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ABSTRACT
Using genomic data from homologous microsatellite loci of pure AC repeats in humans and chimpanzees,

several models of microsatellite evolution are tested and compared using likelihood-ratio tests and the
Akaike information criterion. A proportional-rate, linear-biased, one-phase model emerges as the best
model. A focal length toward which the mutational and/or substitutional process is linearly biased is a
crucial feature of microsatellite evolution. We find that two-phase models do not lead to a significantly
better fit than their one-phase counterparts. The performance of models based on the fit of their stationary
distributions to the empirical distribution of microsatellite lengths in the human genome is consistent
with that based on the human-chimp comparison. Microsatellites interrupted by even a single point mu-
tation exhibit a twofold decrease in their mutation rate when compared to pure AC repeats. In general,
models that allow chimps to have a larger per-repeat unit slippage rate and/or a shorter focal length
compared to humans give a better fit to the human-chimp data as well as the human genomic data.

MICROSATELLITES are tandem repeats of short geometric. In a simpler two-phase model of Fu and
Chakraborty (1998) mutations of length �1 are geo-DNA motifs between 2 and 5 bp. Their high length
metrically distributed. Under the SMM and the TPM,variability, genome-wide distribution, and abundance
a microsatellite is assumed to mutate at a constant rate,make them useful for evolutionary and population ge-
irrespective of its repeat length. Moreover, under thesenetic inference in areas as diverse as molecular forensics,
models there is no bias toward an expansion or a con-parentage testing, molecular anthropology, and conser-
traction, and thus the microsatellites are expected tovation genetics and in studies of human evolutionary
grow or contract unconstrained over time. While con-history (e.g., Jarne and Lagoda 1996; Ellegren 2000b).
straining the range of repeat lengths through a modelPopulation genetic inferences may be sensitive to the
with reflecting boundaries (Nauta and Weissing 1996;assumed model of microsatellite evolution. Therefore,
Feldman et al. 1997) can circumvent this problem ofmuch focus has centered on the development of biologi-
unbounded growth, the biological reality of such a de-cally realistic models. However, there has been relatively
fined boundary is unclear.little focus on testing and comparing these models using

Evidence for length-dependent effects on mutationreal data.
rate (Ellegren 2000a), whereby longer microsatellitesThe simplest popular model of microsatellite evolu-
mutate more often than shorter ones, and the presencetion is the classical stepwise mutation model (SMM) of
of point mutations in some repeats make the propor-Ohta and Kimura (1973) in which, upon a mutation,
tional slippage (PS) model of Kruglyak et al. (1998)1 repeat unit is either gained, resulting in an expansion,
and its extensions by Calabrese et al. (2001) attractive.or lost, resulting in a contraction. However, mutations
In the symmetric PS model, an equilibrium distributionhave been observed to change the repeat length by �1
of repeat lengths exists through a balance between slip-unit (Xu et al. 2000; Harr et al. 2002; Huang et al.
page events and point mutations (Kruglyak et al. 1998).2002). The two-phase model (TPM) of DiRienzo et al.
Various mutational biases have been proposed, includ-(1994) addresses this by allowing mutations of 1 repeat
ing an upward bias favoring expansions in humans (Amosunit (one-phase) with probability p and mutations of
et al. 1996) and barn swallows (Primmer et al. 1996), an�1 unit(s) (two-phase) with probability 1 � p, while the
excess of contractions in long microsatellites of yeastdistribution of the lengths of multiunit mutations is
(Wierdl et al. 1997) and fruit fly (Harr and Schlöt-
terer 2000), and the rate of contractions increasing
exponentially with repeat length in humans (Xu et al.
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further elaborated by Zhivotovsky et al. (1997), micro-
satellites below the focal length tend to expand, and
those above it tend to contract. Other models emphasize
mutational bias by allowing the probability of an expan-
sion upon mutation to be independent of repeat length
(Walsh 1987; Tachida and Iizuka 1992; Fu and Chak-
raborty 1998) or be dependent on it exponentially
(Calabrese and Durrett 2003; Whittaker et al. 2003),
quadratically, or piecewise linearly (Calabrese and Dur-
rett 2003).

Thus, broadly speaking, there are at least three sets
of qualitatively contrasting features in the existing mod-
els of microsatellite evolution. The first is one-phase
vs. two-phase mutations. The second is mutation rate
proportionality (the proportional dependence of muta-
tion rate on repeat length) vs. rate equality. The final
set of contrasting features is the presence or absence
of mutational bias, whereby the probability of expansion
upon mutation may depend on the repeat length of the
mutating microsatellite in one form or another. We
address only constant bias, where the probability that a

Figure 1.—Markov chains on the branch leading to themutation results in an expansion is constant for all al-
ancestor (X(a)), chimpanzee (X(c)), and human (X(h)).leles, and linear bias, where this probability varies lin-

early with repeat length.
We test the relative significance of these contrasting

1. In �, each of the two terminal branch lengths, �c andfeatures, as embodied by variants of some popular mod-
�h, represents the product of mutation rate at allele �els and their hybrids, with likelihood-ratio tests (LRTs)
and number of generations along the chimp and humanand the Akaike information criterion (AIC), using data
lineages, respectively. We assume that the time to coales-from dinucleotide loci homologous between humans
cence for a pair of homologous alleles, within the ances-

(Homo sapiens) and chimps (Pan troglodytes). Complica-
tral population, is negligible relative to the time since

tions to the mutational process from variation in repeat the human-chimp speciation.
motif as well as interruptions by point mutations are Let �(a), �(c), and �(h) be parameters of the Markov
also explored. We address the question of longer repeat chains X(a), X(c), and X(h), with transition probability ma-
length in humans compared to chimps through a lin- trices P(a), P(c), and P(h), respectively. For an ergodic
eage-specific analysis. continuous-time Markov chain, its transition probability

matrix P(�) :� (Pi,j)�
i,j�� � exp{Q�}, where Q :� (qi,j)�

i,j��

is its infinitesimal generator or rate matrix. The station-
MODELS ary distribution of such a Markov chain, denoted by � �

