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Abstract

Genomes evolve by chromosomal fissions and fusions, reciprocal translocations between chro-
mosomes, and inversions that change gene order within chromosomes. For more than a decade
biologists and computer scientists have studied these processes by parsimony methods, i.e., what
is the minimum number of events needed to turn one genome into another? We have recently
begun to develop a stochastic approach to this and related questions, which has the advan-
tage of producing confidence intervals for estimates and allowing tests of hypotheses concerning
mechanisms. Our efforts are closely related to earlier work on card shuffling by Diaconis et al.
However now we are not interested in how many shuffles are needed to obtain randomness, but
instead want to look at the deck of cards and guess how many shuffles have been performed.
This leads to interesting new questions and some surprising answers. This survey is a snapshot
of work in progress. The bad news is that the treatment is far from definitive. The good news
is that there are still a number of mysteries to solve.

1. Inversions. We begin with the simplest problem of the comparison of two chromosomes
where the genetic material differs due to a number of inversions. This occurs for mitochondrial
DNA, mammalian X chromosomes and chromosome arms in some insect species (e.g., Drosophila
and Anopheles). To explain the problem, we begin with an example. The table below gives a
small subset of the current comparative map between human and mouse X chromosomes. We
give the names of 22 genes in the order they are found in the human genome and the location
of the homologue in the Jackson Labs map of the mouse genome. The number represents the
location along the mouse in centiMorgans, a measure of distance that corresponds to a 1% chance
of recombination per generation.

In this comparison the human chromosome can be divided into seven segments where the
adjacency of genes has been preserved, except possibly for a reversal of their overall order. Using
a minus to denote a segment with a reversed orientation we can write the mouse genome in terms
of the human as —4, 3, 7, —2, 6, —5, —1. To explain: in human segment 4 we find the smallest
mouse numbers 1.9 and 1.5 which appear in reverse order. The next smallest numbers appear in 3
in correct orientation, etc.
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segment gene name mouse (cM)

1 STS 75.0
1 PHKA?2 72.0
1 SAT 65.2
2 NROB1 34.0
2 DMD 33.0
3 CYBB 2.8

3 MAOA 5.2

3 ARAF1 6.2

4 GATA1 1.9

4 SYP 1.5

5 SMCX 64.0
5 ALAS2 63.0
6 EFNB1 37.0
6 ATPT7A 44.0
6 BTK 51.0
6 PLP1 96.0
6 COL4A5 62.5
7 AGTR2 12.5
7 PIAC1 16.0
7 F9 22.0
7 SOX3 24.5
7 IDH3G 29.5

Hannenhalli and Pevzner (1995a) developed a polynomial algorithm for computing the reversal
distance between chromosomes, i.e., what the smallest number of inversions needed to transform
one chromosome into another? The first step in preparing to use the HP algorithm is to double the
markers. When segment ¢ is doubled we replace it by two consecutive numbers 2¢ — 1 and 2i, e.g.,
6 becomes 11 and 12. A reversed segment —i is replaced by 2¢ and 2i — 1, e.g., —5 is replaced by
10 and 9. The doubled markers use up the integers 1 to 14. To these we add a 0 at the front and
a 15 at the end. Using commas to separate the ends of the markers we can write the two genomes
as follows:

mouse 0,87,56,1314,43,1112,109,21,15
human 0,12,34,56,78,910,1112,1314,15

The next step is to construct the breakpoint graph which results when the commas are replaced by
edges that connect vertices with the corresponding numbers. In the picture we write the vertices
in their order in the mouse genome. Commas in the mouse order become thick lines (black edges),
while those in the human genome are thin lines (gray edges). Each vertex has one black and
one gray edge so its connected components are easy to find: start with a vertex and follow the
connections in either direction until you come back to where you start. In this case all the vertices
are part of one cycle: 0, 8, 9, 2, 3, 11, 10, 12, 13, 6, 7, 5, 4, 14, 15, 1, 0.
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To compute a lower bound for the distance now we take the number of commas seen when we
write out one genome. In this example that is the number of segments +1 or 8, then we subtract the
number of connected components in the breakpoint graph. In this example that is 1, so the result
is 7. This is a lower bound on the distance since any inversion can at most reduce this quantity by
1, and it is 0 when the two genomes are the same. In general the distance between genomes can be
larger than the lower bound from the breakpoint graph. There can be obstructions called hurdles
that can prevent us from decreasing the distance and hurdles can be intertwined in a fortress of
hurdles that takes an extra move to break. (See Hannenhalli and Pevzner 1995a.) In symbols if 7
is the signed permutation that represents the relative order and orientation of segments in the two
genomes

d(m) = n+1 - e(m) + h(x) + f(7)

where d(m) is the distance from the identity, n is the number of markers, ¢(7) is the number of
components in the breakpoint graph, h(m) is the number of hurdles, and f(x) is the indicator of
the event 7 is a fortress of hurdles.

