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ABSTRACT

We present a Bayesian approach to the problem of inferring the history of inversions sepa-
rating homologous chromosomes from two different species. The method is based on Markov
Chain Monte Carlo (MCMC) and takes full advantage of all the information from marker
order. We apply the method both to simulated data and to two real data sets. For the
simulated data, we show that the MCMC method provides accurate estimates of the true
posterior distributions and in the analysis of the real data we show that the most likely
number of inversions in some cases is considerably larger than estimates obtained based on
the parsimony inferred number of inversions. Indeed, in the case of the Drosophila repleta–
D. melanogaster comparison, the lower boundary of a 95% highest posterior density credi-
ble interval for the number of inversions is considerably larger than the most parsimonious
number of inversions.
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1. INTRODUCTION

1.1. The biological problem

With the recent increase in the availability of genomic data, statistical methods for elucidating
the evolution of genomes are becoming increasingly important. Such methods are relevant, not only

in evolutionary studies, but also for comparative mapping. In general, genomes evolve by inversions, translo-
cations, and chromosome � ssions and fusions. For simplicity, in this article we will consider situations that
involve only inversions. This occurs in (a) mitochondrial and chloroplast data, (b) sex chromosomes which
do not undergo reciprocal translocations with autosomes, and (c) Drosophila species, where translocations
and pericentric inversions are rare, so chromosome arms are preserved between species.

Our data consists of N markers with known order in two species. The problem of inferring the history
of the two chromosomes is the problem of inferring the order and number of inversions. In most studies,
this has been approached by estimating the “inversion distance,” the smallest number of inversions which
can produce the observed rearrangement. For example, in the data of Palmer and Herbon (1998), three
inversions are necessary to transform the mitochondrial genome of cabbage (Brassica oleracea) into the
mitochondrial genome of turnip (Brassica campestris). The problem of identifying the minimum number
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of inversions is known as “sorting by reversals” (SBR) for unsigned permutations. Sorting by reversals
is NP-hard (Caprara, 1999), but an exact branch-and-bound method is available (Kececioglu and Sankoff,
1995).

There is no guarantee that the actual number of inversions that have occurred in the history of two
chromosomes is equal to the minimal number. In many cases, the true number of inversions may, in fact,
be much larger than the inversion distance. Several estimators of the true number of inversions have,
therefore, been proposed. For example, Caprara and Lancia (2000) provided an estimator based on the
number of break points, i.e., the number of adjacent pairs of markers in one genome that are not adjacent
in the other. The inversion distance between two genomes is at least 1/2 the number of breakpoints but in
most cases this bound is very crude. In this article, we will develop a Bayesian method for estimating the
true number of inversions assuming an explicit biological model of evolution by inversions. The method
is based on Markov Chain Monte Carlo (MCMC). The advantage of such a method is that it uses all the
available information in the data and automatically provides measures of statistical uncertainty in terms
of credible sets. We apply the method to two real data sets and show that, in one case, the most probable
number of inversions is much larger than the minimum number of inversions.

1.2. The break point graph

The key to the study of the inversion distance between two genomes is the break point graph (Hannenhalli
and Pevzner, 1995a). We � rst de� ne the break point graph for the case where the orientations of the markers
are known, so they are described by signed permutations. In this case, we can think of each marker as
having two ends, a head and a tail. The break point graph of one signed permutation of N markers, pa ,
relative to another, pb, is a graph with 2N C 2 vertices, one corresponding to each end of each of the N

markers plus one for each end of the chromosome. The notation .2; ¡3; 1; 4/ will mean that marker 2 is
leftmost and is oriented with its head to the left of its tail, and then next comes marker 3, with the its head
to the right of the tail, etc. Now, for each marker k, label its head 2k ¡ 1 and its tail 2k; we then may
replace each signed number in the permutation by the pair of numbers representing the head and the tail,
in the appropriate order: k ! 2k ¡ 1 : 2k and ¡k ! 2k : 2k ¡ 1. We add 0 at the left end and 2N C 1 D 9
at the right end to get

.2; ¡3; 1; 4/ ! .0; 3 : 4; 6 : 5; 1 : 2; 7 : 8; 9/:

The colon-separated pairs represent the two ends of one marker, and they will remain adjacent under
any sequence of inversions; the comma-separated pairs represent marker ends which are adjacent in this
permutation but which may be split up by inversions. For each comma-separated pair in pa , (pb), there
is a black (gray) edge joining the corresponding vertices. As an example, Fig. 1 shows the break point
graph of pa D .2; ¡3; 1; 4/ relative to pb D .¡1; ¡4; 2; 3/. To help the reader check the construction of
the graph, we note that

.¡1; ¡4; 2; 3/ ! .0; 2 : 1; 8 : 7; 3 : 4; 5 : 6; 9/

Note that each vertex has exactly one black edge and one gray edge incident to it. If we start at some
vertex and follow an edge to another vertex, and then follow the other edge incident to that edge, etc., we
will eventually return to the starting vertex. If there are vertices not on this cycle we can repeat the process
until every vertex is on a cycle. This yields a cycle decomposition which in this (signed) case is unique.

FIG. 1. The break point graph of pa D .2; ¡3; 1; 4/ relative to pb D .¡1; ¡4; 2; 3/. The black edges are shown as
thick lines. In this case, there are two cycles, 0-3-7-2-0 and 4-6-9-8-1-5-4.
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Let the number of cycles in the cycle decomposition be c.pa; pb/. Performing an inversion, I , on pa will
cause two black edges to be broken and replaced by two others; the effect on the cycle decomposition will
be to either split one of the cycles into two cycles, join two cycles together to form one cycle, or change
one of the cycles so that it visits the same vertices but in a different order. The number of cycles will
change by 1c D c.Ipa; pb/ ¡ c.pa; pb/ D C1; ¡1 or 0. If pa D pb , the number of cycles is c D N C 1.
Since an inversion increases the number of cycles by at most C1, it takes at least N C 1 ¡ c inversions
to turn pa into pb. Although this is only a lower bound on the inversion distance, it is usually close to
and often equal to the true value. For example, Bafna and Pevzner (1995) considered 11 comparisons of
mitochondrial and chloroplast genomes and found that this lower bound gave the right answer in all cases.

In general, there are complications called hurdles that can prevent the number of cycles from being
increased. The simplest example occurs when pa D .3; 2; 1/ and pb D .1; 2; 3/. In this case, the breakpoint
graph has two cycles but no move will increase the number of cycles to 3. If h.pa ; pb/ is the number of
hurdles, then Hannenhalli and Pevzner (1995a) have shown that n C 1 ¡ c C h is a lower bound on the
genomic distance. This is almost the answer in general. If the hurdles are arranged to form what they call
a fortress, then one additional move is required. If we let f .pa; pb/ D 1 when the breakpoint graph is a
fortress and 0 otherwise, then

d.pa; pb/ D n C 1 ¡ c C h C f:

This result due to Hannenhalli and Pevzner (1995a) leads to a polynomial algorithm to compute the
inversion distance between two signed permutations. For more details, see Chapter 10 of Pevzner (2000).

Most genomic data is in the form of unsigned permutations. That is, mapping techniques tell us the
location of the markers on the chromosome but usually provide no information regarding the orientation of
the marker on the chromosome. For example, consider the following comparative map between the human
and cattle X chromosomes which comes from Band et al. (2000). Here, the second column gives the start
of the gene when its exact location is known. The third column gives the cytological band to which it
has been mapped. The symbols p and q refer to the two arms of the X chromosome with the numbers
increasing as we move away from the centromere.

Gene Start (Kb) Cyto Cattle order

ANT3 Xp22.32 1
AMELX 8,950 Xp22.31 2
SAT 18,652 Xp22.1 3
CYBB Xp21.1 4
MAOA 38,289 Xp11.4 5
SYN1 42,783 Xp11.23 7
TIMP1 42,792 Xp11.23 8
SYP 44,288 Xp11.22 6
CITED1 64,082 Xq13.1 9
PLP1 97,418 Xq22 11
FACL4 103,471 Xq23 10
HPRT1 128,965 Xq26 14
TNFSF5 130,747 Xq26 13
SLC6A8 148,934 Xq28 12