(	�, 	�
1, . . . , 	�), is the unique probability distributionFor mathematical convenience, most models of mi-
on S satisfying the matrix equation �Q � 0 � (0, 0,

crosatellite evolution assume that the number of repeat
. . . , 0) (see, e.g., Brémaud 1999). Interest in P(�) and

units can be any positive integer. Our numerical compu-
� arises because they determine the likelihood function

tations are done with finite matrices, so we study these Li in Equation 1.
Markov chains on a truncated state space S � {�, � 
 Let �(a) be the stationary distribution of the ancestral
1, . . . , �}. Truncation of the state space from above chain. Let � :� (�(a), �(c), �(h)) and � :� (�c, �h). The
is biologically reasonable, as microsatellites are rarely likelihood, given homologous allele length data Di �
longer than � (a few tens of repeat units), and that from (Ci, Hi) at locus i, is
below ensures that � is greater than the threshold repeat
length above which mutations in length that are character- Li(�, �|Di) :� �

j�S

	(a)
j P (c)

j,Ci
(�c)P (h)

j,Hi
(�h). (1)

istic of microsatellites occur (Rose and Falush 1998).
The data D for our study are a 2 � N matrix of Since we do not know the ancestral state, the likelihood

microsatellite allele lengths from N loci homologous in may be thought of as a weighted sum over all possible
humans and chimps. We model the distribution of D ancestral states, where the weights come from the sta-
by superimposing three Markov chains, X(a), X(c), and tionary distribution of the ancestral chain. Assuming
X(h), on the ancestral, chimp, and human branches, independence among the N loci, the likelihood, given

the total data D, is obtained by multiplication.respectively, of the two-taxa tree �, as shown in Figure
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biased. So, when i � f, the mutational bias is upward,L(�, �|D) :� �
N

i�1

Li(�, �|Di). (2)
toward f, since 
(u, v, i) � 0.5, and when i � f, the bias
is downward, toward f, as 
(u, v, i) � 0.5.A general model within which all other models of

The probability of a transition from allele i to j in tinterest are nested is defined below. We start by defining
generations, with a mutation rate � at �, is given by

�(m, i, j), a truncated geometric distribution with suc-
Pi,j(�), where � � �t. Note that for large values of �,cess probability m, given by
Pi,j(�) is approximately equal to 	j, the stationary distri-
bution. Large values of � model heavily saturated data
obtained from a pair of highly diverged species whose

�(m, i, j) � �
m(1 � m)|i�j |�1

1 � (1 � m)��i
, � � i � j � �

m(1 � m)|i�j |�1

1 � (1 � m)i��
, � � j � i � � .

repeat length distributions are approximately indepen-
dent of each other and close to stationarity. Therefore,
the extent of saturation in the observed data is reflected

Observe that for every allele i, ��
j�i
1�(m, i, j) � �i�1

j�� by the magnitude of the estimate of �. The structure
�(m, i, j) � 1. of the various submodels within the general model is

A continuous-time Markov chain X on S is defined described by the tree in Figure 2. The last column shows
with an infinitesimal generator Q given by some of the common models in the literature that are

closely related to some of these submodels. The model
parameters that are fixed for a set of submodels are
written above the branches leading to them.qi,j � �

�(i, s)
(u, v, i)(p 
 (1 � p)�(m, i, j)), i � j � 1
�(i, s)
(u, v, i)(1 � p)�(m, i, j), i � j � 1
�(i, s)(1 � 
(u, v, i))(p 
 (1 � p)�(m, i, j)), i � j 
 1
�(i, s)(1 � 
(u, v, i))(1 � p)�(m, i, j), i � j 
 1
��i�jqi,j , i � j

The equal-rate unbiased one-phase model (EU1) is
a truncated version of the SMM of Ohta and Kimura
(1973). The equal-rate, constant-biased, one-phase model(3)
(EC1) embodies constant bias toward expansion in the

where �(i, s) is the mutation rate of allele i and 
(u, mutation process by constraining 
(u, 0, i) � u for any
v, i) is the probability that a mutation results in an allele i. Observe that u does not vary with allele length
expansion. When p � 1, any microsatellite allele mutates in the EC1 model, as v, the linear bias parameter, is set
(i.e., expands or contracts) by only 1 unit of repeat at 0. Freeing v allows a linear mutational bias as embod-
length, but when p � 1, it mutates by 1 or more unit(s) ied by the equal-rate, linear-biased, one-phase model
of length with probability 1 � p and by 1 unit of length (EL1), with a mutational bias toward the focal length
with probability p . Given that an allele i undergoes a f, akin in spirit to the mutation scheme introduced by
multistep mutation, the probability of expanding or Garza et al. (1995). Note that EL1 is related to the
contracting by k units is given by �(m, i, j). The functions simplest version of the PLBias model of Calabrese and

 and � are defined as Durrett (2003). The equal-rate, one-phase models,

EU1, EC1, and EL1, have s set to 0, making the mutation�(i, s) � �(1 
 (i � �)s),
rate equal for all alleles (�(i, s) � �), unlike their pro-


(u, v, i) � max{0, min{1, u � v(i � �)}}. portional-rate, one-phase cousins, PU1, PC1, and PL1,
respectively, which allow s to take values in (�1/(� �The proportional dependence of mutation rate on
� 
 1), ∞). The PU1 model is related to PS\0M, arepeat length is captured by the proportional rate pa-
proportional slippage model without point mutationsrameter s � (�1/(� � � 
 1), ∞) in �(i, s). When s �
proposed by Calabrese et al. (2001). The PC1 model0, alleles of all lengths have the same mutation rate � �
is similar to the models proposed by Walsh (1987) and(0, ∞) of allele �. Thus, s represents the strength of
Tachida and Iizuka (1992).length dependence of the mutation rate. Observe that

In all six models discussed so far, alleles mutate by1/�(i, s) is the average amount of time spent by a micro-
only 1 unit of repeat length, since p and m are set at 1.satellite locus in an allele of repeat length i (mean hold-
When p � 1 and m � 1, we have an equal-rate, unbiased,ing time in allele i).
two-phase model EU2*, the truncated version of theIn the function 
(u, v, i), the constant bias parameter
TPM of DiRienzo et al. (1994), which allows both single-is u � [0, 1] and the linear bias parameter is v � (�∞,
step and multistep mutations instantaneously. However,
∞). If u � 0.5 and v � 0, we have a symmetric unbiased
in this two-phase model, the parameters p and m aremutational process in which the probability that a muta-
nonidentifiable at the boundaries of interest (p � 1 ortion is an expansion or a contraction is equal. If v � 0,
m � 1). We rectify this by a single-valued transformationthen 
(u, v, i) � u � [0, 1] for any allele i, and we have
prior to inference.a model with constant mutational bias. Furthermore, we

