table III) we found significant results for Kg

s , Du
with u [ 2, and Snn (P [ 0.04). The CKT comparison
was also significant for Kg

s and Du with u [ 1.1
(P [ 0.03). The remaining three-way comparison,
KTZ, was not significant for any statistic. This suggests
the possibility that the three populations are similar
enough genetically to be considered a homogeneously



mixing unit at the G6pd locus. Further evidence of this
comes from the nonsignificance of all of the statistics
calculated for the pairwise comparisons of these three
populations (Table III).

We again see a discrepancy between the conclusions
of the statistics for the pairwise comparisons of the
African populations. While the Kg

s , Du with u [ 2, and
Snn statistics are significant for the comparisons of CK
and CZ (P [ 0.03), the q2 statistic does not identify
significant differentiation for any pair of populations.

Hamblin and Veuille (1999) studied the genetic dif-
ferentiation between populations using FST estimates
for all pairwise comparisons. Because the pairwise tests
were nonindependent, they analyzed their results quali-
tatively rather than choosing a significance threshold.
For both loci we reached the conclusion of Hamblin
and Veuille (1999) that Kenya and Tanzania are essen-
tially homogeneously mixing. For the vermilion locus,
Hamblin and Veuille identified three genetically distinct
groups in Africa: Zimbabwe, Cameroon, and Tanzania/
Kenya. While the Kg

s and Du test with u [ 1.1 also
identified these groups, the Snn and q2 tests failed to
reach this conclusion.

Using the G6pd locus, Hamblin and Veuille
concluded that while Cameroon is differentiated from
all populations except Tanzania, the remaining popu-
lations show no significant differentiation from one
another. This conclusion is exactly that reached by the
Kg
s , Du with u [ 2, and Snn tests. The q2 test fails to

recognize this differentiation.
It is interesting to note that while the P values of the

Du tests for the comparisons at the vermilion locus
decreased as u decreased, reaching a minimum P value
as u approached 1, the P values for the comparisons at
the G6pd locus reached a minimum when u=1.01, 1.1,
or 2. In all of the above comparisons, the minimum
P value of the Du statistics was much smaller than the
P values of the Kg

s , Snn, and q2 statistics, giving highly
significant results for some comparisons that were
missed by both the Snn and the q2 tests.

We also note that for many of the comparisons, the
P values for the Kg

s test fell in between the P values of
the D1.1 and D2 tests. This result is analogous to that
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found in the power calculations for the stepping stone
model.

Walleye Pollock Mitochondrial DNA Sequences

Our final example is a data set of Shields and Gust
(1995). They examined the 76-bp spacer region from
mitochondrial DNA sequences of 110 walleye pollock,
Theragra chalcogramma, individuals divided into the
following regions: Southwest Bering Sea (n=18), Gulf
of Alaska (n=9), North Bering Sea (n=12), Donut
Hole (n=7), West Aleutians (n=17) and East Aleu-
tians (n=47). Twenty unique haplotypes, based on 20
mutations at 16 segregating sites, were identified, with
83 individuals having the same haplotype. They per-
formed a q2 analysis on the data by lumping the rare
haplotypes together. This method indicated no signifi-
cant genetic differentiation of the subpopulations and
had P < 0.282. Likewise, all of the statistics discussed
previously indicated no significant differentiation (P \

0.1) (Table III).
Shields and Gust (1995) also investigated a 250-bp

region of the control region sequence from 140 indi-
viduals divided into the same regions as before, but
with slightly different sample sizes: Southwest Bering
(n=20), Gulf of Alaska (n=8), North Bering
(n=18), Donut Hole (n=8), West Aleutians (n=23),
and East Aleutians (n=63). Seventeen unique haplo-
types with 14 segregating sites were identified, with 114
individuals having the same haplotype. Again, they
found no significant differentiation using a q2 analysis
with rare haplotypes lumped together (P [ 0.212). The
Kg
s and Snn tests were also nonsignificant (P \ 0.07).