Fortunately the complexities associated with hurdles rarely arise in biological data sets. Bafna
and Pevzner (1995) considered the reversal distance problem for 11 chloroplast and mitochondrial
data sets and in all cases they found that the distance was equal to the lower bound. We can verify
that 7 is the minimum distance by constructing a sequence of 7 moves that transforms the mouse
X chromosome into the human order. There are 9672 solutions so we leave it as an exercise for the
reader to find one. Here are some hints: (i) To do this it suffices to at each step choose an inversion
that increases the number of cycles by 1. (ii) This never occurs if the two chosen black edges are
in different cycles. (iii) If the two black edges are in the same cycle and are a — b and ¢ — d as we
read from left to right, this will occur unless in the cycle minus these two edges a is connected to d
and b to ¢, in which case the number of cycles will not change. For example in the graph above an
inversion that breaks black edges 7-5 and 6-13 or 7-5 and 14-4 will increase the number of cycles
but the one that breaks 7-5 and 3-11 will not. See Section 5.2 of Durrett (2002) or Chapter 10 of
Pevzner (2000) for more details.

Ranz, Segarra, and Ruiz (1997) did a comparative study of chromosome 2 of Drosophila repleta
and chromosome arm 3R, of D. melanogaster. If we number the 26 genes that they studied according
to their order on the D. repleta chromosome then their order on D. melanogaster is given by

127423212018113916614 26252415 101185 23221917

where we have used italics to indicate adjacencies that have been preserved. Since the divergence
of these two species, this chromosome region has been subjected to many inversions that reverse a
segment of the chromosome. Our first questions is: How many such reversals have occurred? To
answer this question we need to formulate and analyze a model.



n-reversal chain. Consider n markers on a chromosome, which we label with 1,2,...n and can be
in any of the n! possible orders. To these markers we add two others: one called 0 at the beginning
and one called n+1 at the end. Finally, for convenience of description, we connect adjacent markers
by edges. For example, when n = 7 the state of the chromosome might be

0-5-3-4-1-7-2-6-8

Note that we no longer keep track of the orientation of the segments.

In our biological applications the probability of an inversion in a given generation is small so, in
contrast to the usual card shuffling problems, we will formulate the dynamics in continuous time.
The labels 0 and n + 1 never move. To shuffle the others, at times of a rate one Poisson process we
pick two of the n+ 1 edges at random and invert the order of the markers in between. For example,
if we pick the edges 5 — 3 and 7 — 2 the result is

0-5—-7-1-4-3-2-6-8

If we pick 3 — 4 and 4 — 1 in the first arrangement there is no visible change. However, allowing
this move will simplify the mathematical analysis and only amounts to a small time change of the
dynamics in which one picks two markers 1 <+¢ < j < n at random and reverses the segment with
those endpoints.

It is clear that if the chromosome is shuffled repeatedly then in the limit all of the n! orders for
the interior markers will have equal probability. The first question is how long does it take for the
marker order to be randomized.

Theorem 1. Consider the state of the system at time t = c¢nlnn starting with all markers in order.
If ¢ < 1/2 then the total variation distance to the uniform distribution v goes to 1 as n — oo. If
c > 2 then the distance goes to 0.

Lower bound. To prove the first half of the result, we define an edge to be conserved if the
markers at its two ends differ by exactly 1. It is easy to see that the expected number of conserved
edges in equilibrium is 2. Suppose now that t(¢) = (1 — €)(n + 1)In(n + 1)/2. We say that an
edge is undisturbed if it has not been involved in a reversal before time t. Let U be the total
number of undisturbed edges at time t(¢). A simple computation shows that EU = (n + 1)¢ and
var(U)/EU — 1 as n — oo. Letting A, be the event that there are at most EU/2 conserved edges
and using Chebyshev’s inequality it follows that for large n the total variation distance

Pty — VlITv = [Py (Ae) = v(Ae)| > 1= 9/EU  if n is large

Upper bound. To prove a result in the other direction, we will use techniques that allow the
comparison of convergence rates of two reversible Markov chains. The key observation is that the
transposition which exchanges markers ¢ and j can be obtained by reversing the segment with end
points ¢ and j and then reversing the interior segment obtained by dropping the end points ¢ and
j. Using this with Theorem 1 on page 2138 of Diaconis and Saloff-Coste (1993), one can show
that reversal chain converges at most 4 = 2 - 2 times as slowly as the transposition chain. The
desired conclusion then follows from a theorem of Diaconis and Shahshahani (1981) for random
transpositions, see also Diaconis (1988). O



While Theorem 1 may be interesting, its conclusion does not tell us much about the number of
inversions that occurred in our data set. To begin to investigate this question, we note that there
are 6 conserved segments. This means that at least 27 — 6 = 21 edges have been disturbed, so at
least 11 reversals have occurred. Biologists often use this easily computed estimate, which is called
the breakpoint distance. However, this lower bound is usually not sharp. In this example it can be
shown that at least 14 reversals are needed to put the markers in order.