It is possible to obtain the six one-phase models fromhave a linear mutational bias when v � 0. If 0.5 � u �
Equation 3 by setting p at 0 to allow mutations of length1 and (u � 0.5)/(� � �) � v � ∞, we have a focal
�1 and setting m at 1 to force the geometric distributionlength f � ((u � 0.5)/v) 
 �, where the probability of
to put all its mass on one-step mutations. When m � 1,contraction equals that of expansion (
(u, v, f) � 0.5),

and toward which the mutational process is linearly we have their two-phase cousins in the spirit of Fu and
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Figure 2.—Model descrip-
tion. K denotes the number of
free parameters. The fixed pa-
rameter(s) for each set of
models is/are shown above
the branch leading to it.

Chakraborty (1998), namely EU2, EC2, EL2, PU2, PC2, we obtained 644 candidate microsatellite loci homolo-
gous between the two primates.and PL2. These models capture the qualitative features

Each such microsatellite locus was retained if it hadof one-phase and two-phase in a simpler and identifiable
a flanking sequence of length �200 bp on at least onemanner. Observe that the equal-rate linear-biased two-
side of the dinucleotide repeat in both species and aphase model (EL2) is not unlike a model inspired by the
flanking sequence of length �50 bp on the other sidemutation scheme of Garza et al. (1995; see also Zhivo-
in both species. A compound repeat is defined to havetovsky et al. 1997), in which the mutation rate is inde-
more than one motif, each of repeat length �10, withinpendent of allele length and the bias is a linear function
a 50-bp radius. Thirty percent of loci contained com-of repeat length with an attracting focal length. The
pound repeats in at least one of the homologs and weremost general model PL2 is related to a hybrid of PS\0M
excluded from further analysis. Finally, those loci whoseand the model due to Garza et al. (1995).
simple repeats in at least one species were interrupted
by two or more point mutations were omitted. Thus 383
candidate loci were obtained. About 70% of these lociDATA AND METHODS
occurred in human chromosome 7. Fifteen percent of

To find the largest number of homologous loci in these 383 loci were omitted as their human homologs
the pair of primates, while minimizing ascertainment were �9 units in repeat length. Among the remaining
bias and sequencing error, we first obtained 21.4 Mbp 321 loci 78% were AC repeats (namely, AC, CA, TG,
of the P. troglodytes (chimp) sequences in HTGS (high- and GT repeats), 13% were AT repeats (namely, AT
throughput genomic sequence) (Ouellette and Bogu- and TA repeats), and 9% were AG repeats (namely, AG,
ski 1997) phase 3, available by March 4, 2003, through GA, TC, and CT repeats). There were no CG repeats
the Entrez retrieval system of NCBI (http://www.ncbi. (namely, CG and GC repeats).
nlm.nih.gov/entrez/). The sequences in HTGS phases Among these 321 loci, 18% contained homologous
0, 1, and 2 were excluded to minimize sequencing error. pairs of once-interrupted dinucleotide repeats, which
For all analyses in this study we set the lower bound � � have exactly one point mutation interrupting an other-
10. Chimp microsatellites of dinucleotide motifs with wise pure stretch of the repeat in either or both species.
repeat length �10 were obtained. To assure some level We count the repeat length of a once-interrupted AC
of independence, all microsatellites within 200 bp of repeat (iAC repeat), ignoring the interruption. For in-
another were discarded. stance, the iAC repeat “ACACATACAC” is taken to be

Each selected chimp microsatellite, with 200 bp of of length 5. The common practice in the literature of
flanking sequence upstream and downstream, was used directly extrapolating the repeat length of a microsatel-
to perform an extremely stringent (E-value �1 � 10�100) lite from its PCR fragment length is the motivation be-
unfiltered BLAST search against the human contigs hind such a characterization of repeat length for an
downloaded from the August 23, 2002, NCBI release interrupted microsatellite.
at ftp://ncbi.nlm.nih.gov/genomes/H_sapiens/, using Thus we found 321 homologous pairs of simple di-
formatdb and blastall (2.2.3 release) of the NCBI Tool- nucleotide repeats with at most one interruption, of which

264 were uninterrupted or pure dinucleotide repeatskit in ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/. Thus
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Figure 3.—Counts of the pairs of homologous microsatel-
lites (pure AC repeats) between human and chimp (DAC).

Figure 4.—Counts of the chimp (shaded bars) and human
(solid bars) microsatellites of pure AC repeats (DAC).

and 235 were pure AC repeats. This constitutes our
basic human-chimp data set. The empirical joint and model XI with parameters �I on the three branches of
marginal distributions of homologous pure AC-repeat � with terminal branches of equal length �I. D II, the data
data are shown in Figures 3 and 4, respectively. We also of type II, is modeled in a similar manner, by XII with
obtained the human genomic data of perfect (devoid its respective parameters and branch length. Thus, akin
of interruptions) and isolated (at least 50 bp from the to Equation 2, our likelihood function for the data (D I,
nearest dinucleotide microsatellite of length �4 repeat D II), where D I is a 2 � N I matrix, and D II is a 2 � N II

units) AC repeats as described by Calabrese and Dur- matrix, is
rett (2003) for comparative purposes.

To maximize the likelihood L, we transformed the L(�I, �II, �I, �II |(D I, D II)) :� �
N I

i�1

Li(�I, �I |D I
i)�

N II

i�1

Li(�II, �II |D II
i ).

constrained parameter space to an unconstrained one
(5)and performed an unconstrained optimization using the

function Findminimum of Mathematica (Wolfram 1999). Likelihood-ratio test: Suppose � � (�r , �s) � (�r , �s)
We explored most of the support of the parameter space is a vector of r 
 s parameters, where r � 1 and s � 0,
by partitioning it into small hypercubes and using their and we are interested in testing the null hypothesis, H0:
midpoints as initial conditions to find local optima. �r � �r 0 , against the alternative hypothesis, H1: �r � �r 0 .

