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The gene order of chromosomes can be rearranged by chromosomal inversions
that reverse the order of segments. Motivated by a comparative study of two
Drosophila species, we investigate the number of reversals that are needed to
scramble the gene order when all reversals are equally likely and when the seg-
ments reversed are never more than L genes. In studying this question we prove
some new results about the convergence to equilibrium of shuffling by transpo-
sition and the one dimensional simple exclusion process.
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1. INTRODUCTION

To explain our motivation we begin with an example. Ranz et al. (7) did a
comparative study of chromosome 2 of Drosophila repleta and chromo-
some arm 3R of D. melanogaster. If we number the 26 genes that they
studied according to their order on the D. repleta chromosome then their
order on D. melanogaster is given by

12 7 4 2 3 21 20 18 1 13 9 16 6 14 26 25 24 15 10 11 8 5 23 22 19 17

where we have used italics to indicate adjacencies that have been preserved
in time. Since the divergence of these two species, this chromosome region
has been subjected to many inversions that reverse a segment of the chro-
mosome. Our two questions are: How many such reversals have occurred?
Is the data consistent with the null model which supposes that all possible
inversion have the same probability? To answer these questions we need to
formulate and analyze some models.



n-Reversal Chain. Consider n markers on a chromosome, which we
label with 1, 2,..., n, and that can be in any of the n! possible orders. To
these markers we add two others: one called 0 at the beginning and one
called n+1 at the end. For convenience of description we connect adjacent
markers by edges. For example, when n=7 the state of the chromosome
might be

0 − 5 − 3 − 4 − 1 − 7 − 2 − 6 − 8

In our biological application the probability of an inversion in a given
generation is small so, in contrast to the usual card shuffling problems,
we will formulate the dynamics in continuous time. The labels 0 and n+1
never move. To shuffle the others, at times of a rate one Poisson process we
pick two of the n+1 edges at random and invert the order of the markers
in between. For example, if we pick the edges 5 − 3 and 7 − 2 the result is

0 − 5 − 7 − 1 − 4 − 3 − 2 − 6 − 8

If we pick 3 − 4 and 4 − 1 in the first arrangement there is no visible change.
However, allowing this move will simplify the mathematical analysis and
only amounts to a small time change of the dynamics in which one picks
two markers 1 [ i < j [ n at random and reverses the segment with those
endpoints.

It is clear that if the chromosome is shuffled repeatedly then all of the
n! orders for the interior markers will have equal probability. The basic
question is how long does it take for the marker order to be randomized.

Theorem 1. Consider the state of the system at time t=cn ln n start-
ing with all markers in order. If c < 1/2 then the total variation distance to
the uniform distribution n goes to 1 as n Q .. If c > 2 then the distance
goes to 0.

Lower Bound. To prove the first half of the result, we define an edge
to be conserved if the markers at its two ends differ by exactly 1. It is easy
to see that the expected number of conserved edges in equilibrium is 2.
Suppose now that t(E)=(1 − E) n+1

2 ln(n+1). We say that an edge is undis-
turbed if it has not been involved in a reversal before time t. Let U be the
total number of undisturbed edges at time t(E). A simple computation
shows that EU=(n+1)E and Var(U)/EU Q 1 as n Q .. Letting AE be the
event that there are at most EU/2 conserved edges and using Chebyshev’s
inequality it follows that for large n the total variation distance

||pt(E) − n||TV \ |pt(E)(AE) − n(AE)| \ 1 − 9/EU if n is large.
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Upper Bound. To prove a result in the other direction, we will use the
comparison techniques of Diaconis and Saloff-Coste. (2) We would like to
thank Robin Pemantle for pointing out this argument. To set up for using
their results, we let G be the group of permutations of 1,..., n, which we
think of as functions g from {1, 2,..., n} onto {1, 2,..., n}. For i < j let
yij be the transposition that exchanges i and j: yi, j(i)=j, yi, j(j)=i, and
yi, j(k)=k otherwise. Again for i < j let ri, j be the reversal that has
ri, j(k)=j − (k − i) when i [ k [ j and ri, j(k)=k otherwise.

The sets Ẽ={yi, j: i < j} and E={ri, j: i < j} are symmetric and gen-
erate G. Let q̃ be the uniform distributions on Ẽ. Let q be the measure that
assigns mass 2/n(n+1) to each element of E and mass 2/(n+1) to the
identity permutation, id. Introduce the Dirichlet forms defined by

E(f, f )=1
2 C

x, y ¥ G
(f(x) − f(xy))2 q(y)

and E2 with q replaced by q̃. Using Theorem 1 on p. 2138 of Diaconis and
Saloff-Coste, (2) we can show

E2(f, f ) [ AE(f, f ) where A=4(n+1)/(n− 1)

This result gives a comparison between L2 norms: ||pt − n||2
2 [ || p̃t − n||2

2. To
transfer this result to the total variation norm we note that

2 ||pt − n||TV=||pt − n||1 [ (n!) l/2 ||pt − n||2 — d2(n)

and to quote Diaconis and Saloff-Coste: (2) all of their bounds as well as
those in Diaconis (1) are bounds on d2(n).