The maximum parsimony solution is 14 but there is no guarantee that nature took the shortest
path between the two genomes. York, Durrett, and Nielsen (2002) have introduced a Bayesian
approach to the problem of inferring the history of inversions separating two chromosomes. We
refer the reader to their paper for the details of this Markov chain Monte Carlo method and only
show a picture of the posterior distribution of the number of inversions for this data set. See Figure
1. This density assigns a small probability to the shortest path and has a mode at 19.
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An alternative and simpler approach to our question comes from considering ¢(n) = the number
of conserved edges minus 2. Subtracting 2 makes ¢ is orthogonal to the constant eigenfunction. A

simple calculation shows that ¢ is an eigenfunction of the chain with eigenvalue (n —1)/(n+1). In
our case n = 26 and ¢ = 4 so solving

27<§?> =4 gives m—M

= — 248
In(25/27)

gives a moment estimate of the number of inversions which seems consistent with the distribution
in Figure 1.

Ranz, Ruiz, and Casals (2001) enriched the comparative map so that 79 markers can be located

in both species. Again numbering the markers on the D. repleta chromosome by their order on D.
melanogaster we have:



36 387 17 40 16 15 14 63 10 9 55 28
13 51 22 79 39 70 66 5 6 7 35 64
38 52 60 61 18 65 62 12 1 11 23 20
4 52 68 29 48 3 21 53 8 43 T2 58
57 56 19 49 34 59 30 Tr 31 67 44 2
2T 38 50 26 25 6 69 41 24 75 71 78
73 47 54 45 T4 42 46

The number of conserved adjacencies (again indicated with italics) is 11 so our moment estimate is

In(9/80)
™= a(rsR0) - o0-3
This agrees with the Bayesian analysis in York, Durrett, and Nielsen (2002) where the mean of the
posterior distribution is 92.61 and the mode is at 87. However these two numbers differ drastically
from the parsimony analyses. The breakpoint distance is (80 — 11)/2 = 35, while the parsimony
distance is 54. This lies outside the 95% credible interval of [65,120] that comes from the Bayesian
estimate. Indeed the posterior probability of 54 is so small that this value that it was never seen
in the 258 million MCMC updates in the simulation run.

2. Distances. In the last two examples we saw that the breakpoint distance was likely to be an
underestimate of the true distance. This brings up the question: when is the parsimony estimate
reliable? Bourque and Pevzner (2002) have approached this question by taking 100 markers in
order performing k& randomly chosen inversions, computing Dy the minimum number of inversions
needed to return to the identity and then plotting the average value of Dy — k < 0 (the circles in
the graph below). They concluded based on this and other simulations that the parsimony distance
based on n markers was a good as long as the number of inversions was at most 0.4n. The smooth
curve, which we will describe below, gives the limiting behavior of (D., — cn)/n.
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For simplicity we will consider the analogous problem for random transpositions. In that case
the distance from the identity can be easily computed: it is the number of markers n minus the
number of cycles in the permutation. For an example, consider the following permutation of 14
objects written in its cyclic decomposition:

(174) (2) (312) (5139116) (81014)

which indicates that 1 — 7,7 —> 4,4 — 1,2 — 2,3 — 12, 12 — 3, etc. There are 5 cycles so the
distance from the identity is 9. If the we perform a transposition that includes markers from two
different cycles (e.g., 7 and 9) the two cycles merge into 1, while if we pick two in the same cycle
(e.g., 13 and 11) it splits into two.

The situation is similar but slightly more complicated for reversals. There if we ignore the
complexity of hurdles, the distance is n + 1 minus the number of components in the breakpoint
graph. A reversal that involves edges in two different components merges them into 1 but, as we
saw in the human mouse comparison, a reversal that involves two edges of the same cycle may or
may not increase the number of cycles. To have a cleaner mathematical problem, we will consider
the biologically less relevant case of random transpositions, and ask a question that in terms of the
rate 1 continuous time random walk on the permutation group is: how far from the identity are we
at time cn?

The first step in attacking this problem is to notice that by our description above the cycle
structure evolves according to a coagulation-fragmentation process. Suppose that for the moment
we ignore fragmentation and draw an edge from ¢ to j whenever we transpose ¢ and j. In this case
the cycles are the components of the resulting random graph. There are n(n—1)/2 potential edges,
so results of Erdés and Renyi imply that when ¢ < 1/2 there are no very large components and we
can ignore fragmentations. In this phase the distance will typically increase by 1 on each step or
in the notation of Bourque and Pevzner, Dy — k = 0.

When ¢ > 1/2 a giant component emerges in the percolation model and its behavior is much
different from the large cycles in the permutation which experience a number of fragmentations
and coagulations along the way to establishing a well known equilibrium distribution of sizes in a
random permutation. As Hansen (1990) has shown (see also Donnelly, Kurtz, and Tavaré 1991) if
K, (u) is the number of cycles of size < n* then

K, (u) —ulogn
Viogn

The dynamics of the large components are quite complicated but (i) there can never be more
than \/n of size \/n or larger and (ii) an easy argument shows that the number of fragmentations
occurring to clusters of size < y/n is O(y/n). These two observations plus results from the theory
of random graphs (see Theorem 12 in Section V.2 of Bollobds 1985) imply

= B, a Brownian motion

Theorem 2.1. The number of cycles at time cn is g(2¢)n + O(y/n) where

(o)

g(b) =
k=1

1 kk—l

=5 )

pr(b) and pg(b)

Eod i

Using Stirling’s formula k! ~ k*e=*\/27k it is easy to see that ¢’ is continuous but ¢”(1) does not
exist. It is somewhat remarkable that g(b) = 1 —b/2 for b < 1. Thus there is a phase transition



in the behavior of the distance of the random transposition random walk from the identity at time
n/2 from linear with time to sublinear.