Stationary distribution of one-phase models: Observe The likelihood-ratio test statistic (LRTS) given by
that all the one-phase models including PL1 are special
cases of the general birth-death chain with birth and �2 log

sup�s��s
L(�r 0 , �s |D)

sup��(�r ,�s)L(�r , �s |D)death rates bi and di representing the rate of expansion (6)
and contraction, respectively, of allele i by 1 repeat unit.

is asymptotically � 2
r distributed under the null hypothe-Using the convention ���1

j�� (·) � 1, the stationary distri-
sis, where the degrees of freedom r is the difference inbution 	i, up to a normalizing factor, is given by
the number of free parameters between the two hypoth-
eses, under standard conditions (Wilks 1938). The

	i � �
i�1

j��

bj

dj
1

.
asymptotic distribution of the LRTS when the parameter
has a boundary value is obtained from Self and Liang

For example, for the PL1 model with birth rate 
(u, v, i) (1987).
�(i, s) and death rate (1 � 
(u, v, i)) �(i, s), Model selection: Given an a priori set of candidate

models, they can be ranked from the best to the worst,
	i � �

i�1

j��


(u, v, j)�( j, s)
(1 � 
(u, v, j 
 1))�( j 
 1, s) in an information-theoretic paradigm through a second-

order Akaike information criterion (AICc). This ranking
can help distinguish models that are nearly equally good� �

i�1

j��


(u, v, j)
(1 � 
(u, v, j 
 1)) �

i�1

j��

�( j, s)
�( j 
 1, s) fits vs. those that are poor explanations for the given

data D of sample size N. The best candidate model with
a total of K parameters in (�, �) is the one that mini-�

1
1 
 (i � �)s �

i�1

j��


(u, v, j)
(1 � 
(u, v, j 
 1))

.
(4) mizes the quantity

Repeat-specific models: The presence or absence of
AICc :� �2 log L(�, � |D) 
 2�K 


K(K 
 1)
N � K � 1 �.any significant difference between the mutational mech- (7)

anisms of two distinct types of dinucleotide repeats, for
example, pure vs. interrupted repeats, or different mo- We use AICc (Sugiura 1978; Hurvich and Tsai 1989),

the second-order estimator of the Kullback-Liebeler in-tifs, can be investigated. The distribution of D I, the data
of type I, is modeled by superimposing a Markov chain formation, instead of the first-order estimator AIC, be-
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TABLE 1

Parameter estimation, maximum likelihood, and model ranking using species-pair data from 235 loci of AC repeats

MLEs of parameters log L: AICc 
 2491

Models u v m s � � � 40 � � 40 � � 60 � � 100

PL2 0.82 0.039 0.55 0.76 0.56 �1240.21 0 0 0
PL1 0.62 0.015 1.00 0.88 2.14 �1241.48 0.5 0.4 0.4
EL2 0.68 0.037 0.43 0.00 1.72 �1247.94 13 13 13
EL1 0.54 0.0095 1.00 0.00 12.26 �1250.40 16 16 16
EC1 0.47 0.00 1.00 0.00 11.09 �1294.54 102 108 108
PC1 0.47 0.00 1.00 �0.0048 10.93 �1294.52 104 110 110
EC2 0.47 0.00 0.99 0.00 11.09 �1294.54 105 110 110
PC2 0.47 0.00 0.99 �0.0048 10.93 �1294.52 107 112 112
PU1 0.50 0.00 1.00 0.28 3.68 �1342.48 198 276 347
PU2 0.50 0.00 0.99 0.28 3.68 �1342.48 200 278 349
EU1 0.50 0.00 1.00 0.00 10.33 �1432.35 376 610 882
EU2 0.50 0.00 0.94 0.00 8.63 �1432.31 378 609 877

The parameters that are fixed for a given submodel are shown in italics. Free parameters take their maximum-
likelihood estimates (MLEs) when � � 40.

cause N/max {K} is small in our study (e.g., Burnham and constituting the fourth-best group, outperform their
equal-rate, unbiased cousins, EU1 and EU2. ObserveAnderson 1998). When the expression in the parentheses

of the above equation is replaced by K we get AIC. that the model ranking is unaffected by variation in the
upper bound � except for that of the worst group. Since
the AICc values of PL1 and PL2 are so close we resort

RESULTS to a LRT and attempt to reject PL1 in the next section.
Another ranking of the submodels is performed (Ta-We initially assume a lineage-homogeneous mutational

ble 2) on the basis of the fit of their stationary distribu-process to model the distribution of the 235 homolo-
tions to the empirical distribution of pure and isolatedgous pairs of pure AC repeats. Thus the same Markov
AC-repeat lengths in the human genome as describedchain model (i.e., �a � �c � �h � �) is superimposed
by Calabrese and Durrett (2003). These results areon the three branches of � whose terminal branches
largely consistent with those based on the human andare of equal length (i.e., �c � �h � �). Observe that
chimp comparison. However, when fitting a model’sfor time-reversible Markov chains, such as PL1, we can
stationary distribution, due to the large sample size, anyestimate only the sum of the terminal branch lengths
increase in the degrees of freedom toward a multinom-(2�) along with �. This is because the per-locus likeli-
ial model greatly increases its likelihood. For this reasonhood given by Equation 1 becomes �j�S	jPj,Ci

(�)Pj,Hi
(�)

we base our inferences on the human-chimp compari-due to lineage homogeneity and further simplifies to
son. The AIC scores are also computed for the differ-	Ci

PCi ,Hi
(2�) due to time reversibility. We relax, and even

ent models when the loci are restricted to those in thetest, these homogeneity assumptions later when we study
human-chimp comparison.repeat-specific and lineage-specific processes.

One phase vs. two phase: The null hypothesis of theRanking the submodels: The submodels of Equation
simplest, one-phase model EU1 is tested against its two-3 define the set of candidate models to be ranked from
phase cousin EU2*, through a LRT. The LRTS underbest to worst according to their AICc values using Equa-
this null hypothesis has a nontrivial mixture of � 2

0, � 2
1,tion 7, on the basis of data DAC (see Table 1). Five

and � 2
2 for its asymptotic distribution, since both p andgroupings of models are found. The best group contains

m lie on the boundary of the parameter space underthe proportional-rate linear-biased models, PL1 and
the null hypothesis (Self and Liang 1987). Instead ofPL2, where longer microsatellites mutate more often
analytically pursuing this asymptotic distribution underthan shorter ones toward an attracting focal length. The
such nonstandard boundary conditions, we resort tosecond-best group comprises EL1 and EL2. In these
parametric bootstrap to obtain an approximation to themodels, all microsatellites, irrespective of their repeat
finite sample distribution of the LRTS (see Figure 6A).length, mutate at the same rate toward a focal length.
On the basis of these simulations, there is not enoughThe third-best group comprises the constant-bias mod-
evidence to reject the one-phase hypothesis (P � 0.16).els, namely, PC1, PC2, EC1, and EC2. In the presence of
One is unable to reject EU1 in favor of the simplera constant downward bias in the mutational process
equal-rate two-phase unbiased model EU2 as well, sincenone of the other features seem to matter very much.

