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We use methods of maximum likelihood estimation to fit several microsatellite mutation models to the observed length
distribution of dinucletoide repeats in the Drosophila and human genomes. All simple models are rejected by this
procedure. Two new models, one with quadratic and another with piecewise linear slippage rates, have the best fits and
agree with recent experimental studies by predicting that long microsatellites have a bias toward contractions.

Introduction

Microsatellites are tandem repeats of motifs that
consist of two to six nucleotides. The oldest and most
commonly used model of their evolution is the stepwise
mutation model, in which the number of repeat units
increases or decreases by 1 at a constant rate subject to the
constraint that the number of repeat units is not allowed to
become smaller than 1. This model is unrealistic in that it
predicts microsatellite lengths that do not reach an
equilibrium distribution but will grow over time. To
address this problem, Kruglyak et al. (1998) proposed the
proportional slippage (PS) model, in which (1) micro-
satellites have an equal probability of expansions and
contractions, (2) slippage (expansions and contractions)
occurs at a rate proportional to the length of the repeat, and
(3) point mutations break up long repeats. The PS model
has a stationary distribution which gave a good fit to the
small samples of microsatellites in humans, mice, fruit fly,
and yeast available to Kruglyak et al. (1998), and to all of
the microsatellites in the yeast genome (Kruglyak et al.
2000).

In a study of the use of microsatellites to date
divergences between species, Calabrese, Durrett, and
Aquadro (2001) have shown that the simple PS model
predicts larger length differences in interspecies compar-
isons than are observed. One possible explanation is that
long microsatellites have a mutational bias that favors
contractions over expansions. This explanation is sup-
ported by empirical work both in Drosophila melano-
gaster (Harr and Schlotterer 2000) and in yeast (Wierdl,
Dominska, and Petes 1997). In the other direction,
pedigree studies both in humans (Amos et al. 1996) and
in barn swallows (Primmer et al. 1996), have suggested
that microsatellites have an upward bias; i.e., expansions
occur more frequently than contractions.

One possible resolution of these conflicting views
suggested by Garza, Slatkin, and Freimer (1995) is that
microsatellites have a target length, and that microsatellites
shorter than this target have a mutational bias up, whereas
longer microsatellites have a bias down. This idea is
supported by the work of both Xu et al. (2000) and Huang
et al. (2002). In two large human pedigree studies, Xu
et al. observed that the rate of expansions is independent
of microsatellite “‘length’’ but that the rate of contractions
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increases exponentially as a function of microsatellite
“length.” Huang et al. (2002) found a statistically
significant negative relationship between the magnitude
and direction of mutation and ‘“‘length.”” In the two pre-
ceding sentences we have put the word length in quotation
marks, because neither group of researchers measured the
actual length of a microsatellite but rather the total length
of the PCR product that consists of the microsatellite and
a variable amount of flanking sequence. They then applied
the inverse of the distribution function of the observed
lengths to obtain a number in [0,1], which they called the
“length.”

In this article, we investigate a number of different
mutation models, including most of those that have
previously been considered in the literature, to see which
ones can best explain the observed dinucleotide micro-
satellite distributions in the genome sequences of both
Drosophila and humans. We define a dinucleotide repeat
to be a microsatellite if it consists of five or more adjacent
pairs of the same dinucleotide motif. In an attempt to have
microsatellites that evolve independently, we only keep
track of microsatellites that are at least 50 bases from the
closest dinucleotide microsatellite. We call such micro-
satellites isolated. Further we call a microsatellite perfect if
on both sides of the microsatellite there are four or more
bases that do not intersect a segment of DNA with two or
more adjacent pairs of the same repeat motif that is
contained in the microsatellite. Otherwise, we call the
microsatellite imperfect or interrupted. Because inter-
rupted microsatellites can have multiple interruptions,
their state space is large, and consequently we choose to
model only perfect microsatellites. Thus the two micro-
satellites in,

ca ca ca ca ca ca CT ca ca ca ca ca ca ca ca ca

will not be counted because they are interrupted.

The first of the models that we consider, the
multinomial model, is not really a model at all. There is
a parameter for each possible microsatellite length—the
probability a microsatellite has that length. This model
offers no insight into the mutational mechanism, but it
provides a benchmark against which to judge the fits of the
other models. For all models, we assume microsatellites
are struck by point mutations at a rate proportional to their
length, and at a location chosen uniformly along it.