Estimation. There are 6 conserved segments in our Drosophila data
set. This means that at least 27 − 6=21 edges have been disturbed, so at
least 11 reversals have occurred. This lower bound is not sharp. In this
example it can be shown that at least 14 reversals are needed to put the
markers in order. Since undisturbed segments are necessarily conserved, we
could use our computations for the lower bound to get a biased estimate of
the number of reversals that have occurred. A better idea, which removes
the bias, is to consider f(g)=the number of conserved edges minus 2,
and to check that f is an eigenfunction of the chain with eigenvalue
(n − 1)/(n+1). In our case n=26 and f=4 so solving

25 125
27
2m

=4 gives m=
ln(4/25)
ln(25/27)

=23.8
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Ranz et al. (6) have recently enriched the comparative map so that 79
markers can be located in both species. Again numbering the markers on
the D. repleta chromosome by their order on D. melanogaster we have:

36 37 17 40 16 15 14 63 10 9 55 28

13 51 22 79 39 70 66 5 6 7 35 64

33 32 60 61 18 65 62 12 1 11 23 20

4 52 68 29 48 3 21 53 8 43 72 58

57 56 19 49 34 59 30 77 31 67 44 2

27 38 50 26 25 76 69 41 24 75 71 78

73 47 54 45 74 42 46

The number of conserved segment (again indicated with italics) is 11 so our
moment estimate is

m=
ln(9/78)
ln(78/80)

=85.3

This is comparable to one of the estimates of Ranz et al. (6) They used data
on markers in four regions of chromosome arm 3R that had been mapped
in detail to argue that there were approximately 6.32 ± 1.03 breakpoints per
megabase and to calculate there were 177.07 ± 28.88 breakpoints in chro-
mosome arm 3R, which would require 89 ± 14 reversals.

The number of reversals is surprising not only because it is large but
also because there is still a strong correlation between the marker order in
the two genomes. Spearman’s rank correlation r=0.326 which is significant
at the p=0.001 level. From the point of view of Theorem 1 this is not
surprising: our lower bound on the mixing time predicts that 39.5 ln 75=173
reversals are needed to completely randomize the data. However, as Fig. 1
shows the rank correlation is randomized well before that time. In 10,000
runs the average rank correlation is only 0.0423 after 40 shuffles and only
4.3% of the runs had a rank correlation larger than 0.325. It is comforting
to note that (conserved segments-2)/77 is almost a perfect exponential
curve that ends with a value of 0.0777 % 0.0795=(78/80)100.

One explanation for the results in the previous paragraph is that all
chromosomal inversions may not be equally likely. To seek a biological
explanation of the non-uniformity we note that the gene-to-gene pairing
of homologous chromosomes implies that if one chromosome of the pair
contains an inversion that the other does not, a loop will form in the region
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Fig. 1. n-Reversal chain.

in which the gene order is inverted. (See, e.g, p. 367 of Hartl and Jones. (5))
If a recombination occurs in the inverted region then the recombined
chromosomes will contain two copies of some regions and zero of others,
which can have unpleasant consequences. A simple way to take this into
account is

h-Reversal Model. Inversions that reverse markers i to i+j occur at
rate

h j − 1(1 − h)/n

The reasoning here is that the probability of no recombination decreases
exponentially with the length of the segment reversed.

This model seems quite complicated to analyze, so we will make two
simplifications. The first is that we will consider the markers 1, 2,..., n as
lying on a circle and connect them by edges as before. For example, when
n=7 and the markers start in order, we have

1 − 2 − 3 − 4 − 5 − 6 − 7 − 1

Departing slightly from our previous approach, we pick the location of the
left marker of the segment to be inverted, i, uniformly over the set of pos-
sibilities, and then pick the location of the right marker to be i+j with
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probability pj, where the arithmetic is done modulo n. Some of our results
will be obtained for this p-reversal model, but in most cases we will restrict
our attention to the

L-Reversal Model. pj=1/L for 1 [ j [ L.

Our first result is an easy extension of the lower bound in Theorem 1.

Theorem 2. The amount of time for the p-reversal chain to reach
equilibrium is at least n

2 ln n.

To prove a second lower bound we will use an idea of Wilson. (9) We
would like to thank David Aldous and Laurent Saloff-Coste for telling us
about his work. The first step in the analysis to note that a single marker
performs a symmetric random walk on the circle. To compute the jump
distribution we note that the marker at n will be moved to i if the left end-
point of the inversion is at n − k and the right is at i+k where k \ 0 and
n − k > i+k. Summing we have the rate for jumps by +i is qi/n where

qi= C
k \ 0

pi+2k

The condition n − k > i+k does not appear in the sum since we suppose
pm=0 for m \ n. Symmetry implies that q−i=qi. When pi is uniform on
1, 2,..., L this has almost a triangular distribution:

qi=(1+[(L − i)/2])/L for 1 [ i [ L

where [z] denotes the integer part of z. When p is geometric and n(1 − h) is
large so we can ignore truncation of the infinite series

qi=h i − 1(1 − h)/(1 − h2)

Theorem 3. If the distribution pi is fixed and n Q . then conver-
gence to equilibrium takes at least time

1
2

·
n3

4p2 ; i i2qi
ln n

In the L-shuffle if L Q . and (ln L)/(ln n) Q a ¥ [0, 1) then convergence
to equilibrium takes at least time

(1 − a)
2

·
6
p2 ·

n3

L3 ln n
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Here and in Theorems 4 and 5 ‘‘takes time at least cn3 ln n’’ means
that for any E > 0 the total variation distance at time (c − E) n3 ln n tends to
1 as n Q ..