The proportional-rate, unbiased models, PU1 and PU2, the LRTS that is asymptotically 0.5 
 0.5� 2
1 distributed
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TABLE 2 hypothesis (see Figure 6C). The MLE of the focal length
for the linear-bias model EL1 is 14.Parameter estimation and model ranking using pure

To investigate the nature of mutational bias in theAC-repeat loci from the entire human genome
presence of rate proportionality we conducted similar
LRTs. Once again absence of bias (PU1) is rejected inMLEs of parameters
favor of its presence (PC1 and PL1) and the hypothesis

Models u v m s �AIC33,298 �AIC235 of constant bias (PC1) is rejected in favor of linear bias
PL2 0.93 0.05 0.42 1.03 0 2 (PL1). The MLE of the focal length for the propor-
PL1 0.61 0.01 1.00 4.93 16 0 tional-rate linear-bias model PL1 is 18. When more gen-
EL2 0.67 0.03 0.43 0.00 326 4 eral functional forms, such as piecewise linear, quadratic,
EL1 0.54 0.008 1.00 0.00 564 2 or cubic, were employed to model the dependence of
EC1 0.47 0.00 1.00 0.00 10,053 82

mutational bias on repeat length, the likelihood did notPC1 0.47 0.00 1.00 0.00 10,055 84
improve significantly enough to reject the linear-biasEC2 0.47 0.00 0.99 0.00 10,055 84
model (results not shown).PC2 0.47 0.00 0.99 0.00 10,057 84

PU1 0.50 1.00 1.00 0.32 18,770 163 Rate equality vs. proportionality: We test the hypothe-
PU2 0.50 0.00 0.99 0.32 18,772 165 sis of equal mutation rates for all alleles (EU1) against
EU2 0.50 0.00 0.93 0.00 38,500 335 a hypothesis of proportional rates (PU1). This LRTS is
EU1 0.50 0.00 1.00 0.00 38,508 333 asymptotically �2

1 distributed under the null hypothesis.
Thus, the null hypothesis of rate constancy among al-The parameters that are fixed for a given submodel are

shown in italics. Free parameters take their maximum-likeli- leles is rejected, in favor of a directly proportional re-
hood estimates (MLEs) when � � 40. Note that � � ∞ at lationship between mutation rate and repeat length
stationarity. �AIC33,298 � AIC � 190,182 for the genomic data (ŝ � 0.2556) in the presence of an unbiased mutation(33,298 loci), and �AIC235 � AIC � 1281 for the loci restricted

process.to those used in the human-chimp comparison (235 loci).
To determine the relevance of rate proportionality

in the presence of mutational bias two more LRTs are
performed. In the presence of a constant bias, we failedis observed to be 0.084 (P � 0.39). Similarly, we are
to reject the null hypothesis of rate equality among al-unable to reject the null hypothesis of every other one-
leles in favor of rate proportionality (P � 0.022). Inphase model, in favor of its two-phase cousin, except
the presence of linear bias, the LRTS is asymptoticallyin the equal-rate linear-biased case where one-phase is
distributed as �2

1 under the null hypothesis (see Figuremarginally rejected (P � 0.013). The EC2 model with
6D; Table 3). We were able to reject rate equality (EL1)p � 0, akin to a truncated version of the SMM of Fu
in favor of rate proportionality (PL1). Thus, for pure AC

and Chakraborty (1998), as well as PC2 and PU2 as-
repeats, the proportional-rate linear-bias model (PL1)

sign almost all of the probability mass to single-step explains the data best.
jumps. Hence, in these cases, we fail to reject the one- When performing multiple LRTs in a nested setting,
phase hypothesis that m � 1 in favor of a two-phase the order in which such tests are done could affect the
hypothesis that 0 � m � 1. Among the best group of final conclusions drawn. We are assured, however, that
models, PL1 and PL2, there is inconclusive evidence this order has not influenced our conclusions, since the
against one-phase as P � 0.06 (see Figure 6B). Further- results of model selection are consistent with those of
more, there is even less evidence in the data to reject the hypothesis tests. All conclusions drawn above using
PL1 in favor of the most general model (P � 0.23). The the LRTs are robust to changes in the upper bound �
profile log-likelihood of m under the PL2 model is fairly (results not shown).
flat with a wide confidence interval ([0.42, 1]) contain- So far we have used only pure AC-repeat data (DAC) for
ing 1. By walking 2 log-likelihood units on either side inference and assumed homogeneity in the mutational
of the maximum-likelihood value along the profile log- mechanisms across the loci. In doing so, we have ig-
likelihoods, we obtain confidence intervals of the pa- nored interlocus variation and could not address possi-
rameters u, v, s, and � of the PL1 model (Figure 5). ble motif-specific and interruption-induced complica-

Mutational bias: The absence of any mutational bias tions. Such issues are examined below using PL1, which
as embodied by EU1 is first rejected in favor of the con- emerged earlier as the best model.
stant-bias model EC1. The maximum-likelihood esti- Interlocus rate variation: The possible presence of
mate (MLE) of the constant upward bias parameter û � variation in mutation rate among loci of pure AC repeats
0.4650. EU1 is also rejected in favor of the linear bias is investigated next. Since � is estimable as the product
model EL1. of � and t, variation in mutation rate (�) translates to

The hypothesis of constant mutational bias for all variation in �, as the number of generations (t) remains
alleles, i.e., EC1, is rejected in favor of the linear-bias identical for all loci. We model three equiproportionate
model EL1 in the absence of rate proportionality. This classes of loci, 1, 2, and 3, with distinct mutation rates

reflected by �1, �2 , and �3, respectively. We are unableLRTS is asymptotically distributed as �2
1 under the null
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Figure 5.—Profile log-likelihood of
the parameters u, v, s, and � of the best
model, PL1.

to reject the null hypothesis of equal rates across loci, mutational mechanisms, H1: uAC � u iAC, vAC � v iAC, and
sAC � siAC, since the asymptotically � 2

3-distributed LRTSH0: � � �1 � �2 � �3 , in favor of interlocus rate variation,
H1: 0 � �1 � �2, 0 � �2 � ∞, and �2 � �3 � ∞, as the is observed to be 26.27. The MLE of the focal length

for AC repeats is still 18 but that of the iAC repeats isasymptotically � 2
2-distributed LRTS is observed to be

0.67 (P � 0.73). We could not reject an equal-rate model longer at 21.
The scaled mutation rate (1/�)�(i, s) is plotted as ain favor of a model with two classes (P � 0.46).