Sketch of Proof. We begin with Cayley’s result that there are k=2 trees with k labeled vertices.
At time cn each edge is present with probability ~ cn/ (g‘) ~ 2c¢/n so the expected number of trees

of size k is present is
k
n\ e 2 k—1 - 2 k(n—k)+(5)—k+1
k n n

since each of the £ — 1 edges need to be present and there can be no edges connecting the k£ point
set to its complement or any other edges connecting the k points. For fixed k the above is

kk_2 k—1 2c kn

n

from which the result follows easily. O

Corollary. We have written the conclusion in the form given above so that pg(b) is the probability
that 1 belongs to a component of size k in an Erdos-Renyi graph with edge occupancy probability
b/n. A corollary of this result is that pg(b) gives the distribution of the total progeny in a Poisson
branching process with mean b. That result is due to Borel (1942) for the equivalent problem of the
total number of units served in the first busy period of a queue with Poisson arrivals and constant
service times (the customers that arrive during a person’s service time are their offspring). For a
proof see Tanner (1961).

Having found laws of large numbers for the distance, it is natural to ask about fluctuations.
This project is being carried out with Nathaniel Berestycki, a visiting student from Paris, who
will eventually get a dual degree from Cornell and Paris. The subcritical regime is easy. Let F;
be the number of fragmentations at time ¢ in a system in which transpositions occur at rate 1.
The continuous time setting is more convenient since it leads to a random graph with independent
edges. If Ny is the number of transpositions at time ¢ then Dy — Ny = —2F} so we study the latter
quantity.

Theorem 2.2. Suppose 0 < ¢ < 1. Asn — oo, F,,/p converges in distribution to a Poisson
random variable with mean (—In(1 —¢) — ¢)/2.

Sketch of Proof. Let fi(t) be the fraction of vertices at time t that are in components of size
k. The rate at which fragmentations occur at time ¢ is >, fr(¢t)(k — 1)/n. If we look in the
subcritical random graph at the component containing 1 then results from the theory of random
graphs imply that with high probability it is a tree and if ¢ = bn/2 then the number of individuals
at distance k from 1 has roughly the same distribution as the kth generation of a branching process
in which each individual has a Poisson mean b number of descendants. Thus the expected rate
at which fragmentations occur is 1/(1 — b) — 1. Integrating from 0 to c¢ and recalling ¢t = bn/2
gives the expected value. To prove convergence to the Poisson we show that the point process of
fragmentations has in the limit a deterministic compensator and then we appeal to results in Jacod
and Shirayev (1987). O



Theorem 2.3. Let c,(r) =1—n""/3 for 0 <r < 1. Asn — oo

Fcn(r)n/2 - (T/G) logn
(1/6)1og n)1/2

Xy (r) =
converges to a standard Brownian motion.

Sketch of Proof. The first thing to do is to explain why we stop at time 1 —n~/3. This is the
boundary between the subcritical phase where the arguments in the proof of Theorem 2.1 work
and the critical phase where the largest component is of order n?/3. See Aldous (1997) for a very
interesting account of cluster growth in the random graph in the critical regime that relates it to a
multiplicative coalescent. Expected value estimates (see Luczak, Pittel, and Wierman 1994) imply
that the number of fragmentations in [I — n~1/3,1] is O(1) and hence can be ignored. Our time
change in the subcritical regime makes X, (r) asymptotically a martingale with variance process r
and hence a Brownian motion. O

Conjecture 2.4. Let o(c) be the standard deviation of the random variable that is equal to 1/k
with probability py(c). If ¢ > 1 then (D(cn/2) — (1 — g(c))n)/o(c)n'/? converges to a standard
normal distribution.

Why is this true? The conjecture is based on our belief that the number of cycles in the random
permutation is to within o(y/n) the number of cycles I'(¢) in the random graph that comes from
ignoring fragmentations. The proof is made difficult by the fact that the number of fragmentations
is not small enough to be ignored but one must use the fact that pieces that break off the giant
component are also reabsorbed by it. Once this is established, the rest is easy. I'(c) = Y, 1/|C;]
where |C;| is the size of the component containing i. The variables —1/|C;| are increasing functions
of the i.i.d. variables that define the random graph, and are asymptotically uncorrelated so the
desired conclusion from a result of Newman and Wright (1981). O

3. Genomic Distance. In general genomes evolve not only by inversions within chromosomes
but due to translocations between chromosomes, and fissions and fusions that change the number
of chromosomes. To reduce the number of events considered from four to two, we note that a
translocation splits two chromosomes (into say a — b and ¢ — d) and then recombines the pieces (to
make a — d and b — ¢ say). A fission is the special case in which the segments ¢ and d are empty, a
fusion when b and c¢ are. To illustrate the problem we will consider part of the data of Doganlar et
al. (2002) who constructed a comparative genetic linkage map of eggplant with 233 markers based
on tomato cDNA, genomic DNA and ESTs. Using the first letter of the common name to denote
the species they found that the marker order on T1 and E1 and on T8 and E8 were identical, while
in four other cases (T2 vs. E2, T6 vs. E6, T7 vs. E7, T9 vs. E9) the collections of markers were
the same and the order became the same after a small number of inversions was performed (3, 1,
2, and 1 respectively).