Because of the assumed point mutations, the
collection of microsatellite lengths will have an equilib-
rium distribution. We use this distribution to solve for the
likelihood of the genome data for a given model and
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Table 1 Table 2

Model Descriptions Drosophila Data

Model X = X +1 at Rate X — X — 1 at Rate Motif All* Isolated®  Perfect® Isolated and Perfect
Multinomial® AC/TG 11,410 (56.0%) 10,119 9,036 7,997 (56.0%)
SMM B B AT/TA 6,223 (30.5%) 5,702 4,710 4,361 (30.5%)
PS bX bX AG/TC 2,650 (13.0%) 2329 2,107 1,840 (12.9%)
PSwK bX — x)* bX — x)* GC/CG 105 (0.52%) 85 101 81 (0.57%)
ConExp Be ™ ~ 1 Total 20388 18235 15954 14279

AsyLin B+ b(X — lo) d +d(X — lo) (89.4%)  (78.3%)  (70.0%)

AsyQuad B+ bi(X — 10) + by(X — I0)* & + di(X — I0) + dr(X — l0)*
PLBias"

* These models have a different form, and are explained in the text.

parameters. The assumption that the microsatellites are
separated allows us to assume that their evolutions are
independent and the joint likelihood is the product of the
individual likelihoods. We then optimize over the space of
model parameters to find the maximum likelihood of the
data for that model. We do this for each model, and in
order to compare models, we calculate the Akaike
information criterion (Akaike 1974),

AIC = — 2 log(maximum likelihood)
+ 2(number of parameters).

The models with the lowest AIC scores are deemed
optimal. This approach is similar to hypothesis testing, in
that models are rewarded for high likelihoods but
penalized for the number of parameters. In addition, this
approach computes the maximum likelihood parameters
for each model. By repeatedly using the bootstrap to
simulate new distributions, we can then calculate an ap-
proximate confidence interval for the parameters.

The seven dynamic models we consider differ in
terms of their rates for slippage up and down, which are
given in table 1. The first three models are symmetric: the
stepwise mutation model (SMM), the PS model of
Kruglyak et al. (1998), and the generalization due to
Calabrese, Durrett, and Aquadro (2001), in which slippage
occurs only when the length exceeds some threshold x
(PSwK). The constant, exponential model (ConExp) is
motivated by the work of Xu et al. (2000), who asserted
that in terms of “‘length,” slippage up was constant but
slippage down grew exponentially. The final three models
are new and asymmetric. In the asymmetric linear model
(AsyLin) and the asymmetric quadratic model (AsyQuad)
the expansion and contraction rates are two different linear
and quadratic functions. The final model is the piecewise
linear bias model (PLBias model), in which the mutation
rate is assumed to be constant, but the bias up or down is
a piecewise linear function of microsatellite length. This
model has two additional parameters which we fix: the
length of the linear segments, and the number of linear
segments. To the right of the last segment, the bias remains
constant.

For each model, and for a choice of parameters, we
solve for the stationary distribution of isolated, perfect
microsatellites with lengths lo,lo + 1,..., hi. The lower
limit /o is chosen larger than the minimum length at which
microsatellites evolve by polymerase slippage. The upper
limit /i is imposed so that there are a finite rather than

# All includes isolated and nonisolated, perfect and interrupted.
® Isolated includes perfect and interrupted.
¢ Perfect includes isolated and nonisolated.

infinite number of equations to solve for the stationary
distribution. The value of hi is chosen large enough so that
the truncation has very little effect on the stationary
distribution.

We assume that microsatellites originate (i.e., achieve
length /o) at a constant rate and mutate independently. The
number of possible states for imperfect microsatellites is
very large, so if a microsatellite becomes imperfect, the
microsatellite then exits the model. This framework is
equivalent to a network of queues in which microsatellites
correspond to customers, and microsatellite lengths
correspond to stations. In the Appendix, we show how
we can use results from queueing theory to solve for the
stationary distribution.