In this case, if the data is grouped into blocks, then in most cases orientations can be assigned:
1; 2; 3; 4; 5 ! C1, 6 ! 2?, 7; 8 ! C3, 9 ! 4?, 11; 10 ! ¡5, and 14; 13; 12 ! ¡6. This leads to the
following partially signed permutation C1; C3; 2?; 4?; ¡5; ¡6. There are only four possible ways to assign
signs to the segments with unknown orientation. A little calculation shows that C1; C3; ¡2; C4; ¡5; ¡6
has the smallest distance: 4. In general one can reduce the computation of the distance from the unsigned
case to the signed case, but in some situations the amount of work becomes prohibitive. For example, in
the comparison of Drosophila melanogaster and D. repleta below, one would need to compute the distance
for 260 > 1018 assignments of signs.
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2. A BAYESIAN APPROACH

2.1. Model assumptions

We model the process of chromosome rearrangement as follows:

² Rearrangement is assumed to be due entirely to inversions.
² The occurrence of inversions is a Poisson process with unknown mean ¸; the probability of exactly L

inversions having occurred is P .Lj¸/ D e¡¸¸L=L!; L D 1; 2; : : : :
² We assume a uniform prior distribution for ¸, i.e., P .¸/ D 1=¸max for 0 < ¸ · ¸max .
² The number of markers which are present and in known order on both of the two chromosomes being

compared is N . For each marker we may or may not know whether it has the same or opposite
orientations on the two chromosomes. If we have (do not have) this information for all markers we
represent the data, D, as a pair of signed (unsigned) permutations, Pa and Pb.

² We distinguish N.N C 1/=2 possible inversions. We distinguish between inversions only if they produce
distinct signed permutations of the markers. Thus, if we start with the sequence of markers .A; B; C/,
the inversion of any section containing B (but not A or C) yields .A; ¡B; C/. As far as the present
model is concerned, all such inversions are the same; it doesn’t matter precisely where the breaks in the
chromosome are as long as the section between the breaks (i.e., the inverted section) includes B . The
inversion of a section of chromosome which contains no markers is not counted as an inversion as all.

² Each of these N.N C 1/=2 inversions occurs with equal probability.

2.2. MCMC method

There are in this model .N.N C 1/=2/LX equiprobable inversion sequences X of length LX . Let Ä be
the set of all possible inversion sequences, and let the probability measure associated with each X 2 Ä be

P .Xj¸/ D .e¡¸¸LX =LX!/.N.N C 1/=2/¡LX :

We are interested in approximating the posterior probability distributions for X and ¸, i.e., approximat-
ing P .XjD/ and P .¸jD/, where D is the known marker order in the two sampled chromosomes. To
do this, we establish a Markov chain with state space on Ä £ RC and stationary density P .X; ¸jD/,
X 2 Ä, ¸ 2 RC. By sampling values of X and ¸ from this Markov chain at stationarity, we can approx-
imate P .XjD/ and P .¸jD/. We may write the target distribution as P .X; ¸jD/ D P .X; ¸; D/=P .D/ D
P .DjX; ¸/P .Xj¸/P .¸/=P .D/. Our update scheme (described in the next section) generates only inversion
sequences (X) which transforms pa into pb. For such X, P .DjX; ¸/ D 1 and

P .X; ¸jD/ D .e¡¸¸LX =LX!/.N.N C 1/=2/¡LX
1

¸max
=P .D/:

We update the Markov chain element .X; ¸/ using a Metropolis-Hastings scheme in which we alternate
updating ¸ and X. A Gibbs step is used to update ¸; i.e., P .¸jX; D/ / P .Xj¸/P .¸/ / e¡¸¸Lx P .¸/

is sampled from directly. Updating X is more involved. Think of X as an inversion path (Fig. 2) which
comprises sequences of permutations, p0 D pa; p1; : : : pL D pb , and of inversions, I1; I2; : : : IL, with
pi D Iipi¡1; i D 1; 2; : : : L.

The proposed new path, Y , is constructed as follows:

1. Choose a section of X to replace. Choose, with probability qL.l; j/, a length, l; .0 · l · L/, and a
starting permutation, pj ; .0 · j · L ¡ l/. The subpath from p® D pj to p¯ D pjCl will be replaced
in Y by a new one.

2. Generate a new subpath to replace this section. Using the breakpoint graph of p® relative to p¯ , choose
an inversion, I 0

1, at random, but with 1c D 1 with high probability. Then, in the same way, choose I 0
2

using the break point graph of I 0
1p® relative to p¯ , and so on, until I 0

1I 0
2 : : : I 0

l 0p® D p¯ .
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FIG. 2. The update scheme in the signed and unsigned cases. In each case, the dashed line is an inversion path, Y ,
proposed as an update for path X (solid line).