In our example we will compare of the remaining six chromosomes from the two species. The
first step is to divide the chromosomes into conserved segments where the adjacency of markers
has been preserved between the two species, allowing for the possibility of the overall order being
reversed. When such segments have two or more markers we can determine the relative orientation.
However as the HP algorithm assumes one knows the relative orientation of segments we will have



to assign orientations to conserved segments consisting of single markers in order to minimize
the distance. In the case of the tomato-eggplant comparison there are only 6 singleton segments
(numbers 3, 4, 12, 14, 15, 16) so one can easily consider all 26 = 64 possibilities. The next table
shows the two genomes with an assignment of signs to the singleton markers that minimizes the
distance.

Eggplant Tomato
123456 1-526

78 21-22-208

9 10 4-1411-1539
111213141516 1718 716 -18 17

19 20 21 22 -19 24 -26 27 25
23 24 25 26 27 -12 23 13 10

As in the reversal distance problem, our first step is to double the markers. The second step is to
add ends to the chromosomes and enough empty chromosomes to make the number of chromosomes
equal. In this example, no empty chromosomes are needed. We have labeled the ends in the first
genome by 1000 to 1011 and in the second genome by 2000 to 2011. The next table shows the
result of the first two preparatory steps. Commas indicate separations between two segments or
between a segment and an end.

Eggplant

1000,12,34,56,78,910, 11 12,1001

1002, 13 14 , 15 16 , 1003

1004, 17 18 , 19 20 , 1005

1006, 21 22,23 24,25 26,27 28,29 30, 31 32, 33 34, 35 36 , 1007
1008, 37 38 , 39 40 , 41 42 , 43 44 , 1009

1010, 45 46 , 47 48 , 49 50 , 51 52 , 53 54 , 1011

Tomato

2000,12,109,34,1112, 2001

2002, 41 42 , 44 43 , 40 39 , 15 16 , 2003

2004, 78,2827 ,2122,3029,56,17 18, 2005
2006, 13 14 , 31 32, 36 35, 33 34 , 2007

2008, 38 37 , 47 48 , 52 51 , 53 54 , 49 50 , 2009
2010, 24 23 , 45 46 , 25 26 , 19 20 , 2011

As before, the next step is to construct the breakpoint graph which results when the commas
are replaced by edges that connect vertices with the corresponding numbers. We did not draw the
graph since we only need to know the connected components of the graph. Since each vertex has
degree two, these are easy to find: start with a vertex and follow the connections. The resulting
component will either be an path that connects two ends or a cycle that consists of markers and
no ends. In our example there are five paths of length three: 1000 — 1 — 2000, 1001 — 12 — 2001,
1002 — 13 — 2006, 1003 — 16 — 2003, and 1005 — 20 — 2011. These paths tell us that end 1000 in
genome 1 corresponds to end 2000 in genome 2, etc. The other correspondences between ends will
be determined after we compute the distance. The remaining paths and cycles in the breakpoint
graph are listed below.
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1004 17 6 7 2004

1006 21 27 26 19 18 2005

1007 36 32 33 35 34 2007

1008 37 47 46 25 24 2010

1009 44 42 43 40 41 2002

1010 45 23 22 30 31 14 15 39 38 2008
1011 54 49 48 52 53 51 50 2009
23982829541110

To compute a lower bound for the distance now we start with the number of commas seen
when we write out one genome. In this example that is 33. We subtract the number of connected
components in the breakpoint graph. In this example that is 5+ 8 = 13, and then add the number
of paths that begin and end in the same genome, which in this case is 0. The result which is
20 in this case is a lower bound on the distance since any inversion or translocation can at most
reduce this quantity by 1, and it is 0 when the two genomes are the same. As before this is only a
lower bound. For the genomic distance problem the full answer is quite complicated and involves 7
quantities associated with genome. (For more details see Hannehalli and Pevzner 1995b or Pevzner
2000.) At least in this example, nature is simpler than the mathematically worst possible case. It
is easy to produce path of length 20 to show that the lower bound is achieved.

It is straightforward to generalize the methods of York, Durrett, and Nielsen (2002) to treat
the genomic distance problem and this is being done in a continuing collaboration of these three
authors. Not much is known about properties of the corresponding stochastic model, which can be
thought of as shuffling multiple decks of cards. De, Ferguson, Sindi, and Durrett (2001), following
up on work of Sankoff and Ferretti (1996), considered the evolution of chromosome sizes due to
translocations. Suppose that a genome consists of NV nucleotides total and k chromosome arms with
lengths Ni,... Ny (where N; > 2 and ), N; = N). We model chromosome arms rather than whole
chromosomes to capture the biological constraint that after translocation each chromosome must
have one centromere. There are N — k spaces between nucleotides. Suppose we pick two spaces
at random. If they are in the same arm we do nothing. Otherwise we perform the one possible
translocation that results in one centromere on each chromosome.