The key to the proof is the fact that f(x)=sin(2px/n) is an eigen-
function for any symmetric random walk on the circle, which for the single
particle walk has eigenvalue

− l — C
n

i=1

2qi

n
[cos(2pi/n) − 1] ’ −

4p2

n3 C
n

i=1
i2qi as n Q .

Let gt(i) be the marker at position i at time t, and X j
t=g−1

t (j) be the loca-
tion of marker j at time t. Let

g(m)=sgn 1n+1
2

− m2

and let

F(gt)=C
i

g(gt(i)) sin(2p/n)=C
i

g(j) sin(pX j
t/n)

Letting Ft=F(gt), it follows from the calculation above that

d
dt

EFt=−lEFt

When the markers start in order F0 % 2n/p. Since in equilibrium Var(F.)=
O(n), this suggests that the chain cannot be in equilibrium until EFt=O(`n)
which takes about 1/2l units of time. To complete this outline we have
to show that Var(Ft) [ Cn. We get a result that is worse than for the
L-reversal since we can only show that Var(Ft) [ CnL.

To compare the first conclusion with Wilson’s Theorem 4 we observe
that when 1, 2,..., n is an interval with reflecting boundary conditions then the
first eigenfunction for the nearest neighbor random walk is cos(p(i − 1/2)/n),
so the walk on the circle equilibrates 4 times as fast. A second factor of 2
comes from the fact that Wilson’s chain does nothing 1/2 of the time. As
the next result suggests, the factor 1/2 in front of the first conclusion in
Theorem 2 should not be there.

Theorem 4. Consider independent random walks on the circle that
jump from x to x+i at rate ri and from x to x − i at rate ri. Then the time
to reach equilibrium is asymptotically

n3

4p2 ; i i2ri
ln n
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Before turning to the task of getting upper bounds on the convergence
time, we will take another look of the data in light of the developments
above. Using Wilson’s idea we can introduce a statistic for the shuffling a
linear (not circular chromosome)

C
79

i=1
g(gt(i)) cos(p(i − 0.5)/n)

Here we have replaced the sin(2pi/n) by something that is an eigenfunction
for the nearest neighbor random walk on 1, 2,..., n with reflecting boundary
conditions. Figure 2 shows the results of 10,000 simulations of the 23-re-
versal chain acting on 79 markers: plotting the logarithm of the rank cor-
relation, Wilson’s statistic and the number of conserved segments −2, all of
which have been scaled to have maximum value 1. Note that even though
we do not know if any of these quantities are eigenvectors in this case, the
three curves are almost straight lines. The value at time 85 for the (con-
served segments −2)/77 is 0.1224 which is a little larger than the value of
0.1168 for the data. The value of 23 was chosen so that the value of the
rank correlation 0.312 matched the 0.326 of the data as closely as possible.
A simulation of the 23-reversal chain gave a value of 0.355 at that time.
Recalling that (1+23)/2=12 we see that in the simulated shuffle each
event involves 12 markers on the average.

Fig. 2. 23-Reversal chain.
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To get an upper bound on the time for the L-reversal to converge to
equilibrium we will compare with

p-Transposition. Pick an integer i uniformly on the circle then
exchange the marker at i with the marker at i+j with probability pj.

L-Transposition. pj=1/L for 1 [ i [ L.

Using the proof of Theorem 3 above one can show

Theorem 5. If the distribution in the p-transposition is fixed and
n Q . then convergence to equilibrium takes at least time

1
2

·
n3

4p2 ; i i2pi
ln n

In the L-transposition if L Q . and L/n Q 0 then convergence to equilib-
rium takes at least time

1
2

·
3

4p2 ·
n3

L2 ln n

If L/n Q a ¥ (0, 1] then convergence to equilibrium takes at least time

1
2

·
na

2 >a
0 1 − cos 2px dx

ln n

Again the 1/2’s should not be there. In support this we cite Theorem 4
and observe that when a=1 the last lower bound is (n/4) ln n. To gain
some insight into the use of g(m)=sgn((m+1) − n/2) in Wilson’s function
and to give another application of Theorem 5, note that if we consider i
with gt(i) [ k to be occupied and others to be vacant, the p-transposition
chain turns into the simple exclusion process starting with k particles.
Theorem 5 gives rates of convergence to equilibrium that are uniform
in k. In the opposite direction Wilson’s argument uses the simple exclusion
process with k=[n/2] to bound the convergence of the p-transposition.

Using Theorem 1 on p. 2143 of Diaconis and Saloff-Coste (2) to
compare the L-transposition chain to the n-transposition chain and the
comparison of Dirichlet forms for the reversal and transposition chains
introduced above, we can show
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Theorem 6. The time required for the L-transposition to reach equi-
librium is at most

2n3

(L+1)2 ln n

The time required for the L-reversal chain to reach equilibrium is at most

8n3

(L+1)2 ln n

Combined with Theorem 5 this shows that the convergence time for
the L-transposition is of order (n3/L2) ln n, a result that interpolates
smoothly between the results of Diaconis–Shahshahani (3) and Wilson. (9)

Comparing the second conclusion with Theorems 2 and 3 we see that the
upper and lower bounds are not of the same order when L=na with
0 < a < 1. We believe that the lower bounds are the correct order of mag-
nitude. In support of that guess we make another one.