2.3. Details of updating for signed permutations

Choosing a section of X to replace. First the length, l, is chosen by sampling from a distribution q.l/,
and then j is chosen uniformly at random from 0; 1; : : : Li ¡ l, so q.l; j / D q.l/=.L C 1 ¡ l/. In practice,
we use a q.l/ so that lengths small compared to N are roughly equally represented, while lengths large
compared to N are strongly suppressed. The particular form we use is

q.l/ / 1 ¡ tanh

³
»

³
l

®N
¡ 1

´´

with typically » D 8 and ® D 0:65

Generating a new subpath. Let the permutations at the ends of the section to be replaced be p® D pj

and p¯ D pjCl . We seek a sequence of inversions, I 0
1; I 0

2; : : : I 0
l0 , and intermediate permutations p0

0 D
p®; p0

1; p0
2; : : : p0

l 0 D p¯ with p0
i D I 0

i p
0
i¡1, i D 1; 2; : : : l0. We use the break point graph of p0

i¡1 relative
to p¯ in deciding which inversion to choose as I 0

iC1. In particular, we look at its cycle decomposition and
identify which inversions would lead to a change in the number of cycles of 1c D ¡1, 0, or 1. The cycle
decomposition of pa relative to pb has N C 1 cycles if pa and pb are identical and otherwise it has fewer.
Thus, generating a sequence of inversions which turns pa into pb is a matter of bringing the number of
cycles up to this value, and so a 1c D C1; .¡1/ step is a step toward (away from) this goal. By enumerating
which inversions lead to 1c D C1, 0, or ¡1, and then choosing a 1c D 0, or 1c D ¡1 inversion only
rarely, we make long paths unlikely compared to short ones. The idea is to simulate a random path from a
distribution that approximates the posterior distribution. Under the assumption that shorter paths are more
probable than longer paths, steps in which 1c D C1 should be chosen with higher probability than steps
in which 1c D 0 or 1c D ¡1 . Speci� cally, if NC1, N0, and N¡1 are the numbers of inversions leading

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270260518281&iName=master.img-001.png&w=392&h=301
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to 1c D C1, 0, and ¡1, respectively, and are all nonzero, we let the relative probability of choosing
1c D C1, 0, ¡1 be 1; "1; "2, and then, having chosen 1c, we choose among the corresponding inversions,
giving each equal probability. So, for instance, if NC1, N0 and N¡1 are all nonzero, the probability of
choosing a particular 1c D C1 inversion would be 1=..1C "1 C "2/NC1/. However, if there are no 1c D 0
inversions, for instance, the probability of 1c D 0 must be zero, and we still let the relative probabilities
of 1c D 1 and 1c D ¡1 be 1 and "2, so the probability of choosing a particular 1c D C1 inversion
is 1=..1 C "2/NC1/. When NC1 D N0 D 0, the two permutations are equal. With probability 1 ¡ "3, we
stop at this point and with probability "3 we keep going (with a 1c D ¡1 step since there is no other
choice). The probability, qnew , of proposing a particular subpath from p® to p¯ with l 0 inversions will
be the product of l 0 C 1 factors, one for each inversion and a factor of 1 ¡ "3 for actually stopping upon
reaching p¯ . Any nonnegative choices of "i are valid; however, the choice of "i may greatly in� uence rates
of convergence. To determine appropriate values of "i , initial runs on sample data sets can be performed
(see below).

The length of the proposed path Y is L0 D L C l 0 ¡ l, and the forward proposal probability is q.Y jX/ D
qL.l; j /qnew . To calculate the acceptance probability, we also need q.XjY / D qL0.l0; j /qold . Here qold is
the probability of generating as a path from p® to p¯ precisely the subpath that occurred in X. This is
done much as in the other direction: by getting cycle decompositions and identifying 1c D C1; 0, and ¡1
inversions, etc.

2.4. Details for unsigned permutations

The previous section describes an updating procedure for the signed case which relies on the fact that
in that case it is not only easy to get c, but it is easy to identify which inversions lead to 1c of C1; 0,
or ¡1: In the unsigned case, getting c is hard, and identifying 1c D C1; 0; ¡1 inversions would be even
harder. Instead of trying to do this, we always work with signed permutations. However, when doing a
calculation for the unsigned case, we let the starting permutation, pa , wander over the set of 2N signed
permutations which all have the marker order speci� ed in the data and differ from each other only in the
orientations of the markers. In other words, we propose an update not only to the sequence of inversions
but to the signs of the markers in pa .