It is easy to see that if we let  and y be two chromosome length vectors our chain has p(z,y) =
p(y, x) so a uniform distribution over all states is stationary. While this result is nice and simple,
nature is unfortunately more complicated. Comparing with say the lengths of human chromosomes
the short chromosomes in the model are too short and the long chromosomes are too long. One way
to modify the chain is to note that recombination between homologous chromosomes is important
to pair chromosomes for cell division and to introduce a fitness function

k

¢(z) = [T(1 —e)

i=1

which is the probability each homologous chromosome arm experiences recombination. We have no
constant in the fitness function since we are now assuming lengths are measured in Morgans (=100
centiMorgans) and hence recombinations in each generation are a rate one Poisson process.
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If we take inspiration from the Metropolis algorithm and define

a(z.y) = p(z,y) if ¢(y) = ¢(z)
’ ple,y) %Y if () > 6(y)

=

then ¢(x)q(z,y) = ¢(y)q(y,x), so ¢(x) is a reversible measure. The new model fits data from four
species well (human, rat, pig, and yeast) but does not fit well for four others (mouse, sheep, wheat,
and rice). We refer the reader to De et al. (2001) for more discussion of fitting the model to data
and turn now to the statement of two mathematical problems.

Problem 3.1. Consider the original version of the Markov chain without the fitness function. In
terms of card shuffling we can pose the problem as follows. There are k decks of cards. We pick
two spaces between cards and cut the decks at the chosen location. If both cuts are made in the
same stack we do nothing. Otherwise we put the top of one deck on the bottom of the other. We
know that the uniform distribution for the vector of deck sizes is stationary. The problem is to
understand the rate of convergence to equilibrium.

Problem 3.2. Consider the previous chain but now (i) when the two spaces are chosen in the same
deck we invert the order of the cards in between and (ii) if a translocation between two decks is
proposed we do that move only with probability p. In general translocations occur an overall a rate
1/10 that of inversions. Since in a typical arrangement there are many more possible translocations
than inversions p is quite small. In the case of inversion distance we had one statistic, the number
of conserved adjacencies could be used to estimate the number of inversions. For the new problem,
we would like to find two statistics that will allow us to estimate both the number of translocations
and inversions.

When distances between the markers are known in one genome, there is another method due to
Nadeau and Taylor (1984) that can be used. We will describe their technique in some detail since it
makes an interesting use of elementary results for Poisson processes. The basic data for the process
is the set of lengths of conserved segments, i.e., two or more consecutive markers in one genome
that are adjacent (possibly in the reverse order) in the other. The actual conserved segment in the
genome is larger than the distance r between the two markers at the end of the conserved interval.
Thinking about what happens when we put n points at random in the unit interval we estimate
the length of the conserved segment containing these markers by 7 = r(n +1)/(n — 1) where n is
the number of makers in the segment.

Let D be the density of markers, i.e., the total number divided by the size of the genome. If
the average length of conserved segments is L and we assume that their lengths are exponentially
distributed then since we only detect segments with at least two markers the distribution of their
lengths is

1
(1 - e—Dx - Dwe—Dz)ze—x/L

normalized to be a probability density. A little calculus shows that the mean of this distribution is
(LD +3L)/(LD +1).

Historically the first application of this technique was to a human-mouse comparative map with
a total of 56 markers. Based on this limited amount of data they estimated that there were 178 £39
conserved segments. This estimate has held up remarkably well as the density of the comparative
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map has increased. See Nadeau and Sankoff (1998). To illustrate this computation we will use a
comparative map of the human and cattle autosomes (non-sex chromosomes) constructed by Band
et al. (2000). Using resources on the NCBI home page we were able to determine the location in the
human genome of 422 genes in the map. These defined 125 conserved segments of actual average
length 7.188 Mb (megabases) giving rise to an adjusted average length of 14.501 Mb. Assuming
3200 Mb for the size of the human genome the marker density was D = 1.32 x 10~ or one every
7.582 Mb. Setting 14.501 = (L?D + 3L)/(LD + 1) and solving the quadratic equation for L gives
an estimate L = 7.144 Mb, which translates into approximately 448 segments. Subtracting 22
chromosomes we infer there were 424 breakpoints, which leads to an estimate of 212 inversions and
translocations. As a check on the assumptions of the Nadeau and Taylor computation, we note
that if markers and segment endpoints are distributed randomly then the number of markers in
a conserved segment would have a geometric distribution. The next table compares the observed
counts with what was expected

markers observed expected

0 — 222.9
1 85 108.1
2 76 52.5
3 29 254
4 10 12.3
5 5 6.0
6 3 2.9
7 1 14
8 1 0.7

To get an idea of the number of translocations that have occurred we will look at the human-
cattle correspondence through the eyes of FISH (fluorescent in situ hybridization) data of Hayes
(1995) and Chowdary et al. (1996). In this technique one takes individual human chromosomes
labels them with fluorescent chemicals and then determines where they hybridize to cattle chro-
mosomes. In the case of the human cattle comparison taking a consensus of the two painting
experiments and the comparative map gives the following data relating the 29 cattle autosomes to
the 22 human ones. The first number is the cattle chromosome number. Those that follow the
period indicate where the segment appears in the human genome.