Conjecture. The amount of time it takes for the two particle chain
(X1

t , X2
t ) to converge to equilibrium is O(n K (n3/L2)).

Why Is this True? The expected amount of time it takes for two
adjacent particles to get separated is n/2. If we want to couple one of the
markers to another independent one started in equilibrium this can be done
in time O(n3/L2). Run the two chains independently until they are within
L/2. It is easy to see that this will occur before the difference chain exits
from (0, n) because if the particles are not within L/2 before the exit
occurs, they will be after it does. When the two particles are within L/2
they can be forced to agree after their next jumps with positive probability.
These two observations together suggest that one can couple the two par-
ticle chain to its equilibrium distribution in time O(n K (n3/L2)). However it
is not easy to turn this idea into a proof.

The remainder of the paper is devoted to the proofs of Theorems 1
to 6, and is organized by the techniques being used: conserved edges, path
comparisons, Wilson’s method, and independent random walks. These four
sections are independent and can be read in any order. We would like
to thank Laurent Saloff-Coste for many helpful conversations while this
paper was being written.
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2. CONSERVED EDGES

Our first task is to show

Theorem 2.1. The amount of time for the n-reversal chain to reach
equilibrium is at least n+1

2 ln(n+1).

Lemma 2.1. The expected number of conserved edges in equilibrium
is 2.

Proof. The first and last edges are conserved with probability 1/n
each. The n − 1 interior edges are conserved with probability 2/n each. i

Suppose now that t(E)=(1 − E) n+1
2 ln(n+1). We say that an edge is

undisturbed if it has not been involved in a reversal before time t. Let
ui=1 if the ith edge is undisturbed, 0 otherwise, and let U=u1+ · · · +un+1

be the total number of undisturbed edges.

Lemma 2.2. EU=(n+1)E and Var(U)/EU Q 1 as n Q ..

Proof. Since edge i is disturbed at rate 2/(n+1)

P(ui=1)=exp(−(2/n+1) t(E))=(n+1)−(1 − E)

and EU=(n+1) P(ui=1)=(n+1)E. To prove the second result we note
that if i ] j the rate at which at least one of the edges is disturbed is
4/(n+1) − 2/(n+1) n so

P(ui=1, uj=1) − P(ui=1) P(uj=1)

=P(ui=i) P(uj=1) 1exp 1 2t(E)
n(n+1)

2− 12

Summing over i and j we have

Var(U)=nP(ui=1)(1 − P(ui=1))

+P(ui=1)2 n(n+1)
2

1exp 1 2t(E)
n(n+1)

2− 12

As n Q ., P(ui=1) Q 0 so the first term ’ nP(ui=1). To see that the
second term is smaller we note that ex − 1 ’ x so

(n+1)
2

P(ui=1) 1exp 1 2t(E)
n(n+1)

2− 12 ’
nE

2
·
(1 − E) ln(n+1)

n
Q 0

and the desired result follows. i

Shuffling Chromosomes 735



Let pt be the marker distribution at time t when the markers start in
order, and let n be the uniform distribution on the n! orders. The next
result is not very accurate since the proof uses Markov and Chebyshev’s
inequalities on quantities that should have approximate Poisson and
normal distributions, but it does serve to establish a lower bound on the
number of shuffles needed.

Lemma 2.3. If n is large then the total variation ||pt(E) − n||TV \

1 − 9/EU.

Proof. Let AE be the set of configurations with at most EU/2 con-
served edges. It follows from Lemma 2.2 and Markov’s inequality that
(EU/2) n(Ac

E) [ 2 so P(Ac
E) [ 4/EU. Using Lemma 2.2 with Chebyshev’s

inequality we have that for large n

(EU/2)2 pt(E)(AE) [ Var(U) [ 5
4 EU

It follows that

||pt − n||TV=sup
A

|pt(A) − n(A)| \ |pt(AE) − n(AE)| \ 1 −
9

EU
i

The proof of Theorem 2.1 generalizes easily to show

Theorem 2.2. The amount of time for the p-reversal chain to reach
equilibrium is at least n

2 ln n.

Proof. As before we define an edge to be conserved if the markers at
its two ends differ by exactly 1. Since each edge is conserved with probabil-
ity 2/n.

Lemma 2.4. The expected number of conserved edges in equilibrium
is 2.

Let t(E)=(1 − E)(n/2) ln n. We say that an edge is undisturbed if it
has not been involved in a reversal before time t(E). Let u i=1 if the ith
edge is undisturbed, 0 otherwise, and let U=u1+ · · · +un be the total
number of undisturbed edges.

Lemma 2.5. EU=nE, Var(U)/EU Q 1 as n Q ..

Proof. Since edge i is disturbed at rate 2/n

P(ui=1)=exp(−(2/n) t(E))=n−(1 − E)
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so EU=nP(ui=1)=nE. To prove the second result we note that if i ] j the
rate at which at least one of the edges is disturbed is (2/n) − (pj − i+pi − j)/n
where the difference in the subscripts is done modulo n, so

P(ui=1, uj=1) − P(ui=1) P(uj=1)

=P(ui=i) P(uj=1) 1exp 12t(E) pj − i+pj − i

n
2− 12

Summing over i and j we have

Var(U)=nP(ui=1)(1 − P(ui=1))

+P(u1=1)2 n C
k

1exp 12t(E) pk+p−k

n
2− 12

As n Q ., P(ui=1) Q 0 so the first term ’ nP(ui=1). To see that the
second term is smaller we note

P(u1=1) C
k

1exp 12t(E) pk+p−k

n
2− 12 ’ n−1+E ·

4t(E)
n

Q 0

and the desired result follows. i

Repeating the proof of Lemma 2.3 shows that if n is large ||pt(E) − n||TV

\ 1 − 9/EU and the proof of Theorem 2.2 is complete. i

Returning to the n-reversal chain the final result in this section is.