As in the signed case, we � rst choose a subpath to propose a replacement for; let it go from p® to p¯ . Let
F be an operator which � ips some markers. We perform these � ips on p0 D pa; p1; : : : ; pj D p® , to get
a new sequence of permutations Fp0; Fp1; : : : ; Fpj , related by the same inversions, i.e., IiFpi¡1 D Fpi ,
i D 1; : : : ; j . Then we generate a path from Fp® to p¯ in the same way as for the signed case. Figure 2
illustrates the process. To � ip a marker means to perform an inversion which affects only that one marker,
and we know how to evaluate 1c for inversions. So we can easily evaluate the 1c from each of the N � ips
considered in isolation. Then each � ip is performed with probability ²4 for 1c D ¡1, 1=2 for 1c D 0, or
1c D 1.

2.5. Details on convergence monitoring

We use the method of Gelman and Rubin (1992) to decide when the Markov chain has converged. This
requires running some number, m ¸ 2, of chains for the same data. Let Xi;j be the ith element of the
j th Markov chain, and Li;j its length. De� ne a between-chain variance B D 1

m¡1

P
j .hLij ¡ hLi/2 and a

within-chain variance W D 1
m

P
j

1
n¡1

P
i.Li;j ¡hLij /2, where hLij D 1

n

P
i Li;j and hLi D 1

mn

P
i;j Lij .

Convergence is indicated when
p

OR D
p

.n ¡ 1/=n C B=W gets close to 1. We typically use between 5

and 10 chains and consider the burn-in phase to last until
p

OR · 1:1; at that point we start to accumulate
L and ¸ histograms. Typically, we continue running for many times the length of the burn-in.

The idea of running several chains is that one can check that they have come to agree with each other
before deciding that they have converged. For this purpose, it is desirable to start the different chains in
widely dispersed states. In the present method, the initial states are constructed by generating a path from
pa to pb in the same way as described in Section 2.4, except that some paths are generated using a low
value of ²1, and others using a large value, in order to start some chains with short paths and some with
long paths.
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FIG. 3. Mean CPU time to convergence (
p

OR < 1:1) as a function of "1 for unsigned permutations of 30 markers.
The number of random inversions performed to generate these data are L0 D 20 and L0 D 35.

2.6. Improving convergence

The update scheme described above has several parameters which may be tuned to improve convergence.
In particular, ® and » control the length of the section of path chosen to replace; ²1; ²2, and ²3 control
the generation of a new subpath transforming p® into p¯ (and in particular how strongly short paths are
preferred); and (in the unsigned case) ²4 controls the degree of preference for 1c D 1 marker � ips. In order
to choose reasonable values of these parameters, we performed several studies of convergence as a function
of a parameter. In particular, for each of several values of a parameter, we found the number of Markov
chain iterations and CPU time to convergence for each of a set of permutations representing simulated data.
Each permutation was chosen by performing L0 inversions with each being chosen uniformly at random
from the N.N C 1/=2 inversions. In this way, we arrived at the following values for the parameters:
® D 0:65, » D 8, ²1 D 0:03, ²2 D ²1=2, ²3 D ²2

1 , and ²4 D 0:025. As an example, Fig. 3 shows the mean
time to convergence as a function of ²1 for unsigned permutations of 30 markers. The other parameters
are as given above.

3. RESULTS FOR SIMULATED DATA

In this section, the markers are taken to be labeled such that pb is the identity permutation .1; 2; 3; : : : ; N/.
Then D is speci� ed by giving the (signed or unsigned) permutation pa . Let the number of paths of length
L which sort D be M.L; D/. Since P .X; ¸jD/ depends on X only through the length,

P .L; ¸jD/ D M.L; D/P .X; ¸jD/ / M.L; D/
e¸¸L

L!
.N.N C 1/=2/¡L

and P .LjD/ and P .¸jD/ may be obtained by, respectively, integrating over ¸ and summing over L. For
small N , it is feasible to get M.L; D/, for all L less than some maximum path length Lmax , by directly
counting the paths. For large L, M.L; D/ ¼ .N.N C 1/=2/L=K.N/; where K.N/ is the total number