1. 21, 3, 21 11. 2,9 21. 15, 14
2.2, 1 12. 13 22. 3
3.1 13. 10,20  23. 6
4.7 14. 8 24. 18
5.12, 22, 12,22 15. 11 25. 11

6. 4 16. 1 26. 10

7. 19, 5 17. 4, 12,22 27. 4, 8
8. 8,9 18. 16,19  28. 10

9. 6 19. 17 29. 16, 7
10. 15, 14 20. 5

To visualize the relationship between the genomes it is useful to draw the bipartite graph with
vertices the chromosome numbers in the two genomes and an edge from C; to H; if there is part
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of cattle chromosome i is homologous part of human chromosome j. We call this the Oxford graph
since the adjacency matrix of this graph is what biologists would call an Oxford grid.

Cia — His C13 — Hoy Cs —— Hy
™~
Cig—— Hir Cas 7 Hyp Ci7 —— Hi
Coy — Hig Ca Ce —— Hy
Cas Cy — Hy Cor
> Hypy ™~
Cis Co —— His Ci4 —— Hyg
Cas > Cis —— Hig Cs —— Hy
6
Cy C; — Hs Ci1 —— Ho
Ci1 — Hy Cao Cs
-
Cop —— H3 Cio—— Hua C3 — H
Coy — His C16

Parsimony analysis reveals that a minimum of 19 translocations is needed to rearrange the cattle
genome to match the chromosomes of the human genome. Using the estimate of Nadeau and Taylor
and subtracting 202 - 19 = 183 we get an estimate for the number of inversions consistent with
the belief that inversions occur at roughly 10 times the rate of translocations. With Problem 3.2
in mind, we observe that in the human cattle comparison there are 212 conserved adjacenices out
of 400 possible so the moment estimate is 127.9. This is much smaller than the other estimate of
the total number of events, so we need two new statistics for Problem 3.2.

4. Nonuniformity of inversions. Define a syntenic segment to be a segment of chromosome
where all of the markers come form the same chromosome in the other species, but not necessarily
in the same order. A remarkable aspect of the cattle data is that although our estimates suggest
that there have been roughly 19 translocations and 183 inversions, each chromosome consists of
only a few syntenic segments. If inversions were uniformly distributed on the chromosome we would
expect inversions that occur after a translocations would mingle the two segments.

A second piece of evidence that not all inversions are equally likely comes from the 79 marker
Drosophila data. There the estimated number of reversals is large but there is still a strong corre-
lation between the marker order in the two genomes. Spearman’s rank correlation p = 0.326 which
is significant at the p = 0.001 level. From the point of view of Theorem 1 this is not surprising: our
lower bound on the mixing time predicts that 39.51n75 = 173 reversals are needed to completely
randomize the data. However, simulations in Durrett (2003) show that the rank correlation is
randomized well before that time. In 10,000 runs the average rank correlation is only 0.0423 after
40 shuffles and only 4.3% of the runs had a rank correlation larger than 0.325.
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To seek a biological explanation of the non-uniformity we note that the gene-to-gene pairing of
homologous chromosomes implies that if one chromosome of the pair contains an inversion that the
other does not, a loop will form in the region in which the gene order is inverted. (See e.g, page
367 of Hartl and Jones 2000.) If a recombination occurs in the inverted region then the recombined
chromosomes will contain two copies of some regions and zero of others, which can have unpleasant
consequences. A simple way to take this into account is

f-reversal model. Inversions that reverse markers i to i + j occur at rate 67=1/n(1 — ).

The reasoning here is that the probability of no recombination decreases exponentially with the
length of the segment reversed.

This model seems quite complicated to analyze, so we will make two simplifications. The first
is that we will consider the markers 1,2,...n as lying on a circle and connect them by edges as
before. For example, when n =7 we have 1 —2 -3 -4 -5 —6 — 7 — 1. Departing slightly from
our previous approach, we pick the location of the left marker of the segment to be inverted, 1,
uniformly over the set of possibilities, and then pick the location of the right marker to be i + j
with probability p;, where the arithmetic is done modulo n. Some of the results in Durrett (2003)
were obtained for this p-reversal model, but in most cases he considered the simpler

L-reversal model. p; =1/L for 1 < j < L.