Theorem 2.3. Let f(g) be −2+ the number of conserved segments in
the permutation g. f is an eigenfunction with eigenvalue (n − 1)/(n+1).

Proof. For 1 [ i [ n − 1 let ki(g)=n − 2 if i − (i+1) is conserved and
ki(g)=−2 if not. On one step the expected change in ki

if i − (i+1) is conserved is
2(n − 2)
n(n+1)

(−n)=1 −2
n+1

2 (n − 2)

if i − (i+1) is not conserved is
4

n(n+1)
(n)=1 −2

n+1
2 (−2)

To check the first that in order to split up the markers one of the edges
involved must be i − (i+1) but the other one may not be (i − 1) − i or
(i+1) − (i+2). For the second we observe that exactly two reversals will
bring the markers back together.
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For i=0 and i=n let ki(g)=n − 1 if i − (i+1) is conserved and
ki(g)=−1 if not. On one step of the expected change in ki

if i − (i+1) is conserved is
2(n − 1)
n(n+1)

(−n)=1 −2
n+1

2 (n − 1)

if i − (i+1) is not conserved is
2

n(n+1)
(n)=1 −2

n+1
2 (−1)

To check the first that in order to split up 0 and 1 one of the edges involved
must be 0 − 1 but the other one may not be 1 − 2. For the second we
observe that exactly one reversals will bring 1 back next to 0. The result
now follows from the fact that f(g)=1

n ; i ki(g). i

3. PATH COMPARISONS

Here we prove the upper bounds in Theorems 1 and 6.

Proof of the Upper Bound in Theorem 1. For i < j let yij be the
transposition that exchanges the markers at i and j let ri, j reverse the
order of markers i, i+1,..., j. Let q̃ be the uniform distributions on E2=
{yi, j: i < j}. Let q be the measure that assigns mass 2/n(n+1) to each
element of E={ri, j: i < j} and mass 2/(n+1) to the identity permutation,
id. Define the Dirichlet forms by

E(f, f )=1
2 C

x, y ¥ G
(f(x) − f(xy))2 q(y)

and E2 with q replaced by q̃.

Lemma 3.1.

E2(f, f ) [ 4
n+1
n − 1

E(f, f )

Proof. Given y ¥ G, let |y| be the smallest k for which we can write
y=z1 z2 · · · zk with zi ¥ E. Choose one such representation for each y and
let N(z, y) be the number of times z appears in that representation.
Theorem 1 on p. 2138 of Diaconis and Saloff-Coste (2) shows E2(f, f ) [

CE(f, f ) where

C=max
z ¥ E

1
q(z)

C
y ¥ G

|y| N(z, y) q̃(y) (3.1)
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To evaluate the constant C we begin by noting that if y ¥ Ẽ, q̃(y)=1/( n
2)

and if z ¥ E, q(z)=1/( n+1
2 ) so q̃(y)/q(z)=(n+1)/(n− 1). To estimate |y|

observe that if j=i+1 or j=i+2 then yi, j=ri, j while if j \ i+3 then
yi, j=ri, jri+1, j − 1 so for all y ¥ G with q̃(y) > 0 we have |y| [ 2. On the
other hand a given z=ri, j can only appear in the representation of yi, j and
yi − 1, j+1 and it follows that C [ 4(n+1)/(n − 1). i

To explain the interest in the comparison in Lemma 3.1, let pt and p̃t

be the distributions at time t of the rate 1 continuous time random walks
with jump distributions q and q̃ starting from the identity permutation at
time 0. Regarding pt and the uniform distribution as vectors in Rg and
using ||z||2 to denote the usual L2 norm for such vectors, Lemma 5 on
p. 2136 of Diaconis and Saloff-Coste (2) implies:

Lemma 3.2. If E2(f, f ) [ CE(f, f ) then

||pt − n||2
2 [ || p̃t/C − n||2

2 (3.2)

To use this result we begin by observing that the total variation dis-
tance is 1/2 the L1 norm so the Cauchy–Schwarz inequality implies

||pt − n||TV [ g1/2 ||pt − n||2 (3.3)

where g=n! is the number of elements in the group. To bound the right-
hand side we will use results of Diaconis and Shahshahani described in
Diaconis (1) which show that there is a constant a > 0 so that if t=
(n/2) ln n+cn with c \ 0 then

g1/2 || p̃t − n||2 [ ae−2c (3.4)

Combining (3.2)–(3.4) gives the second half of the theorem. i

Proof of Theorem 6. To get an upper bound on the convergence time
of the L-transposition chain we use Theorem 1 on p. 2143 of Diaconis and
Saloff-Coste (2) which we state as follows:

Lemma 3.3. Let G be a connected graph on {1, 2,..., n} with edge
set E. Define a probability on the symmetric group Sn by p(id)=1/n,
p(i, j)=(n − 1)/|E| n for (i, j) ¥ E and r(g)=0 otherwise. For each
x, y ¥ G let cx, y be a path from x to y in G. Let c be the length of the
longest path, and let

b=max
e ¥ E

|{(x, y): e ¥ cx, y}|
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be the maximum number of times an edge appears in this collection of
paths. Let

k=18 |E| cb
(n − 1)

+n2 (log n+c)

There is a universal constant a > 0 so that

||pk − n||TV [ ae−c

To apply this to the L-transposition, connect i to i+j by an edge
whenever 1 [ j [ L and the arithmetic is done modulo n. To construct the
path from x to y, we suppose without loss of generality that y=x+m with
m [ n/2. We will use cycles that consist of edges of length 1, 2, 3,..., L. We
repeat this cycle until we are within L(L+1)/2 of the target site at which
point we use edges of length 1 to complete the trip. It is easy to see that the
length of the longest path has

c [ L 5 n/2
L(L+1)/2

6+
L(L+1)

2
=

n
L+1

+o(n)

To bound b we note that edges of length 1 are used the most often and
the number of times any edge of length 1 is used will achieve the upper
bound. Consider for concreteness the edge from n to 1. There are two cases
to consider: (i) this edge is in one of the cycles. (ii) This edge is one of the
length one edges at the end. In case (i) x is at n − m(L(L+1)/2) for some
0 [ m [ [n/L(L+1)] and y is some site between 1 and x+n/2. In case (ii)
n/2 < x [ n and 1 [ y [ L(L+1)/2. From this it follows that

b [ C
[n/L(L+1)]

m=1

1n
2

− m
L(L+1)

2
2+n/2 ·

L(L+1)
2

The second term is of order n. The first is

[ C
[n/L(L+1)]+1

k=1
k

L(L+1)
2

=
n2

4L(L+1)
+o(n2)

Since E=nL, we have

8 |E| cb
n − 1

=8 · nL ·
n

L+1
·

n2

4L(L+1)
·
1
n
+o(n3)
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This gives the result is for the discrete time L-transposition chain. If we
run the continuous time chain to time (1+2E) k then with probability
\ 1 − e−c(E) k there have been at least (1+E) k discrete time steps and the
result for the L-transposition follows.

L-Reversal. To prove the result in this case, we use a comparison
between the Dirichlet forms of the L-reversal and the n-transposition. This
can be done by using the paths above and replacing edges of length k > 1
by two inversions. Further details are left to the reader. i

4. WILSON’S METHOD

In this section we derive lower bounds on the convergence time of the
p-reversal and the p-transposition chains beginning with the former. Recall
that qi=; k \ 0 pi+2k gives is the rate for jumps of size i in the single marker
chain and q−i=qi.

Theorem 3. If the distribution in the p-reversal is fixed and n Q .

then convergence to equilibrium takes at least time

1
2

·
n3

4p2 ; i i2qi
ln n

In the L-reversal chain if L Q . and (ln L)/(ln n) Q a ¥ [0, 1) then con-
vergence to equilibrium takes at least time

(1 − a)
2

·
6
p2 ·

n3

L3 ln n

Proof. The first step is the observation that f(x)=sin(2px/n) is an
eigenfunction for the single marker walk. To check this we note that if
X0=x then

d
dt

E sin(2pXt/n) :
t=0

= C
n

i=1

qi

n
[sin(2p(x+i)/n)+sin(2p(x − i)/n) − 2 sin(2px/n)]

= C
n

i=1

2qi

n
[cos(2pi/n) − 1] sin(2px/n)
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where in the second step we have used the trigonometric identity

sin(a+b)=sin(a) cos(b)+sin(b) cos(a)

Thus f is an eigenfunction with eigenvalue

− l= C
n

i=1

2qi

n
[cos(2pi/n) − 1] (4.1)

Let gt(i) be the marker at position i at time t, and X j
t=g−1

t (j) be the
location of marker j at time t. Let

g(m)=sgn 1n+1
2

− m2

and let

F(gt)=C
i

g(gt(i)) sin(2pi/n)=C
j

g(j) sin(pX j
t/n)

Letting Ft=F(gt), it follows from the calculation above that

d
dt

EFt=−lEFt (4.2)

If the markers are initially in order, i.e., g0(i)=i for all i then

F0 % 2n F
1/2

0
sin(2py) dy=

2n
p

(4.3)

Our next step is to estimate the variance of Ft. The argument follows
Lemma 5 of Wilson (9) but is simpler since time is continuous. To isolate
this calculation from the rest of the proof we state it as

Lemma 4.1. Suppose F is an eigenfunction with eigenvalue −l for a
chain that jumps from g to s at rate Q(n, s). If we let

(NF)2 (g)=C
s

Q(g, s){F(g) − F(s)}2

and assume that Var(F(g0))=0 then Var(F(gt)) [ ||(NF)2||./2l.

