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Abstract

Motivated by the work of Tilman (Ecology 75 (1994) 2) and May and Nowak (J. Theoret.
Biol. 170 (1994) 95) we consider a process in which points are inserted randomly into the
unit interval and a new point kills each point to its left independently and with probability
a. Intuitively this dynamic will create a negative dependence between the number of points in
adjacent intervals. However, we show that the ensemble of points converges to a Poisson process
with intensity 1=(a(1 − x)), and the number of points at time t grows like (log t)=a.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Tilman (1994) studied coexistence among a sequence of species in which species
with lower numbers are superior competitors. Letting pi to be the fraction of patches
occupied by type i and taking the limit of an in8nite number of patches, he arrived at
the following ordinary di9erential equations:

dpi

dt
= �ipi


1 −

i∑
j=1

pj


− 
ipi − pi

i−1∑
j=1

�jpj: (1)

Here �i and 
i are the colonization and death rates for the ith species. The 8rst term
on the right-hand side represents births by type i onto sites that are vacant or occupied
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by inferior competitors. The second and third terms represent loss of sites of type i
due to deaths or takeover by lower numbered species.

The 8rst equation in (1) says dp1=dt = �1p1(1 − p1) − 
1p1, so in equilibrium we
have p∗

1 = (�1 − 
1)=�1. In general, the equation for each p∗
i only involves p∗

1 ; : : : ; p
∗
i ,

so the equations can be solved recursively for the equilibrium frequencies. The algebra
of the exact solution is somewhat messy, but one can easily verify that an arbitrarily
large number of species can coexist. If we take 
i = 1 for all i, and each �i is in turn
chosen large enough, then each p∗

i ¿ 0.
Tilman’s result shows that if we are allowed to design the competing species, then an

arbitrarily large number can coexist. May and Nowak (1994) considered the problem
of determining how many species will coexist if the system is subject to a sequence
of random arrivals. They investigated two special cases of Tilman’s model: constant
mortality 
i ≡ 1 and constant fecundity �i ≡ 1. The former is perhaps more realistic
for competition of species, but for mathematical simplicity we will concentrate here
on the “constant fecundity” case of the model which can be thought of as competition
of di9erent strains of a virus that are equally transmissible but di9er in their levels
of virulence. May and Nowak investigated the distribution of types in the following
system. Each species (or type) is represented by its death rate which is a number in
(0; 1). A con3guration is a family of coexisting species represented by a subset of
(0; 1) with their corresponding densities. May and Nowak devised a fairly complicated
algorithm that took a given con8guration as input and produced the corresponding
“equilibrium con8guration” as output. Assume for concretness that originally there are
no species in the system. The original May end Nowak species competition model
evolves according to the dynamics:

(i) introduce a new species with death rate 
 chosen at random from (0; 1);
(ii) recompute the equilibrium con8guration.

To make contact with Tilman’s setup we suppose that species with higher death rates
are superior competitors to those with lower death rates.

The long-term behavior of this process should reHect the behavior of a system where
migrations into the system are rare, and the system has a chance to relax to equilibrium
between migrations. The details of step (ii) are quite messy (we omit them here) so
May and Nowak (1994) introduced a toy version of the model in which instead of (ii)
we have:

(ii′) simultaneously with the insertion of the new species 
, each species 
1 ¡
, which
was present in the previous time step is eliminated, independent of the past and other
species, with probability a (� in their notation).

To analyze the original model, they used simulations to argue (see their p. 102) that
it behaved like the toy model with a= 0:114, and they used physics-style calculations
to analyze the toy model.

The purpose of this note is to give a rigorous analysis of the toy model. The 8rst
step is to show
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Fig. 1. Graphical construction.

Proposition 1. Consider the model de3ned by (i) and (ii′). As time t → ∞ the
distribution of the current con3guration converges to a stationary distribution
�a.

Proof. For convenience we reformulate the model in continuous time so that points
are added at rate 1, and shift the initial time to −t for some t ¿ 0. To construct the
process at time 0 we use a Poisson process on (0; 1)×[−t; 0] with mean measure dx ds.
Connect each point (x; s) of the Poisson process via a dotted line segment to (0; s).
To see if a species y that arrived at time r will show up in the con8guration at time
0, we draw a line segment from (y; r) to (y; 0) and count the number of horizontal
dotted segments it crosses. If this number is k then the probability there is a point at
y at time 0 is (1− a)k . See Fig. 1 for a picture. There a circle at (x; 0) indicates that
the species x survives the thinning above and therefore remains in the con8guration at
time 0.