Interruption-induced variation: We study possible ef- function of repeat length using the MLEs of the propor-
tional-rate parameters for pure AC repeats (ŝ AC � 0.83)fects of an interruption by a point mutation on the evo-

lution of otherwise pure AC repeats. Recall that the and iAC repeats (ŝ iAC � 0.37) in Figure 7A. The ratio
of the MLE of mutation rate of AC repeats over that ofrepeat length of iAC repeat is counted ignoring the

interruption. As in the previous section, the stochastic iAC repeats, which asymptotes to 0.83/0.37 � 2.24, is
plotted in Figure 7B. The null hypothesis H0 of identicaldynamics of pure AC repeats are described by a propor-

tional-rate linear-biased one-phase model with parame- mutational processes in AC and iAC repeats is also re-
jected against a simpler alternative that assumes identi-ters uAC, vAC, sAC, and �, and those of the iAC repeats

are described by another such model with parameters cal bias parameters u and v but distinct proportional-
rate parameters sAC and s iAC. For this test the LRTS thatu iAC, v iAC, s iAC, and �. By calculating the likelihood ac-

cording to Equation 5, we test hypotheses through LRTs. is asymptotically distributed as � 2
1 is observed to be 14.56.

Mutation rate estimation: Assuming 5.5 million yearsThe null hypothesis of an identical mutational mecha-
nism between pure AC repeats and iAC repeats, H0: u � since human-chimp speciation and an average lifetime

of 20 years for the two species leads to an estimate ofuAC � u iAC, v � vAC � v iAC, and s � sAC � s iAC, is successfully
rejected in favor of the alternative, which allows distinct 275,000 generations since speciation. Since � � �/t in

Figure 6.—(A) Five hundred simulations of
the finite sample LRTS under the null hypothesis
for EU1 vs. EU2* and 100 simulations each for (B)
PL1 vs. PL2 � 0.5 
 0.5�2

1, (C) EC1 vs. EL1 � �2
1,

and (D) EL1 vs. PL1 � � 2
1. The asymptotically ex-

pected distribution in each case is the solid line.
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TABLE 3

Some hypothesis tests of time-homogeneous models
through likelihood ratios

Asymptotic
LRT H0 vs. H1 distributiona LRTS P

1 EU1 vs. EU2 0.5� 0
2 
 0.5� 1

2 0.084 0.39
2 EU1 vs. EU2* Simulatedb 1.060 0.16
3 EL1 vs. EL2 0.5� 0

2 
 0.5� 1
2 4.92 0.013 Figure 7.—(A) Scaled mutation rates, (1/�)�(i, ŝ AC) for

4 PL1 vs. PL2 0.5� 0
2 
 0.5� 1

2 2.54 0.055 pure AC repeats (shaded line) and (1/�)�(i, ŝ iAC) for once-
5 EU1 vs. EC1 � 1

2 275.62 �0.01 interrupted iAC repeats (dashed line), as a function of repeat
length under the PL1 model. (B) The rate ratio �(i, ŝ AC)/�(i,6 EU1 vs. EL1 � 2

2 363.91 �0.01
ŝ iAC) as a function of repeat length i.7 EC1 vs. EL1 � 1

2 88.27 �0.01
8 EU1 vs. PU1 � 1

2 179.75 �0.01
9 EC1 vs. PC1 � 1

2 0.022 0.88
10 EL1 vs. PL1 � 1

2 17.84 �0.01 expansion along the human lineage is difficult to dis-
cern from that of a biased contraction along the chimpa The expected asymptotic behavior of the likelihood-ratio

test statistic (LRTS) under H0, with � � 40. lineage without knowledge of the stationary distribution
b Simulated finite sample distribution (Figure 6A). of the ancestor or repeat length data at homologous loci

in an additional outgroup species. In light of additional
evidence from a human-chimpanzee-baboon study byour formulation, its MLE �̂ � �̂/(2.75 � 105). Thus
Webster et al. (2002), which suggests that the dinucleo-the MLE of the allele-specific mutation rate �(i, ŝ) �
tide repeats in chimpanzees and baboons are similar�̂(1 
 (i � 10) ŝ) is obtained.
and a change in the mutational process is more likelyTo compare �̂ with the estimates of mutation rates
to have happened along the lineage leading to humans,in the literature (which is done in the discussion) we
we introduce nonhomogeneity by constraining the an-obtain an average rate �* � �i	̂i�(i, ŝ), where 	̂i is the
cestral mutational mechanism to be identical to that ofstationary probability of allele i under the MLEs of the
chimp. Moreover, the nonhomogeneous models thatmodel. For the best model (PL1) �* is 4.87 � 10�5 per
impose identical mutational mechanisms between thelocus per generation and for the worst model (EU1) it
human and the ancestral lineages do not have betteris 23% less at 3.76 � 10�5.
AICc scores (results not shown).The confidence intervals of [1.1, 4.5] and [0.32, 1.8]