Proof. Our first step is to observe that

E(F2
t+s | Ft)=F2

t +2FtE(Ft+s − Ft | Ft)+E((Ft+s − Ft)2 | Ft)
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Letting s Q 0 and using our assumptions and notation we have

d
ds

E(F2
t+s | Ft) :

s=0
=−2lF2

t +(NF)2 (gt)

Taking expected value gives

d
dt

E(F2
t )=−2lE(F2

t )+E(NF)2 (gt)

Using the eigenfunction assumption again, it follows that

d
dt

(EFt)2=2EFt
d
dt

EFt=−2l(EFt)2

Subtracting this from the previous equation we have

d
dt

Var(Ft)=−2l Var(Ft)+E(NF)2 (gt)

Solving the differential equation and noting that Var(F0)=0 we have

Var(F2
t )=F

t

0
e−2l(t − s)E(NF)2 (gs) ds

Integrating we have

Var(F2
t ) [

||(NF)2||.
2l

i

Lemma 4.2. Let B=||(NF)2||./2l and t(E)=1
l

ln(F0/2 `B/E). The
total variation distance between the distribution at time t(E) and equilib-
rium is at least 1 − 2E.

Proof. The differential equation (4.2) implies that in equilibrium
EF.=0, so Chebyshev’s inequality implies

P(F. \ `B/E) [ E

EFt(E)=e−lt(E)F0=2 `B/E so using Chebyshev’s inequality again we have

P(Ft(E) [ `B/E) [ E

and the desired result follows. i
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Fixed Jump Distribution. Since 1 − cos x ’ x2/2 as x Q 0, our
assumption implies

−l= C
n

i=1

2qi

n
[cos(2pi/n) − 1] ’ −

4p2

n3 C
n

i=1
i2qi (4.4)

To bound ||(NF)2||., we begin with the observation that

:sin 12p 1x+
y
n
22− sin 12p 1x −

y
n
22:=:F 2p(x+y/n)

2p(x − y/n)
cos z dz : [ 4py/n

(4.5)

When the reversal ri, i+j has j even, e.g., j=8, where the picture might be

1 1 1 1 ? −1 −1 −1 −1

Since the worst thing that can happen is that a 1 exchanges places with a
−1, (4.5) implies that the change in F

|F(g) − F(gri, i+j)| [ C
j/2

k=1
2 ·

4pk
n

=
p

n
j(j+2)

When the reversal ri, i+j has j odd, e.g., j=7, where the picture might be

1 1 1 1 −1 −1 −1 −1

and (4.5) implies that the change in F

|F(g) − F(gri, i+j)| [ C
(j − 1)/2

k=0
2 ·

4p(2k+1)
2n

=
p

n
(j+1)2

since the sum of the first m odd integers, 1+3+ · · · +(2m − 1)=m2. Since
(j+1)2 > j(j+2) we have

|F(g) − F(gri, i+j)| [
p

n
(j+1)2

Using this in the definition we have

(NF)2 (g) [ C
i, j

pj

n
p2

n2 (j+1)4=
p2

n2 C
j

pj(j+1)4 (4.6)
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Comparing with (4.4), we have

B [ Cn

Since F0 ’ 2n/p, using Lemma 4.2 we see that if D=ln(E1/2/pC1/2) then at
time t=(1/2l)(D+ln n) the total variation distance is at least 1 − 2E.

L-Reversal Chain. Under the assumption L/n Q 0 as n Q . the
computation in (4.4) is valid. In the uniform case, qi % (L − i)/2L for i [ L,
so if L Q .

C
L

i=1
i2qi ’ L3 F

1

0
x2 (1 − x)

2
dx=L3/24 and l ’

p2L3

6n3 (4.7)

When pi is uniform on 1, 2,..., L and L Q ., the sum on the right-hand
side of (4.6) becomes

1
L

C
L

j=1
(j+1)4 ’ L4 F

1

0
x4 dx=L4/5 (4.8)

Combining (4.6), (4.7), and (4.8) we have

B [ CnL

Since F0 ’ 2n/p, using Lemma 4.2 we see that if D=ln(E1/2/pC1/2) then
at time t=(1/2l)(D+ln(n/L)) the total variation distance is at least
1 − 2E. i

Theorem 5. If the distribution in the p-transposition is fixed and
n Q . then convergence to equilibrium takes at least time

1
2

·
n3

4p2 ; i i2pi
ln n

In the L-transposition if L Q . and L/n Q 0 then convergence to equilib-
rium takes at least time

1
2

·
3

4p2 ·
n3

L2 ln n

If L/n Q a ¥ (0, 1] then convergence to equilibrium takes at least time

1
2

·
na

>a
0 1 − cos 2px dx

ln n
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Proof. Fixed Distribution. Since 1 − cos x ’ x2/2 as x Q 0, our
assumption implies

−l= C
n

i=1

2pi

n
[cos(2pi/n) − 1] ’ −

4p2

n3 C
n

i=1
i2pi (4.9)

To bound ||(NF)2||., we observe that (4.5) implies

|F(g) − F(gl i, i+j)| [ 2 ·
2pj
n

Using this in the definition we have

(NF)2 (g) [
16p2

n2 C
j

pj j2 (4.10)

Comparing with (4.9), we have

B [ Cn

Since F0 ’ 2n/p, using Lemma 4.2 we see that if D=ln(E1/2/pC1/2) then at
time t=(1/2l)(D+ln n) the total variation distance is at least 1 − 2E.