In Fig. 1, k=2 for y, and y does survive the thinning. It is clear that the resulting set
of points at time 0 has the same distribution as the process with dynamics determined
by (i) and (ii′) at time Nt(0; 1), where Nt(0; 1) is the total number of Poisson points
in [ − t; 0] × (0; 1). To complete the proof it remains to show that the set of points
converges almost surely as t → ∞. This is an immediate consequence of the fact that
the set of points is increasing.

Let S denote the set of distributions supported only on con8gurations that have
8nitely many points in each interval [0; x], x¡ 1. The graphical construction implies
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that if the system is started from any �∈S, the statement of Proposition 1 remains
to hold. Therefore, we have

Corollary 1. �a is the unique stationary distribution in S.

The graphical construction allows us to easily compute the mean measure of the
resulting point process. Fix x∈ (0; 1) and let 0 = −T0 ¿ − T1 ¿ − T2 ¿ − T3 ¿ · · ·
be the heights of the successive points in the strip (x; 1) × (−∞; 0]. Let 
¿ 0 be a
small number and consider a modi8ed version of the process in which points inserted
into (x − 
; x) do not eliminate other points in that interval. Let N


s be the number
of Poisson points in (x − 
; x) × [ − s; 0] and N̂ 


s be the number of those points that
survive the thinning. Elementary properties of the Poisson process imply that

P(N
(Tk) − N
(Tk−1) = m) =
(




+ 1 − x

)m 1 − x

+ 1 − x

;

P(N̂ 
(Tk) − N̂ 
(Tk−1) = m) =
(

(1 − a)k−1

(1 − a)k−1
+ 1 − x

)m
1 − x

(1 − a)k−1
+ 1 − x
:

In other words the increments N̂ 
(Tk)− N̂ 
(Tk−1) have a shifted geometric distribution
with success probability p = (1 − x)=((1 − a)k−1
 + 1 − x). The mean of the shifted
geometric is 1=p− 1 so the expected number of points in (x − 
; x) in equilibrium is

∞∑
k=1


(1 − a)k−1

1 − x
=



a(1 − x)

:

Letting 
 → 0 and ignoring the simple detail of justifying that the modi8cation we
have made in the process does not matter, it follows that the mean measure of the
limit process is dx=(a(1 − x)).

A closer look at the calculation above can mislead the reader into thinking that the
limit process is not Poisson. To explain this, let Fx denote the �-8eld generated by
the Poisson points in (x; 1)× (−∞; 0]. It is easy to see from the calculation above that
the conditional intensity of the limiting point process given Fx is

∞∑
k=1

(1 − a)k(Tk − Tk−1);

which is a random variable. In contrast, if the limit is to be an inhomogeneous Poisson
process, then the conditional intensity given Gx, the �-8eld generated by the positions
of the points in (x; 1) that are retained, must be a constant. Of course there is nothing
to prevent the conditional intensity given Gx from being constant when the intensity
given Fx is not. Indeed, our main result is to show

Theorem 1. The stationary distribution �a is inhomogeneous Poisson with mean
measure dx=(a(1 − x)).
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Originally we showed that the limiting point process has independent increments,
via a discrete approximation that divided (0; 1) into subintervals ((m − 1)=n; m=n)
and modi8ed the dynamics so that a new point does not kill any of the points in
its own subinterval. Computation of all product moments showed that the equilib-
rium distribution of the discrete system has independent increments, and a passage
to limit gave the result for the continuous space. In the next section, we give in-
stead a shorter proof, suggested by Jim Pitman. This proof works directly in continu-
ous space, and is based on thinning and superposition properties of standard Poisson
processes.

It is interesting to note that the Poisson process �a is closely related to Poisson–
Dirichlet and GEM distributions, and appears as a stationary distribution in numerous
species sampling models. Let � = a−1. If 0 = X0 ¡X1 ¡X2 ¡ · · · are the points of
�a, then the corresponding sequence of interval lengths X1 − X0; X2 − X1; : : : has the
GEM (�) distribution, and the sequence of ordered (by length) interval lengths has the
Poisson–Dirichlet (�) distribution (see Ignatov, 1982). Pitman (1996) gives a detailed
account of the related species sampling literature.

Recent studies of the scale invariant Poisson processes, that have intensity measure
�x−1 on (0;∞), and their connection to Poisson–Dirichlet distributions and various
processes arising in applications were conducted by Arratia (1998) and Arratia et al.
(1999).