Results
Drosophila

We downloaded the Drosophila genome from the
Berkeley Drosophila Genome Project: http://www.fruitfly.
org/sequence/dIMfasta.shtml, release 2, December 11,
2000 version. Separated by motif, the numbers are listed
in table 2. The motifs are not equally represented. Fewer
than 1% of dinucleotide microsatellites have the motif GC/
CG, while over 50% have the motif AC/TG. This dearth of
GC/CG microsatellites is also found in the genomes of
humans, mice, and yeast (see e.g., Kruglyak et al. 1998).
Restricting ourselves to both perfect and isolated di-
nucleotide microsatellites, for the three most popular
motifs, figure 1 shows the natural logarithm of one plus the
number of microsatellites as a function of microsatellite
length. We have added one before taking the logarithm in
order to differentiate between lengths with zero and one
microsatellite.

The AIC model scores are listed in table 3. To make
the scores easier to compare, for each column we have
subtracted the number listed in the last row. Recall the
models with the lowest AIC scores are deemed optimal.
We solved for the stationary distribution of microsatellite
lengths lo =5, ... hi = 30.

For all three motifs, the PS model scores much lower
than the SMM; however, only for the AT/TA motif does
the PSWK model represent a substantial improvement over
the PS model. None of these symmetric models have
a lower AIC score than the multinomial benchmark.

For all three motifs, the asymmetric models have
lower AIC scores than the symmetric ones. Furthermore
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Fi6. 1.—Drosophila microsatellite distribution: Natural logarithm of one plus the number of isolated, perfect microsatellites of different lengths.

the optimal parameters imply that long microsatellites
have a downward bias. The AsyLin model predicts a bias
down for all microsatellites longer than 7 repeat units (and
a bias up for shorter microsatellites). For the AsyQuad
model, microsatellites with lengths longer than 10 have
a bias down; and for the PLBias model, microsatellites of
all lengths have a bias down. For the two best models,
AsyQuad and PLBias, figure 2 shows the probability of
contraction as a function of microsatellite length. As
a further test, for all three motifs we performed a para-
metric bootstrap test (see e.g., Huelsenbeck and Rannala
1997) with the PSWK model as the null and the AsyQuad
model as the alternate. In each case, the PSWK model was
significantly rejected (P < .01). Only for the AG/TC motif
do the AsyQuad and PLBias models have a lower AIC
score than the multinomial benchmark.

One problem with our approach is that for the
asymmetric models, although we can solve for the
contraction bias we cannot solve for the absolute mutation
rates. As an example, consider one of the simplest possible
asymmetric models: the asymmetric stepwise mutation
model, where X — X + 1 at rate B and X — X — 1 at rate J.
We fix the per repeat point mutation rate at 2 X 10~° (Drake
et al. 1998), all inferred slippage rates are scaled relative to
this estimate. In Drosophila, for the motif AC/GT, for the
two parameter sets B=1.0598 X 107%§ =1.5628 X
107% and B=1.0576 X 1072,6=1.5661 X 1072, the

relative difference in log-likelihood scores is 3.73 X 107>,
Depending on the starting point, the numerical optimization
routine used would determine either of these parameter
estimates to be a local maximum. But the problem is not
really one of multiple local maxima, since all points on the
line between these two points in parameter space have
nearly equal log-likelihood scores. Because these parame-
ters span two orders of magnitude, we cannot determine
mutation rates. Nonetheless for all points along this line, the
mutation bias is almost the same. This pattern of subsets of

Table 3
Drosophila AIC Model Scores
AIC

Model No. of parameters AC/TG AT/TA AG/TC
Multinomial 25 0 0 0
SMM 1 375 526 71
PS 1 191 216 12
PSwK 2 193 52 10
ConExp 3 217 272 27
AsyLin 4 148 48 3
AsyQuad 6 9 37 —13
PLBias 5 24 33 -19

+30,804  +12,663 46,724

Note.—To make the scores easier to compare, for each column we have
subtracted the number listed in the last row.
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Fic. 2.—Drosophila: Probability of contraction as a function of microsatellite length in AsyQuad and PLBias model fits. The first row is the
AsyQuad model, and the second row is the PLBias model. The dotted and dashed line is the model fit; the dotted lines form the 95% confidence

envelope.

parameter space with nearly equal log-likelihood scores, but
very different mutation estimates, and similar bias pre-
dictions is present in all asymmetric models tested. The
explanation for this phenomenon is simple: the point
mutation rate is the only quantity that establishes the size of
the mutation rates, but in asymmetric models it plays only
a very weak role in shaping the distribution. This is not
a problem for symmetric models.