However, the permutation-based q2 test and the Du test
for all u were significant (P [ 0.04). The minimum
value for the Du test occurred when u=10.

Shields and Gust (1995) made one more comparison
by looking at the spacer and control regions together.
They identified 21 unique haplotypes with 19 segre-
gating sites in the sample. In order to find some
geographic variability, they used four of the original
regions to create two new regions by combining the
Southwest Bering and Northern Bering samples into a
Western Bering sample and combining the Western and
Eastern Aleutian samples into a Eastern Bering sample.
This new comparison contained 80 individuals: Western
Bering (n=32) and Eastern Bering (n=48). Using a q2

test on this comparison, Shields and Gust (1995) found
significant genetic differentiation with P [ 0.021. The
Snn and q2 tests gave similar results with P [ 0.025. The
Du test was significant for u \ 10 and reached a
minimum value of P=0.0259 when u=100. The Kg

s
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test was again nonsignificant (P \ 0.07).

DISCUSSION

We have developed a family of sequence statistics,
Du, 1 [ u [. that can be used to test for population
subdivision. These statistics measure the overall amount



of variation within subpopulations by summing an
exponential function of the distance between individ-
uals from the same subpopulation. We examined the
power of these new statistics to detect differentiation
under both a neutral Wright–Fisher island model and a
stepping stone model with three definitions of spatial
neighborhoods. The power of the new Du statistics was
compared to that of the Kg

s , Snn, and q2 tests. Simula-
tion results indicated that while the Snn statistic was
more powerful under all conditions examined, the
magnitude of the differences between the powers of the
Snn, q2, and Du statistics was quite small in most cases.

Using the statistics on various data sets we found
that the Du, Snn, and q2 statistics perform very dif-
ferently. Consideration of Drosophila sequence data
from the vermilion and G6pd loci showed that in some
circumstances, one gets much more significant results
using Du in the limit as as u Q 1. Data from the walleye
pollock mitochondrial DNA gave the opposite result
and one gets the most significant result using Du in the
limit as u Q.. One possible reason for this difference is
that while the two Drosophila data sets are from nuclear
loci, the walleye pollock data is mitochondrial so there
is no recombination. The two Drosophila loci are
believed to undergo high rates of recombination and
have scaled recombination rates of Nr/base pair=0.01
for vermilion and Nr/base pair=0.005 for G6pd
(Hamblin and Veuille, 1999). This gives the estimates
for the whole region surveyed of 4Nr=29.4 for ver-
milion and 4Nr=14 for G6pd. For genes with high
rates of recombination, Hudson et al. (1992) predict
that the sequence statistic Kg

s will be more powerful
than the haplotype statistic q2. Our results showed that
the P value of the Kg

s statistic often falls between that
of D1.1 and D2. Therefore, we predict that the Du statis-
tics should be at least as powerful as the Kg

s statistic
and in many cases much more powerful than both the
Kg
s and q2 tests. For the walleye pollock data sets there

is no recombination and the heterozygosity is much
smaller than that of the D. simulans data. In this case
the Du statistics with u \ 10 produce results equivalent
to the q2 test and more significant than the Kg

s test.
The presence or lack of recombination does not
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explain the different performances of the Snn and Du
statistics. Hudson (2000) found that in a large number
of simulations, including those with and without
recombination, the Snn statistic was more powerful than
both the Kg

s and the q2 statistic. The power tests
included here for both the island and the stepping stone
models agree with this conclusion and produce the
additional result that Snn is more powerful than all of
the Du statistics.
However, we see that when using the statistics on real
data, the Du tests frequently identify genetic differen-
tiation that is missed by the Snn tests. The causes of
these differences are unknown and merit further study.

We do not know how to predict a priori which of our
Du statistics will be the best to use on a given data set.
However, from the data sets we have analyzed it seems
one can afford to try three forms: D1, D2, and D., even
though one must multiply the P values by 3 to account
for the Bonferroni correction.
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