L-Transposition. Under the assumption L/n Q 0 as n Q . the com-
putation in (4.9) is valid. If L Q . then

C
L

i=1
i2pi % L2 F

1

0
x2 dx=L2/3 and l ’

4p2L2

3n3 (4.11)

When pi is uniform on 1, 2,..., L and L Q ., the right-hand side of (4.10)
becomes

16p2

n2 ·
1
L

C
L

j=1
j2 ’

16p2

n2 · L2 F
1

0
x2 dx=

16p2

n2 ·
L3

3
(4.12)

Comparing with (4.11), we have

B [ 2n

and the proof is completed as in the previous case.
If L/n Q a ¥ (0, 1] then using (4.9) we have

− l=
2

nL
C
L

i=1
[cos(2pi/n) − 1] ’

2
na

F
a

0
−1+cos(2px) dx

Using (4.12) now we have B [ Cn and the rest is as before. i
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5. INDEPENDENT PARTICLES

Consider first one random walk on the circle that jumps from x to
x+i at rate ri and from x to x − i at rate ri and assume that r1 > 0 so that
the walk is irreducible. dn(t)=||pt(0, · ) − n||TV a 0 continuously as t ‘ . so
we can define t(c, n) by dn(t(c, n))=n−c. Let m i=pt(c, n)(i, · ) and ni=n for
1 [ i [ n.

Lemma 5.1. As n Q . the total variation distance

en(c)=||m1 × m2 × · · · × mn − n1 × n2 × · · · × nn ||TV

tends to 0 for c < 1 and to 1 for c > 1.

Proof. A standard result, see, e.g., (6.2) on p. 139 of Durrett (4)

implies

||m1 × m2 × · · · × mn − n1 × n2 × · · · × nn ||TV [ C
i

||m i − ni ||TV (5.1)

From this it follows that if c > 1 then en(c) [ n1 − c
Q 0 as n Q ..

To prove a result in the other direction we need a converse to (5.1).
We begin with the observation that we can define random variables Xi and
Yi with distributions m i and ni so that P(Xi ] Xj)=||m i − ni ||TV. If (X1, Y1)
and (X2, Y2) are independent then

P(X1=Y1, X2=Y2)=P(X1=Y1) P(X2=Y2)

=1 − P(X1=Y1)+P(X1=Y1){1 − P(X2=Y2)}

so we have ||m1 × m2 − n1 × n2 ||TV=||m1 − n1 ||TV+(1 − ||m1 − n1 ||TV) ||m2 − n2 ||TV.
From this and induction it follows that

||m1 × m2 × · · · × mn − n1 × n2 × · · · × nn ||TV

= C
n

k=1
||mk − nk ||TV D

k − 1

j=1
(1 − ||mj − nj ||TV) (5.2)

When ||mk − nk ||TV=n−c with c < 1, we have

en(c)= C
n

k=1
n−c(1 − n−c)k − 1=1 − (1 − n−c)n

If c < 1 the right-hand side tends to 1 and the proof of Lemma 5.1 is
complete. i
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To complete the proof of Theorem 4 now it suffices to show

Lemma 5.2.

t(c, n) ’
cn2

4p2 ; i i2ri
ln n

Proof. Repeating the first calculation of the proof of Theorem 3 in
Section 4 it follows that for 0 [ k < n, fk(x)=sin(2pkx/n) is an eigen-
function with eigenvalue

−lk= C
n

i=1
2ri[cos(2pki/n) − 1] % −

4p2k2

n2 C
i

i2ri (5.3)

the last approximation holding if k/n is small. Let hk(x) be fk(x) nor-
malized to have ;n

x=1 hk(x)2=1. When k=0, h0(x)=1 `n. If k/n is
small

C
n

i=1
cos2 12pki

n
2 % n F

1

0
cos2 12pkx

n
2 dx=

n
2

since sin2+cos2=1, so in this case hk(x) % `2/n fk(x).
Since our chain is symmetric, a theorem on p. 243 of Riesz and

Nagy’s (8) Functional Analysis implies that we can write

pt(x, y)= C
n − 1

k=0
e−lk t hk(x) hk(y)

(Their result is for the powers of a matrix but generalizes easily to the form
given here since the continuous time chain is the sum of a Poisson number
of iterates of the one step transition matrix.) The k=0 term corresponds to
the stationary distribution so

pt(0, y) − n(y)= C
n − 1

k=0
e−lk thk(0) hk(y) (5.4)

To get a lower bound on the distance from equilibrium we note that

2 ||pt − n||TV=||pt − n||1= sup
g: ||g||.=1

:C
y

(pt(0, y) − n(y)) g(y) :
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with the sup achieved by g(y)=sgn(pt(0, y) − n(y)). Taking g(y)=h1(y)/
h1(0) and using the orthogonality of eigenfunctions, we have

C
y

(pt(0, y) − n(y)) g(y)=C
y

e−l1 th1(y)2=e−l1 t

Combining this with the previous equation we have

||pt − n||TV \ 1
2 e−l1 t

To get an upper bound we use the Cauchy–Schwarz inequality to
conclude

||pt − n||1 [ `n ||pt − n||2

Orthogonality and (5.4) imply

>`n pt −
1
n
>2

2
= C

n − 1

k=1
(`n hk(0))2 e−2lk t

We are interested in this result when t=c(ln n)/l1. When k/n is small
lk % k2l1 so

e−2lk t % n−2ck2

Pick an integer K so that cK2 > 1+2c. Since hk(0) [ 1 for all k we have

C
n − 1

k=K
(`n hk(0))2 e−2lk t [ n2e−2lK c [ n−4c

The first part of the sum

C
K − 1

k=1
(`n hk(0))2 e−2lk t ’ 4n−2c

and the proof of Lemma 5.2 is complete. i
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