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270260518281&iName=master.img-002.png&w=343&h=272
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FIG. 4. Comparison of MCMC and exact results for P .LjD/ and P .¸jD/ for 7 signed markers, D D
.1; ¡5; ¡4; ¡3; ¡6; 2; 7/, and ¸max D 35.

of permutations, and the numerator is the total number of paths of length L. For unsigned permutations
K.N/ D N !, and for signed permutations K.N/ D N !2N . In summing over L, we use this approximation
for the L > Lmax terms. Figure 4 shows the result of this calculation compared with the result of our
MCMC method. To obtain the results for the MCMC method, we ran 9 chains each consisting of 335,872
updates, while sampling values of ¸ and L in each iteration.

As Fig. 4 shows, the MCMC method provides a very close approximation to the true posterior distri-
butions of L and ¸. The close correspondence between the true and the estimated posterior distribution
demonstrates that the MCMC method, in the current implementation, in fact does recover the true posterior
distribution.

It is also worth noticing that the posterior distributions of L and ¸ have much larger variances when
considering unsigned instead of signed markers. This tells us that much information regarding the inversion
history is preserved in the signs of the markers. Whenever signs of the markers are available, estimators
of the number of inversions should take this information into account.

4. APPLICATIONS TO REAL DATA

Human–cattle data

The � rst data set we analyze is the data set above with 14 unsigned markers on the X-chromosome
of cattle and humans. In Fig. 5, we illustrate the convergence of E[LjD]. Eight replicate Markov chains

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270260518281&iName=master.img-003.png&w=341&h=341
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FIG. 5. Convergence of the ergodic average of the number inversions along the chain (Laverage) for the data set
containing 14 markers from human and cattle X chromosomes. The thick solid line shows the average among the 8
replicate chains.

were simulated. The initial inversion paths were simulated as one iteration of the chain with "1 D 0:7
(long initial inversion paths, dashed lines) or "1 D 0:025 (short initial inversions paths, solid lines). For
each chain, 815,104 iterations were completed with "1 D 0:03 and "4 D 0:025 and a value of ¸max D 80
was used to ensure that the resulting posterior distributions were proper. The value of ¸max D 80 was
chosen after initial trial runs to be suf� ciently large to contain essentially all of the probability mass of the
posterior distribution. None of the conclusions here are sensitive to the exact value of ¸max chosen. Notice
that the ergodic averages of L along the chains converge to the same point for all chains: E[LjD] ¼ 5:49.

Also,
p

OR < 1:1 was achieved at 8192 iterations. The ergodic averages are converging relatively fast
and simulation variance should be minimal in the estimation of L. Similar properties are true for ¸

(not shown). The run time for this data set was 254 seconds on an Athlon 1.2 GHz processor running
Linux.

The posterior distribution for L and ¸ were obtained by sampling values of L and ¸ after each iteration
of the Markov chain after the � rst 8,192 iterations (the burn-in time) of the chain (Fig. 6). The estimates of
the posterior probability were combined by simply using the arithmetic averages of the posterior probability
among runs. For this data set, the most probable value of L, i.e., the value of L that maximizes P .LjD/

is the parsimony inferred number of inversions (4). However, we also notice that it is quite likely that the
true number of inversions is larger than 4. A 95% credible set for L, based on the highest posterior density
(HPD) method is (4 · L · 9/. In fact, it is quite likely that the parsimony inferred number is not the true
number of inversions. The expected number of inversions, given the data, is about twice as large as the
parsimony inferred number.

The posterior density for the rate of inversions (¸/ based on combining all eight runs is plotted in Fig. 6.
The posterior density is obtained similarly to the posterior distribution of L by binning the data using a
bin width of 0.25. Notice that Var.¸jD/ > Var.LjD/ as expected. A 95% credible set for ¸ is given by
.1:05 · ¸ · 12:75/ and E.¸jD/ D 6:49.

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270260518281&iName=master.img-004.png&w=342&h=295
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FIG. 6. The posterior distributionof L and ¸ for the data set of 14 markers from human and cattle X chromosomes.
The vertical lines indicate 95% credible intervals.