Humans

We downloaded the human genome from the
University of California at Santa Cruz assembly of the

International Human Genome Project: http://genome.ucsc.
edu, December 12, 2000 version. The numbers are listed
in table 4, and the natural logarithm of the distribution is
shown in figure 3. As in the Drosophila genome, in
humans the motifs are not equally represented. If we
consider all dinucleotide microsatellites, then only 0.52%
have the motif GC/CG, whereas 45.5% have the motif
AC/TG. Furthermore if we only consider isolated, perfect
microsatellites with length greater than or equal to 10, then
an even larger fraction, 72.7%, have the motif AC/TG. In
contrast to the Drosophila genome, the three most
abundant dinucleotide motifs in humans have distributions
with strikingly different shapes.

Table 4
Human Data
Motif Al Isolated” Perfect® Isolated, Perfect Isolated, Perfect, and Length > 10
AC/TG 176,385 (45.5%) 129,330 140,804 103,267 33,306 (72.7%)
AT/TA 110,062 (28.3%) 64,794 86,324 64,794 8,399 (18.3%)
AG/TC 99,770 (25.7%) 80,174 83,998 80,174 4,107 (8.96%)
GC/CG 2,051 (0.53%) 782 1,765 727 5 (0.01%)
Total 388,768 275,580 312,391 248,962 45,817
(70.9%) (80.5%) (64.0%) (11.8%)

* All includes isolated and nonisolated, perfect and interrupted.
® Isolated includes perfect and interrupted.
¢ Perfect includes isolated and nonisolated.
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Fi6. 3.—Human microsatellite distribution: Natural logarithm of one plus the number of isolated, perfect microsatellites of different lengths.

For the human genome, we solved for the stationary
distribution of microsatellite lengths lo = 10, ..., hi = 45
to 10 for two reasons: (1) we are most interested in the
mutational bias of long microsatellites because there is
evidence that the slippage threshold may be as high as 8
for the AC/TG motif in humans (Weber 1990), and (2) the
large number of dinucleotide repeats in the human genome
allows us to restrict our attention to those with more than
10 repeats and still have a large amount of data.

For all models and motifs, the AIC score differences
are listed in Table 5. For each column, the actual AIC
score is obtained by adding the term in the last row. For
the PSwK model the maximum-likelihood x is only non-
zero for the AG/TC motif; therefore only for this motif is
the model different from the PS model. Only for the AT/
TA motif do the PS and PSwK models have lower AIC
scores than the SMM. None of these symmetric models
have lower scores than the multinomial model.

For all three motifs, the asymmetric models have
lower AIC scores than the symmetric models, and long
microsatellites have a bias toward contractions. For the
AsyLin model, for the AC/TG motif, microsatellites with
length greater than 24 have a bias down; for the AT/TA
motif, all microsatellites have a bias down; and for the AG/
TC motif, microsatellites longer than 14 have a bias down.
For all three motifs, the two best models are the AsyQuad
and PLBias models. For the AsyQuad (PLBias) model, for

the AC/TG motif, microsatellites longer than 23 (18) have
a bias down; for the AT/TA motif, microsatellites shorter
than 14 (17) and longer than 26 (22) have a bias down; and
for the AG/TC motif, all microsatellites have a bias down.
For both of these models, figure 4 shows the probability of
contraction as a function of microsatellite length. With one
exception (AsyQuad model, AC/TG motif), for all three
motifs, these two models score better than the multinomial
model.

Table 5
Human AIC Model Scores
AIC

Model # parameters AC/TG AT/TA AG/TC
Multinomial 35 0 0 0
SMM 1 8,522 701 320
PS 1 13,104 939 163
PSwK 2 13,106 941 110
ConExp 3 210 664 211
AsyLin 4 200 673 60
AsyQuad 6 8 21 -19
PLBias 7 —12 —11 22

+190,083 +48,014 420,551

Note.—To make the scores easier to compare, for each column we have
subtracted the number listed in the last row.
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F1G. 4—Human: Probability of contraction as a function of microsatellite length in AsyQuad and PLBias model fits. The first row is the AsyQuad
model, and the second row is the PLBias model. The dotted and dashed line is the model fit; the dotted lines form the 95% confidence envelope.