We marginally reject (P � 0.018) the null hypothesisfor � and s, respectively, translate to a confidence inter-
of identical mutational mechanisms for the ancestor,val of [1.3 � 10�5, 1.8 � 10�4] for the average per-locus
chimp, and human microsatellites of the pure AC re-per-generation mutation rate of pure AC repeats under
peats (PL1 model) in favor of an alternative hypothesisthe PL1 model.
of almost identical mechanisms for the three lineagesLineage-specific variation: Here, we relax the assump-
with the exception of a distinct proportional-rate param-tion of lineage homogeneity that �a � �c � �h � �
eter s h for the human lineage (PL1x). Since the variousand allow distinct Markov chain models to be super-
alternatives are not nested we resort to AICc to rankimposed on distinct branches of �. We study lineage-
the models. The better-performing nonhomogeneousspecific differences in the mutational mechanism only
models decrease the mutation rate (by decreasing s h)for the PL1 model. By superimposing a proportional-
for longer human microsatellites relative to that of therate linear-biased one-phase model with parameters u a ,
chimps and/or increase the focal allele of humans byva , and s a upon the ancestral branch; another such model
1 or 2 repeat units as evident from Table 4. Similar two-with parameters u c, vc, and s c upon the chimp branch;
phase nonhomogeneous models did not perform betterand finally another with parameters u h, v h, and s h upon
than PL1x (results not shown).the human branch, we address lineage-specific differ-

We were also able to fit nonhomogeneous modelsences in the mutational mechanism of pure AC repeats.
much better to the empirical distribution of isolatedNaturally, the lineage-homogeneous models studied
pure AC repeats from human genomic data. A nonho-thus far, in which all three branches have superimposed
mogeneous PL1 model with seven parameters had aupon them three Markov chain models with identical
log-likelihood value of �95050.02 and outperformedparameters (u � u a � u c � u h, v � va � vc � v h ,
the time-homogeneous PL2 model from Table 2 by 96and s � s a � sc � s h), embody the essence of identical
AIC units. The MLEs (not shown) suggest a scenario ofmutational mechanisms along the three lineages and
ongoing repeat expansion in humans. Figure 8 showsconstitute our null hypothesis of lineage homogeneity
the fits of the homogeneous and nonhomogeneous PL1in the mutational process. However, there are numerous
models to the empirical distribution of the AC repeatsways to model lineage-specific differences in the muta-

tional process. The scenario of biased microsatellite found in the human genome.
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TABLE 4

Lineage-specific model ranking

Lineage-specific parameters

Models K u u h v v h s s h m � log L �AIC c

PL1x 5 0.63 0.63 0.016 0.016 1.40 0.0184 1 2.62 �1238.72 0.0
PL1y 7 0.63 0.68 0.016 0.020 1.26 0.42 1 2.23 �1237.83 2.5
PL1z 5 0.63 0.65 0.016 0.016 0.88 0.88 1 2.10 �1240.12 2.8
PL2 5 0.82 0.82 0.04 0.04 0.76 0.76 0.55 0.56 �1240.21 3.0
PL1 4 0.62 0.62 0.015 0.015 0.88 0.88 1 2.14 �1241.48 3.4

K denotes the number of parameters in a model and �AICc � AICc � 2487.70. Parameters uh, vh, and sh are
for the human lineage, and u, v, and s are for the chimp and ancestral lineages. Estimates shown in italics
are fixed to be identical along all three lineages. The MLEs, log L, and AICc are computed when � � 40.

DISCUSSION form significantly better than homogeneous models, it
is reasonable to assume that identical mutational mecha-Species-pair data from humans and chimps provide
nisms for microsatellites of the same motif can modelopportunities for analyzing microsatellite evolution not
our data.found in population genetic data or genomic data from

Different models can give rise to similar equilibriuma single species. A population’s demography determines
distributions despite distinct finite-time transition prob-the distribution of its genealogy, which in turn accounts
abilities. Thus any inference based on genomic datafor the correlation among homologous alleles in a popu-
from one species is limited to parametric families oflation sample. Thus strong demographic assumptions
models whose members have distinct equilibrium distri-have to be made (Nielsen 1997) to reject one model
butions (Menendez et al. 1999). However, this approachof microsatellite evolution in favor of another. Our in-
currently has the advantage of larger data sets over ourferences are based on a sample of size 1 from each spe-
species-pair approach, as the chimp genome is not yetcies and thus do not rely on assumptions regarding the
fully sequenced. We provide a framework for hypothesisdemographic history of the analyzed populations. If the
tests directed at a mechanistic understanding of themicrosatellites themselves are undergoing neutral evo-
mutational process of microsatellites using informationlution, then the species-pair data are unaffected by selec-
about their divergence.tive sweeps due to samples of size 1 per locus from each

Our analysis indicates that bias in the mutational pro-species. Thus conditional on the divergence time, we may
cess and proportionality in mutation rate are vital forsafely assume independence across loci. We have also
realistic stochastic models of evolution of pure dinucleo-assumed that microsatellites of a particular motif share
tide repeats. The models with a linear bias toward a focala common mutational mechanism. Due to our small sam-
length, in the spirit of Garza et al. (1995), constitute theple size we are unable to allow locus-specific heterogene-
top four models. This suggests an important role for biasity in all the parameters of the mutational model. Since
toward a target length in microsatellite evolution usingthe simplest mixture models that allow interlocus varia-

tion in mutation rate for pure AC repeats do not per- interspecies divergence data, consistent with the study

Figure 8.—Stationary distribution of the ho-
mogeneous (solid bars) PL1 model, transient dis-
tribution of the nonhomogeneous (open bars)
PL1 model, and empirical distribution of the iso-
lated AC repeats (shaded bars) in the human
genome.
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of Garza et al. (1995) and Zhivotovsky et al. (1997) holding time of longer alleles and thereby further reduc-
ing their stationary probability. In fact, the small nega-based on population data, and further affirms the find-

ings of Calabrese and Durrett (2003) that propor- tive value taken by the proportional-rate parameter (ŝ �
�0.0048) reflects some level of restoration of probabilitytional slippage is not sufficient in the absence of muta-

tional bias to explain the human genomic microsatellite mass to longer alleles, countering the effects of geomet-
ric decay caused by constant bias. In the absence of anylength distribution. Finally, using data from parent-off-

spring transmissions of AC repeats, Whittaker et al. mutational bias, on the other hand, the ratio term 
(u,
v, j)/(1 � 
(u, v, j 
 1)) in the finite product of Equa-(2003) also showed that contractions become more

likely for microsatellites �20 repeats while expansions tion 4 simplifies to 1 for all alleles and thus makes
the effects of proportionality pronounced. Any increasebecome frequent for shorter repeats.