D. melanogaster and D. repleta data

The second data set we analyze is a data set consisting of 79 unsigned markers from chromosome
3R of Drosophila melanogaster and chromosome 2 of Drosophila repleta, mapped by Ranz, Casals, and
Ruiz (2001). The data is given in Table 1. The second column there gives the gene name, the fourth its
physical location in D. repleta, the third its physical location in D. melanogaster, and the � rst its order in
D. melanogaster.

Six Markov chains were simulated with results given in Fig. 7: three in which the initial inversion
path was simulated using "1 D 0:5 (long initial inversion paths, dashed lines) and three simulated using
"1 D 0:025 (short initial inversions paths, dotted lines) and with ¸max D 200. This data set contains
considerably more inversions that the human–cattle data set, and convergence is consequently much slower.

In this case, it took 1.7 million iterations before
p

OR < 1:1. A total of 43 million iterations were performed
for each chain (Fig. 7). At this point, the ergodic average of L for each chain had essentially converged
to the same point E[LjD] ¼ 92:61. The run time for this data set was approximately 4 days on an Athlon
1.2 GHz processor running Linux. The posterior distribution of L is plotted in Fig. 8. Here, the maximum
likelihood estimate argmaxLP .LjD/ D 87 is slightly smaller than E[LjD] because of the right-skew of the
distribution. A 95% HPD credible set for L is given by .71 · L · 118/. The parsimony inferred number
of inversions for this data set is 53 and the probability mass assigned to this number of inversions by the
posterior distribution is essentially zero, in that in the 2:58 £ 108 iterations this state was never visited.
The parsimony number of inversions was found by running the chain under a very small � xed value of ¸.
There is a very high probability that the true number of inversions in the history of the two chromosomes
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Table 1. Relative Order of Markers on D. Repleta Chromosome 2 and D. melanogaster Chromosome 3R

Order Name D. mel. D. repleta Order Name D. mel. D. repleta

46 Hsrw 93D6 A1f
42 Cha 91B8 A1g
74 Acph-1 99C5 A1j
45 Atpa 93A7 A2f
54 Gdh 95C12 A3f
47 145B9 94A1 A4a
73 Stg 99A5 B1b
78 Gcn2 100C1 B1c
71 wdn 98E3 B1i
75 RpL32 99D5 B2a
24 Ry 87D11 B2c
41 135D1 91B1 B2h
69 115B9 97E1 B3g
76 Cec 99E5 B4a
25 37H1 87E6 B4c
26 Act87E 87E9 B4d
50 152D12 95A7 C1a
38 67H8 89F1 C2c
27 94H1 87F12 C2d
2 DS08128 83E1 C2e

44 H 92E12 C3e
67 Tl 97D1 C4a
31 91F10 88D5 C4c
77 tll 100B1 C4d
30 put 88C9 C4e
59 120E2 95F2 C4g
34 Act88F 88F7 C5e
49 orb 94E9 C5f
19 DS02168 86E1 C6a
56 Rox8 95D5 C6b
57 69F5 95D10 C6c
58 Acp95EF 95E6 C6d
72 Pkc98E 98F8 C6h
43 Dl 92A1 C7b
8 DS08010 84C1 C7e

53 11H7 95C7 D1e
21 Gst 87B8 D1g
3 Pak 83E5 D2a

48 hh 94E1 D2d
29 trx 88B4 D2h

68 Rb97D 97D3 D3b
52 109B4 95B7 D3d
4 DS05926 83F2 D5a

20 Hsp70A 87A7 D5b
23 Hsp70B 87C1 D5c
11 dsx 84E1 E1b
1 lDsubFC4 82F E1d

12 neur 85C3 E2c
62 57D6 96A5 E2f
65 DS06282 97B1 E3d
18 DS04597 86C8 E4a
61 106F1 96A1 E4g
60 crb 95F3 E5a
32 Hsc70-4 88E8 E6k
33 Tm2 88E11 E6j
64 E(spl) 96F10 F1a
35 Ubx 89D6 F1b
7 DS07700 84B3 F1c
6 Antp 84B1 F1d
5 Pb 84A4 F1e

66 Amon 97C2 F1h
70 fkh 98D2 F2b
39 DS02256 90A1 F3a
79 DS00911 100E1 F3h
22 Pp1-87B 87B15 F4b
51 nau 95B3 F4c
13 MtnA 85E9 F4h
28 ems 88A2 F5a
55 Aats-glupro 95C13 F5d
9 DS04025 84C7 F5e

10 aEst 84D8 F6a
63 tld 96A22 F6f
14 Syn 85F15 G2b
15 DS05661 86C1 G2d
16 TfIIFb 86C4 G3c
40 DS06686 90E3 G4b
17 DS01290 86C6 G4c
37 Pxd 89E11 G4f
36 abd-A 89E3 G4g

is considerably larger than the parsimony inferred number of inversions. The posterior distribution of ¸ is
plotted in Fig. 8. A 95% HPD credible interval for ¸ is given by .64:14 · ¸ · 125:00/.