Possible Contributing Factors

In an attempt to explain the observation that
dinucleotide repeats in humans have very different
distributions, we investigated several possible contributing
factors: local recombination rates, proximity to genes,
local GC content, location on the chromosome, and
proximity to Alu repeats identified by Smit and Green’s
RepeatMasker algorithm (http://ftp.genome.washington.
edu/RM/RepeatMasker.html). As in the previous section,
we analyze each motif separately, and we only consider
dinucleotide microsatellites in the human genome that are
isolated, perfect, and have length longer than 10.

We compare pairs of microsatellite distributions from
regions of the genome with contrasting properties, for
example, recombination hot and cold spots. Let {/;(j)},
i=1,2, be the two samples where in sample i there are
[(j) microsatellites of length j. Define Z; = Zj i(j), the
number of microsatellites in sample , and p;(j) = 1;(j)/Z;,
the percentage of microsatellites in sample i with length j.
Motivated by the % statistic, we introduce

¥ = 3 G+ 2) X)) = )
7 521 +2) X 5(pi(J) + p2()))
After normalizing for the different size of the two samples,

each term in the sum represents, for a given length, the
squared difference of the number of microsatellites in the

two samples, divided by the average number of micro-
satellites. Thus if the two samples are drawn from a similar
distribution, X2 will be small; otherwise; it will be large.
To determine confidence intervals we use the bootstrap
(see e.g., Efron and Tibshirani 1993): for i = 1, 2 choose
Z; values with replacement from the combined sample
{,(j) + L(j)}, recompute X>, and repeat. This test
determines whether distributions are significantly differ-
ent, but it does not specify what properties differentiate the
distributions.

For recombination, we compare the distributional
shape of two extremes: recombination hot and cold spots.
Yu et al. (2001) identified 11 recombination hot spots
totaling 37 million bases on chromosomes 3, 4, 5, 10, 14,
15, 16, 17, 18, and X, and 19 recombination cold spots
totaling 57 million bases on chromosomes 3, 4, 5, 6, 8, 10,
11, 12, 13, 18, and 20. For all comparisons in this section,
the breakdown by motif is listed in table 6. For none of the
motifs were the distributions significantly different.

For the next four comparisons we only consider
Chromosome 1. Chromosome 1 contains roughly 280
million bases, or 9% of the human genome. The first
comparison is proximity to genes. We downloaded an
annotated version of Chromosome 1 from the National
Center for Biotechnology Information: ftp://ncbi.nlm.nih.
gov/genomes/H_sapiens/CHR_01/. This version contains
1,239 genes. If we include the entire region labeled
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‘““gene,”” which is the coding sequence including introns
and a 500-base pair flanking window, this “‘genic region”
numbers 48 million bases. For the AC/TG motif, the two
distributions are significantly different (P = 0.003), how-
ever, as figure 5 shows, the differences are fairly subtle.
There is a tendency for microsatellites in genic regions to
be shorter. For the other two motifs, the distributions are
not significantly different.

Next we examine the GC content of flanking se-
quences. For each microsatellite, we measure the GC con-
tent in 100-base and 1,000-base windows on both sides of
the microsatellite. We further restrict the set of micro-
satellites so that flanking windows do not overlap. For
each window size, we separate the microsatellites into
three sets based on the GC content of their flanking
windows, and then compare all three combinations of
these three sets. The three sets are ‘‘low GC content,”” one
standard deviation less than the mean; ‘“‘medium GC
content,”” within one standard deviation of the mean; and
“high GC content,” one standard deviation greater than
the mean. For the 100-base window and the AC/TG motif,
two comparisons are significant: low GC content versus
medium GC content (P <0.001), and low GC content
versus high GC content (P < 0.001). The distributions are
shown in figure 6. Comparing the histograms suggests that
microsatellites in regions with low GC content tend to be
shorter. This is somewhat surprising in view of the
previous comparison, because genes tend to be in GC-rich
regions. None of the other comparisons are significant for
the 100-base window, and none are significant for the
1,000-base window.