Gnedin and Kerov (2000) discovered that GEM (�) is a stationary distribution of
a certain split-and-merge process. Mayer-Wolf et al. (2001) study related coagulation-
fragmentation processes and show that, for appropriate a, Poisson–Dirichlet (�) is the
unique stationary law in a certain class of laws (see also Pitman, 2002). Even though
the species sampling and related models above have qualitatively similar dynamics (the
transitions involve splitting and merging of intervals of the point process), there seems
to be no obvious close relation between them and the species competition toy model
analyzed here. It seems that the closest model is an allele competition model studied
by Sawyer and Hartl (1985). In this model a population is divided into subpopulations
with di9erent alleles, new favorable alleles are repeatedly introduced, and each new
allele overtakes a (random) fraction of all preexisting subpopulations, the fraction being
the same for all subpopulations. Sawyer and Hartl (1985) show that a Poisson–Dirichlet
distribution is the equilibrium distribution of this process.

David Aldous has pointed out that time reversal of our process together with a
transformation of (0,1) to (0;∞) by x → ln(1 − x) (cf. proof of Theorem 1) is an
interesting branching Markov chain (Mt ; t ¿ 0) taking values in the space of countable
subsets of (0;∞). Each point x∈Mt lives an exponential (rate e−x) amount of time
(independent of all other points) after which it dies and gives birth to a Poisson (rate
1) process of points on (0; x), independent of the past. It follows from Theorem 1 that
for each a¡ 1, the law of a Poisson (rate 1=a) process on (0;∞) is a stationary law
for M.

With Theorem 1 established it is straightforward to prove

Theorem 2. Let Xt be the number of points at time t. As t → ∞; Xt=log t → 1=a in
probability.
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Proof (Sketch): Elementary extreme value theory shows that the distance from the
right most point to 1 at time t is O(1=t). The law of large numbers for the Poisson
process implies that the number of points in equilibrium between 0 and 1 − 1=t is ≈
(log t)=a. To bridge the gap between equilibrium and time t, we will show in Section
2 that if �¿ 0 then with high probability no points in (0; 1 − 1=t1−�) × (−∞;−t] will
survive.

Our 8nal topic is to investigate the extinction distribution. Suppose that the system
is in equilibrium and let pk be the probability, the next inserted species eliminates
k of the current species. Motivated by Bak (1996) who argues that many systems
self-organize themselves into a critical state, see also SolPe et al. (1999), we ask: Does
pk follow a power law? To guess the answer to this question, one can observe that
Theorem 1 implies that the number of points in (0; x) has a Poisson distribution with
mean −(1=a)log(1 − x), so a species inserted at x will eliminate a Poisson number
with mean −log(1 − x). This suggests that to eliminate k or more species, a point
should be inserted to the right of 1 − e−k , an event of probability of e−k . The next
result shows that this reasoning does not give the right constant but gives the right
qualitative answer.

Theorem 3. pk = 1=2k+1.

Proof. By the reasoning above

pk =
∫ 1

0
elog(1−x) (−log(1 − x))k

k!
dx:

So p0 = 1=2 and integrating by parts shows

pk =
∫ 1

0

(1 − x)2

2
(−log(1 − x))k−1

(k − 1)!
1

1 − x
dx =

pk−1

2
; k¿ 1:

Induction then implies pk = c=2k+1.

Returning to the heuristic argument, we see that what it really shows is
∑

j¿k pj¿
e−k . The implied converse that we need to insert the point above 1−e−k to kill k points
is false. If we insert the point above 1 − e−bk with b¡ 1, then the number of points
killed, Z , will have a Poisson distribution with mean bk. Standard large deviations for
the Poisson (see, e.g., Section 1.9 of Durrett, 1995) imply that

1
k

logP(Z¿ k) → −(b− 1 − ln b):

The probability that a point is inserted into (1 − e−bk ; 1) and causes an avalanche of
size at least k is ¿ e−bkP(Z¿ k). Taking b = 1=2 to maximize this, we end up with∑

j¿k pj¿ 2−k .
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2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Consider the process de8ned by (i) and (ii′). Due to Corollary 1,
it suSces to show that the law !a of the Poisson process with mean measure dx=
(a(1 − x)) is a stationary law.

De8ne f : [0; 1) 	→ [0;∞) by f(x) = −log(1 − x) and observe the original system
under the transformation f. Now each new species is introduced in the system with
death rate f(
)=−log(1− 
) having an exponential (rate 1) distribution, and the rule
(ii′) is modi8ed so that each species with type f(
1)¡f(
) is removed independently,
with probability a. Similarly, under the transformation f, the law !a becomes the law
of the Poisson (rate 1=a) process on [0;∞).