A different approach to the estimation of the number of inversions has been taken by Durrett (2002).
He showed that when N markers are considered, if we add a 0 at the beginning and an N C 1 at the end,
then ¡2 + the number of conserved adjacencies (places where the two adjacent markers differ by 1) is
an eigenfunction for the shuf� ing process with eigenvalue .N ¡ 1/=.N C 1/. That is, a randomly chosen
inversion reduces the average value of this statistic by a factor .N ¡ 1/=.N C 1/. The number of conserved
adjacencies in this data set is 11, while the initial number is 80, so setting

78 ¢
³

78
80

´m

D 9
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FIG. 7. Convergence of the ergodic average of the number inversions along the chain (Laverage) for the data set
containing 79 markers from D. melanogaster and D. repleta. The thick solid line shows the average among the 6
replicate chains. The vertical line indicates the end of the burn-in time.

and solving gives m D ln.9=78/= ln.78=80/ D 85:3, which compares well with the estimates obtained
above.

Even though we estimate that the order of the markers has been shuf� ed a large number of times, its
distribution is not yet randomized. One way of seeing this is that P .LjD/ becomes very small for large
values of L. Theoretical results of Durrett (2002) imply that when N is large, randomizing the marker
order will take at least .N=2/ ln N events. When N D 79, this is 173 inversions. One way of seeing that
the distribution is not yet random is to observe that Spearman’s rank correlation of the two marker orders
is ½ D 0:326, which is signi� cant at the p D 0:001 level. As Ranz, Casals, and Ruiz (2001) have already
observed, this observation also casts doubt on the assumption that all inversions are equally likely. In
10,000 simulations of 40 randomly chosen inversions acting on 79 markers, the average rank correlation
is only 0.0423, and only 4.3% of the runs had a rank correlation larger than 0.325.

5. DISCUSSION

Elucidating the evolutionary history of chromosomes is one of the major goals of computational ge-
nomics. We have here shown that a full probabilistic approach to the problem of inferring the number
of inversions between two chromosomes is feasible, even for a data set with many inversions. We have
seen that the probability that the true number of inversions is close to the minimum possible number of
inversions is very small for the Drosophila data set. For such data sets, the parsimony estimates are not
very meaningful and should not be applied.

In contrast to the parsimony approach, our Bayesian approach allows one to test hypotheses such as: Do
all inversions occur at the same rate? Are inversion rates constant among lineages? The second question is
motivated by the observation, see Graves (1996), that rodent chromosomes have undergone an unusually
high number of genomic rearrangements per unit of evolutionary time.
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FIG. 8. The posterior distributionof L and ¸ for the data set of 79 markers from D. melanogaster and D. repleta.
Dotted lines indicate 95% credible intervals. The vertical lines indicate 95% credible intervals.

Larget and Simon (2001) have considered a similar method applicable to data sets with fewer markers
but with more than two species. They succeeded in developing a probabilistic method for estimating
phylogenies for mitochondrial genomes based on taking genomic rearrangements into account. Extending
MCMC methods similar to the ones used here to the problem of multiple species, will allow inferences
of phylogenies using data sets with many markers (Larget, Simon, and Kadane, 2002). However, the
heterogeneity of rates on different lineages casts doubt on the usefulness of the number of inversions as a
molecular clock.

Beyond the phylogeny problem, another natural extension is to include translocations, transpositions,
and gene duplications. Hannenhalli and Pevzner (1995b) have already solved the corresponding genomic
distance problem. A Bayesian method which includes these evolutionary mechanisms would provide a
general framework for the analysis of chromosomal evolution. However, in many comparisons (e.g., human
vs. mouse) the method will now face the challenge of dealing with thousands of markers that have been
subjected to hundreds of rearrangements.
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