For the question of chromosome location, we break
Chromosome 1 into two halves, each having an equal
number of base pairs. For none of the motifs do the
different halves have significantly different distributions.
Then we break one of the halves into thirds, each piece
having an equal number of base pairs. For each motif, we
compare all three pairs, and again there are no significant
differences.

Finally we consider proximity to Alu repeats
identified by the RepeatMasker algorithm. For each
microsatellite, we consider a 500-base window on each
side of the microsatellite. We run the RepeatMasker
algorithm on each window, and if there is an Alu within 50
bases of the microsatellite we consider this microsatellite
close to a repeat; otherwise, we do not. For none of the
motifs are the two distributions significantly different.

Discussion

For both Drosophila and humans, and for all motifs,
the simple, symmetric models had AIC scores that were
higher than the multinomial model. This contrasts with the
study of Sibly, Whitaker, and Talbot (2001), which used
a much smaller data set including only 186 dinuceotide
microsatellites (all motifs combined) and found that the
PSwK model is a significant improvement over the
multinomial model. The asymmetric models we have
considered fit much better than the symmetric ones, and in
some cases they have lower AIC scores than the
multinomial model. These asymmetric models allow for

Microsatellite Mutation Models 721

Table 6
Human Comparisons

Number Microsatellites Isolated,
Perfect, Length > 10

Comparison AC/TG AT/TA AG/TC
Recombination
hot spots, 37 X 10° bases 426 95 61
cold spots, 57 X 10° bases 562 154 65
On chromosome 1
Genes
Genic region, 48 X 10° bases 530 164 77
Nongenic region, 232 X 10° bases 2,416 672 394
GC content 100-base windows
< 32% 429 161 41
> 32%,< 48% 1,798 504 307
> 48% 519 82 98
1,000-base windows:
< 35% 320 112 48
> 35%,< 47% 1,521 445 233
> 47% 363 54 71
Chromosome location
One half 1,338 332 168
Other half 1,252 321 179
Subdivide one half
Extreme end 408 97 61
Middle third 448 108 45
Centromere end 482 127 62
RepeatMasker
Alu 460 270 104
no Alu 2,030 413 293

biases up or down, and for the bias to change as a function
of microsatellite length. However, for all asymmetric
models, motifs, and both organisms, the optimal param-
eters always imply a bias down for long microsatellites.
This bias could explain two mysteries from our previous
work (Calabrese, Durrett, and Aquadro 2001): the dearth
of long microsatellites and the underestimation of di-
vergence times. Throughout, we have only considered
models with single-step mutations; however, if a model
allows for larger mutations it will still have a stationary
distribution and our approach will apply. Moreover, we
have assumed that the same model and parameters apply
throughout the genome.

In humans, there is a striking difference between the
distributions of various dinucleotide and trinucleotide
motifs (see figs. 3 and 7). To our knowledge, this is the
first report of this observation. An appealing explanation
that is apparently not valid is that the different distributions
result from different strength bonds. The A-T opposing
strand pair contains two hydrogen bonds, and the G-C pair
contains three hydrogen bonds. However, the AC/TG and
AG/TC motifs each have one strong bond and one weak
bond, and their distributions are the most different from
each other, whereas the AT/TA distribution (two weak
bonds) appears to be in between these two. A second
possible explanation for the dependence on the repeat type
is that the DNA mismatch repair system is sensitive to
motif content. There is experimental evidence for this
explanation both in Drosophila (Harr, Todorova, and
Schléstterer 2002) and in yeast (Sia et al. 2000). A third
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Fic. 5.—Genic and nongenic regions: Natural logarithm of one plus the number of human, AC/TG, isolated, and perfect microsatellites on

Chromosome 1 of different lengths.

possible explanation is selection. For the AC/TG motif, we
have reported a significant difference in the distribution of
microsatellites in genic and nongenic regions. A fourth
explanation could involve the GC content of the flanking
regions, because for the AC/TG motif, we have reported
a significant difference in distributional shape for sets with
different flanking region GC content.