The linear bias may be construed as a signature of from 0 in the proportional-rate parameter s shifts the
probability mass away from being uniformly distributedunderlying counteracting forces in the mutational mecha-

nism, i.e., upward mutation bias of primary slippage mu- among all alleles toward shorter alleles, reflecting their
increased mean holding times relative to longer alleles.tations countered by the downward mutation bias at

longer alleles due to the mismatch repair system (Harr Similarly, under linear bias, the effects of proportional-
ity are pronounced as this finite product has terms bothet al. 2002). Since the effects of mutational and substitu-

tional processes are confounded in our human-chimp �1 and �1 for longer alleles. Thus, rate proportionality
cannot be ignored even in the presence of linear bias.data, natural selection could also be contributing to the

downward bias by acting directly against longer micro- The truncated TPM of DiRienzo et al. (1994) fits
the pure AC-repeat data by essentially mimicking thesatellites if they confer some selective disadvantage or by

acting indirectly upon the mismatch-repair machinery truncated SMM of Ohta and Kimura (1973). The two-
phase models generally mimic their one-phase cousins,itself. However, similar findings in the pedigree studies

of Whittaker et al. (2003) suggest that linear bias may as reflected by their values of m̂ being close to 1. Our in-
ability to reject one-phase in favor of two-phase usingtruly be a signature of the microsatellite mutational

process alone. human-chimp data is in contrast with experimental ob-
servations of multistep mutations. There are several ex-The biased models are robust to variation in the upper

bound �, as is evident from their stable AICc values for planations for this. First, noise in repeat length estimates
due to indel activity in the flanking region may be atlarger �, due to the presence of a downward or focal

bias. The unbiased models, on the other hand, do con- least partly responsible for elevating the experimentally
observed proportion of multistep mutations. Empiri-siderably worse for larger values of �, because as micro-

satellites mutate without preferring contractions over cal studies usually keep track of the length of a micro-
satellite repeat along with its flanking sequence (PCRexpansions, they distribute themselves uniformly over

the entire state space as time progresses. Thus, when � fragment length), rather than the actual repeat length.
Studies have found both interspecific and intraspecificis large, microsatellites can attain unrealistically large

repeat lengths under the unbiased models. The lower fragment length polymorphism to be caused by indels
in the flanking regions (Angers and Bernatchez 1997;boundary � was chosen to be 10 because we wanted it

to be higher than the threshold at which slippage is Matsuoka et al. 2002). Thus, on a cautionary note, indels
in the flanking sequence could be construed as multi-empirically observed to occur (typically 8 repeat units).

For one-phase models that allow jumps of only a single unit microsatellite mutations if repeat lengths are di-
rectly extrapolated from the PCR fragment length. Mostrepeat unit at a time, the choice of the lower boundary

poses little problem. One may view this, in the queuing studies that found two-phase models to produce better
fits than their one-phase cousins used some transforma-theory terminology, as a harmless effect on the total num-

ber of customers entering the system from the lower tion of the PCR fragment length for their data. Since
the evolution of such microsatellite-containing PCRboundary but not on their relative numbers (Calabrese

et al. 2001). However, in more complicated models that fragment lengths is influenced by the local indel activity
as well as the true microsatellite mutations, it becomesallow microsatellites to enter the truncated state space

at several distinct repeat lengths, inference can be sensi- difficult to make inference on the nature of two-phase
mutations inherent to microsatellites alone with suchtive to the choice of the lower boundary.

Among the one-phase models, rate proportionality PCR fragment length data. On the other hand, two-
phase models may be more appropriate than one-phasegives a better fit to the data than rate equality among

alleles in the presence of an unbiased or a linear-biased models for such PCR-extrapolated data as shown in a
recent study by Whittaker et al. (2003).mutational process. However, it does not do so in the

presence of a strong constant downward bias (û � 0.46). Second, the lack of evidence for our two-phase models
should really be seen as the rejection of a homogeneousUnder a constant downward bias, most of the probability

mass under stationarity is already piled over shorter two-phase mechanism that is insensitive to repeat length
in favor of a homogeneous one-phase mechanism. Wealleles, and thus any increase in rate proportionality

will only exacerbate this trend by reducing the mean forged our two-phase models in the image of TPM of
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DiRienzo et al. (1994) and an SMM of Fu and Chakra- those invoking selection to explain lineage-specific dif-
ferences in the evolution of pure dinucleotide repeats.borty (1998). However, other formulations of a two-

These methods can be extended to more species asphase mutational mechanism, particularly those that
more primate sequences become available. One can testallow the probability p of single-step mutations and/or
hypotheses and estimate parameters in a locus-specificthe success probability m of the conditional geometric
as well as lineage-specific manner simultaneously. In par-distribution specifying the lengths of multistep jumps
ticular, as data for primates accrue, it would be biologi-to decrease with repeat length, may be more realistic,
cally relevant to use more general functional forms toespecially in light of empirical evidence for large con-
model mutational bias as well as the nature of two-phasetractions being more common among long alleles in yeast
mutations. One may further use such species-specific(Wierdl et al. 1997) and fruit fly (Harr et al. 2002). As
and motif-specific parameter estimates in various popu-more of the chimp genome gets sequenced such varying
lation genetic inferences. The impact of model misspeci-two-phase models should be tested to further evaluate
fication on signals of selective sweeps from microsatellitethe importance of multistep mutations.
variation also needs to be investigated.There is a twofold decrease in the slippage rate and

a 6-bp increase in the focal length of an AC repeat R.S. thanks William Amos, Dave Capella, Lounes Chikhi, Floyd Reed,
Guy Reeves, Gennady Samorodnitsky, James Signorovitch, and Robertinterrupted by just one point mutation relative to a pure
Strawderman for insightful discussions. R.S. is supported by the Inte-repeat. This is not surprising as a point mutation is
grative Graduate Education, Research and Traineeship from Nationalexpected to create fewer opportunities for polymerase
Science Foundation (NSF) grant DGE-9870631; NSF grant DEB-

slippage and thereby decreases mutation rate as demon- 0089487 to R. Nielsen; and NSF/National Institutes of Health grant
strated in yeast (Petes et al. 1997). Moreover, longer DMS/NIGMS 0201037 to R. T. Durrett, C. F. Aquadro, and R. Nielsen.
repeats are more prone to getting interrupted by point
mutations. Upon interruption, they are less likely to
mutate and thereby contract, due to linear bias toward
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