We now recall some well-known facts about Poisson processes. If U1 ¡U2 ¡
U3 ¡ · · · are the points of a Poisson (rate $) process, V1 ¡V2 ¡V3 ¡ · · · are the points
of an independent Poisson (rate �) process, and we de8ne UV1 ¡UV2 ¡UV3 ¡ · · · by
{UV1; UV2; UV3; : : :}={U1; U2; U3; : : :}∪{V1; V2; V3; : : :}. Then UVk; k¿ 1 are the points
of a Poisson (rate $ + �) process. Moreover, conditionally on the position of the 8rst
point V1 in the second process, {UV1; UV2; : : :} ∩ [0; V1) is a Poisson (rate $) process
on [0; V1), and {UV1; UV2; : : :}∩(V1;∞) is an independent Poisson (rate $+�) process
on (V1;∞). The 8rst assertion in the last sentence is due to independence of the U
and V processes, and the second one is a consequence of the memoryless property of
exponential distribution.

Now assume that our transformed system on [0;∞) is started with the law of a
Poisson (rate 1=a) process. Denote its points by X1 ¡X2 ¡X3 ¡ · · ·. It suSces to show

that the law remains unchanged if a point is added independently at X d= exponential
(rate 1), and each point Xj ¡X is removed with probability a, independent of others
and the past. Conditionally on X , due to independence we have that {X1; X2; : : :} ∩
[0; X ) is a Poisson (rate 1=a) process on [0; X ), and that {X1; X2; : : :} ∩ (X;∞) is an
independent Poisson (rate 1=a) process on (X;∞). By performing independent removals
with probability a (or equivalently, an independent (1−a) thinning), we get a new point
process X ∗

1 ¡X ∗
2 ¡ · · · where, conditionally on X , {X ∗

1 ; X
∗
2 ; : : :} ∩ [0; X ) is a Poisson

(rate 1=a − 1) process on [0; X ), and {X ∗
1 ; X

∗
2 ; : : :} ∩ (X;∞) = {X1; X2; : : :} ∩ (X;∞)

is an independent Poisson (rate 1=a) process on (X;∞). Therefore, the distribution of
the random object (X; {X ∗

1 ; X
∗
2 ; : : :} ∩ [0; X ); {X ∗

1 ; X
∗
2 ; : : :} ∩ (X;∞)) is the same as the

distribution of (V1; {UV1; UV2; : : :}∩[0; V1); {UV1; UV2; : : :}∩(V1;∞)), where $=1=a−1
and �=1. Hence, the set {X ∗

1 ; X
∗
2 ; : : :}∪{X } has the same law as the set {UV1; UV2; : : :},

namely the law of a Poisson (rate 1=a) process. Together with the previous observations,
this completes the proof of the theorem.

Proof of Theorem 2. Recall the graphical construction in the proof of Proposition 1.
Let Nt(a; b) be the number of Poisson points in (a; b)× [− t; 0] and let Mt(a; b) be the
number of Poisson points in (a; b) × [ − t; 0] that are not killed by the thinning. Let
s� = 1 − t−(1−�) and let u� = 1 − t−(1+�). The upper bound is easy:

Mt(0; 1)6Nt(u�; 1) + M∞(0; u�):
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To bound the 8rst term we note

P(Nt(u�; 1)¿ 0)6ENt(u�; 1) = t−� (a)

For the second we use the law of large numbers for the Poisson process to conclude

P(M∞(0; u�)¿ (1 + �)2(log t)=a) → 0: (b)

For the lower bound we use

Mt(0; 1)¿Mt(0; s�) =M∞(0; s�) − {M∞(0; s�) −Mt(0; s�)}:
The law of large numbers for the Poisson process implies

P(M∞(0; s�)¡ (1 − �)2(log t)=a) → 0: (c)

To bound the other term we will use the following.

Lemma. There is a *¿ 0 with e−* ¿ 1− a so that if Z is Poisson with mean $ then

P(Z6 $=2)6 e−*$:

Proof. Ee−+Z = exp(−$(1 − e−+)). Markov’s inequality implies

e−+$=2P(Z6 $=2)6Ee−+Z :

Rearranging we have P(Z6 $=2)6 exp($(e−+−1++=2)). As + → 0, (e−+−1)=+ → −1
so if we choose + small enough then *=e−+−1++=2¿ 0. By choosing + even smaller
we can guarantee e−* ¿ 1 − a.

By considering the value of Nkt(s�; 1) we have

E(M(k+1)t(0; s�) −Mkt(0; s�))6 tP(Nkt(s�; 1)6 kt�=2) + t(1 − a)kt
�=2

6 2te−*kt�=2

by the lemma and our choice of *. Summing we have

E(M∞(0; s�) −Mt(0; s�))6 2t
∞∑
k=1

e−*kt�=2 =
2te−*t�=2

1 − e−*t�=2 :

The right-hand side gives an upper bound on P(M∞(0; s�) − Mt(0; s�)¿ 0) and
converges to 0 as t → ∞. With (c) this completes the proof.
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