It is interesting that only the AC/TG motif had a
significantly different distribution for any of the com-
parisons we performed. However, it should be noted that
the differences in the distribution of the lengths of AC/TG
repeats, while statistically significant is visually rather
subtle. The striking difference in the distributions of the
three repeat types must have some definite cause, but we
have not been able to determine the underlying mechanism.

Appendix

In the usual queuing theory terminology, micro-
satellites correspond to customers, microsatellite lengths
correspond to stations, and at each length or station there
are an infinite number of servers. The stations of the
network are the microsatellite lengths lo,lo+1,...,
hi... top. The “M/M/=" translates (1) that microsatellites
are born at length /o at the times of a Poisson process, (2)

that microsatellites stay at a given length for an
independent exponential amount of time before either
mutating to another length or being interrupted by a point
mutation and exiting the network of queues entirely, and
(3) that each microsatellite moves through the various
lengths independently. Because it affects only the number
of microsatellites and not their distribution, the rate A of
the Poisson birth process does not matter. For each length
J, the rate p(j) of the exponential holding time, and the
probability p(j, i) a microsatellite will mutate next to
length i or exit the network ¢(j)=1- 31" p(j, i),
depend on the mutation model and its parameters.

Because all microsatellites have a positive probability
of leaving the network, there exists a stationary distribu-
tion. Define arrival rates,

r(lo) =1+ ir(z’)p(z’, lo) (1)
() =S rip(i), i > lo. @

i=lo

Then the stationary distribution is for all j the number of
microsatellites with length j are independent and Poisson
distributed with mean r(j)/u(j) (see e.g., Durrett 1999,
p- 192). Let {/( j)};”:h, be the data, /(j) microsatellites of
length j, and define the normalizing constant
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)
B ,Z,: n(j)

Because we have assumed that the microsatellites evolve
independently, conditioning on the number of micro-
satellites the likelihood of the data is,

H(zx))() ®)

j=lo

For each model, we numerically solve the linear system
of equations (1), (2) to determine r(j), and then
numerically maximize the likelihood (3) over the space
of parameters.

One last detail concerns the boundary points /o, i,
and fop. Conditioning on microsatellites having lengths
between lo and hi, we solve for the stationary distribution
of this range. First we discuss the lower boundary. For the
models we consider, we only detail the slippage law of
microsatellites with lengths greater than or equal to /o.
While shorter microsatellites may mutate, we only begin to
watch them when their length is greater than or equal to /o.
We assume that from the pool of microsatellites of length
less that lo, new microsatellites of length /o are produced,
either by slippage or by point mutation, at the times of
a Poisson process. Next we discuss the upper boundary.

To compute the stationary distribution as outlined above,
we need to solve the finite system of coupled linear
equations (1), (2). So we only detail the slippage law of
microsatellites with length less than or equal to fop, where
top > hi. But the models we want to consider have no such
upper boundary. Therefore we actually calculate the
stationary distribution of two related networks which
bound the stationary distribution for the model of interest.
The laws for these two networks are identical to the true
model except in the way they handle microsatellites of
length greater than fop. If a microsatellite of length less
than or equal to fop mutates to a length greater than top in
the true model, in the lower-bound network it exits the
network entirely. Because in the true model these long
microsatellites conceivably could mutate back downward,
this bounding network is a lower bound. Likewise if
a microsatellite of length less than or equal to fop mutates
to a length greater than fop in the true model, in the upper-
bound network it goes to length fop. Because all models
considered only allow single steps, they have the mono-
tonic property p(top, j) > p(x, j) for all top > |,
X > top; and this bounding network is an upper bound.
If the stationary distribution for microsatellite lengths
lo, lo+1,... hi of the two bounding networks is suf-
ficiently close, we use their average; otherwise, we
increase fop until it is sufficiently close. To be ‘‘suffi-
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ciently close,” for each of the lengths lo, lo+1,..., hi,
we require that the relative difference in probabilities
between the two networks be less than 10>

Acknowledgments

P.C. is supported by a National Science Foundation
mathematics postdoctoral fellowship. R.D. is supported by
a grant from the probability program at the National
Science Foundation. The authors thank Rasmus Nielsen
for numerous discussions, and the referees for their
suggestions.

Literature Cited

Akaike, H. 1974. A new look at the statistical model
identification. IEEE Trans. Automat. Control 19:716-723.
Amos, W., S. J. Sawcer, R. W. Feakes, and D. C. Rubinsztein.
1996. Microsatellites show mutational bias and heterozygote

instability. Nat. Genet. 13:390-391.

Calabrese, P. P., R. T. Durrett, and C. F. Aquadro. 2001.
Dynamics of microsatellite divergence and proportional
slippage/point mutation models. Genetics 159:839-852.

Drake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow.
1998. Rates of spontaneous mutation. Genetics 148:1667—
1686.

Durrett, R. 1999. Essentials of stochastic processes. Springer,
New York.

Efron, B., and R. J. Tibshirani. 1993. An introduction to the
bootstrap. Chapman & Hall, New York.

Garza, J. C., M. Slatkin, and N. B. Freimer. 1995. Microsatellite
allele frequencies in humans and chimpanzees, with implica-
tions for constraints on allele size. Mol. Biol. Evol. 12:594-603.

Harr, B., and C. Schlétterer. 2000. Long microsatellite alleles in
Drosophila melanogaster have a downward mutation bias
and short persistence times, which cause their genome-wide
underrepresentation. Genetics 155:1213-1220.

Harr, B., J. Todorova, and C. Schiétterer. 2002. Mismatch repair-
driven mutational bias in D. melanogaster. Mol. Cell 10:199—
205.

Huang, Q-Y., F-H. Xu, H. Shen, H-Y. Deng, Y-J. Liu, Y-Z. Liu,
J-L. Li, R. R. Recker, and H-W. Deng. 2002. Mutational
patterns at dinucleotide microsatellite loci in humans. Am. J.
Hum. Genet. 70:625-634.

Huelsenbeck, J. P., and B. Rannala. 1997. Phylogenetic methods
come of age: testing hypotheses in an evolutionary context.
Science 276:227-232.

Kruglyak, S., R. Durrett, M. D. Schug, and C. F. Aquadro. 1998.
Equilibrium distributions of microsatellite repeat length
resulting from a balance between slippage events and point
mutations. Proc. Natl. Acad. Sci. USA 95:10774-10778.

Kruglyak, S., R. Durrett, M. D. Schug, and C. F. Aquadro. 2000.
Distribution and abundance of microsatellites in the yeast
genome an be explained by a balance between slippage events
and point mutations. Mol. Biol. Evol. 17:1210-1219.

Primmer, C. G., H. Ellegren, N. Saino, and A. P. Moller. 1996.
Directional evolution in germline microsatellite mutations.
Nat. Genet. 13:391-393.

GT0Z ‘9z aunr uo AlSBAIUN 8N e /BIo'sfeunolpiojxo'agu//:dny woly pepeojumod


http://mbe.oxfordjournals.org/

Sia, E. A., C. A. Butler, M. Dominska, P. Greenwell, T. D. Fox,
and T. D. Petes. 2000. Analysis of microsatellite mutations in
the mitochondrial DNA of Saccharomyces cerevisiae. Proc.
Natl. Acad. Sci. USA 97:250-255.

Sibly, R. M., J. C. Whittaker, and M. Talbot. 2001. A maximum-
likelihood approach to fitting equilibrium models of micro-
satellite evolution. Mol. Biol. Evol. 18:413-417.

Weber, J. L. 1990. Informativeness of human (dC — dA),, - (dG —
dT), polymorphisms. Genomics 7:524-530.

Wierdl, M., M. Dominska, and T. D. Petes. 1997. Microsatellite
instability in yeast: dependence on the length of the micro-
satellite. Genetics 146:769—779.

Microsatellite Mutation Models 725

Xu, Xin, M. Peng, Z. Fang, and Xiping Xu. 2000. The direction
of microsatellite mutation is dependent upon allele length.
Nat. Genet. 24:396-399.

Yu, A., C. Zhao, Y. Fan et al. (11 co-authors). 2001. Comparison
of human genetic and sequence-based physical maps. Nature
409:951-953.

Wolfgang Stephen, Associate Editor
Accepted December 20, 2002

GT0Z ‘9z aunr uo AlSBAIUN 8N e /BIo'sfeunolpiojxo'agu//:dny woly pepeojumod


http://mbe.oxfordjournals.org/