An easy extension of the lower bound in Theorem 1 shows that the amount of time for the
p-reversal chain to reach equilibrium is at least (n/2)Inn. To prove a second lower bound we will
use an idea of Wilson (2001). The first step in the analysis to note that a single marker performs a
symmetric random walk on the circle. To compute the jump distribution we note that the marker
at n will be moved to ¢ if the left endpoint of the inversion is at n — k and the right is at ¢ + k
where k > 0 and n — k > i+ k. Summing we have the rate for jumps by +i is ¢;/n where

4 = sz‘+2k

k>0

The condition n — k > i + k does not appear in the sum since we suppose p,, = 0 for m > n.
Symmetry implies that g_; = ¢;. When p; is uniform on 1,2,... L this has almost a triangular
distribution:

g=1+[(L—-4)/2)/L for1<i<L

where [z] denotes the integer part of z. When p is geometric and n(1 — ) is large so we can ignore
truncation of the infinite series

G =0"11-0)/(1-6%

Theorem 4.1. If the distribution p; is fixed and n — oo then convergence to equilibrium takes at

least time

1 n3

2 4Ar2 Y i%g
In the L-reversal chain if L — oo and (InL)/(Inn) — a € [0,1) then convergence to equilibrium
takes at least time

Inn

(1—a) 6 n3

>
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The key to the proof is the fact that f(z) = sin(2wz/n) is an eigenfunction for any symmetric
random walk on the circle, which for the single particle walk has eigenvalue

n n
—A= E @[005(27#/71) —1] ~ —4—7T2 i2q; asn — oo
= n n3 qi
i=1 1=1

Let nm¢(i) be the marker at position i at time ¢, and Xg = 1, 1(j) be the location of marker j at

time t. Let
1 m<(n+1)/2

—m) = 0 m=(n+1)/2
-1 m>n+1)/2

n—+1

g(m) = sgn (

and let

) = Zg(nt(i sin(27i/n) = Zg ) sin(x X7 /n)

Letting ®; = ®(n,), it follows from the calculation above that

%E@ —A\ED,

When the markers start in order ®¢ ~ 2n /7. Since in equilibrium var(®.,) = O(n), this suggests
that the chain cannot be in equilibrium until E®; = O(y/n) which takes about (Inn)/2X units of
time. To complete this outline we have to show that var(®;) < Cn. This can be done by using ideas
from Wilson (2001). See Durrett (2003) for more details. We get a result with a worse constant
for the L-reversal since we can only show that var(®;) < CnL.

Problem 4.1. When L = n® with a > 2/3 the lower bound in Theorem 4.1 is for large n worse than
the (n/2)Inn bound we get by looking at conserved adjacencies. We believe that the maximum of
these two lower bounds gives the right order of magnitude for the convergence time but we have
not been able to prove matching upper bounds.

Using Wilson’s idea we can introduce a statistic for the shuffling a linear (not circular chromo-
some)

Zg n¢ (7)) cos(m(i — 0.5)/n)

Here we have replaced the sin(27i/ n) by something that is an eigenfunction for the nearest neighbor
random walk on 1,2,...n with reflecting boundary conditions. Durrett (2003) gives results of
10,000 simulations of the 23-reversal chain acting on 79 markers. Plotting the logarithm of the
rank correlation, Wilson’s statistic and the number of conserved segments —2, and scaling these
statistics to have maximum value 1, the three curves are almost straight lines. The value at time
85 for the (conserved segments - 2)/77 is .1224 which is a little larger than the value of .1168 for
the data. The value of 23 was chosen so that the value of the rank correlation 0.312 matched the
0.326 of the data as closely as possible. A simulation of the 22-reversal chain gave a value of 0.355
at that time.

Problem 4.2. Do these quantities decay exponentially for the p-reversal model? or at least for
the special cases of the L- or -reversal models?
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A second way to approach the problem of estimating inversion track lengths is to see how
estimates of the number of reversals depend on the density of markers in the map. If n markers
(blue balls) are randomly distributed and we pick two inversion end points (red balls) at random
then the relative positions of the n+2 balls are all equally likely. The inversion will not be detected
by the set of markers if there are 0 or 1 blue balls between the two red ones an event of probability

n+l+n dn + 2 4
(") (n+2)(n+1) n+2

This means that the 26 markers in the first Drosophila data set should have missed only 1/7 of
the inversions in sharp contrast to the fact that our estimate jumped from 24.8 with 26 markers to
86.3 with 79.

Suppose now that markers are distributed according to a Poisson process with mean spacing
M while inversion track lengths have an exponential distribution with mean L. If we place one
inversion end point at random on the chromosome and then move to the right to locate the second
one then the probability a marker comes before the other inversion endpoint is

/M L
I/M+1/L  L+M

so the fraction detected is L%/(L + M)?2. If we take 30Mb as an estimate for the size of the
chromosome arm studied, we see that the marker spacings in the two studies are: M; = 30/27 =
1.11 Mb and My = 30/80 = .375 Mb respectively. Taking ratios we can estimate L by

86.3  (L+1.1)?
24.8 (L +0.375)2

Taking square roots of each side and solving we have 1.865L+0.375 = L+1.1 or L = 0.725/0.765 =
0.948 Mb. If this is accurate then the larger data set only detects

0.948\ 2
(_1'273) — 0554

or 55.4% of the inversions that have occurred.

While two data points are enough to make estimates, it would be nice to have more extensive
data on which to test our model. This is the topic of an undergraduate research project being
conducted by David Russell. We are of course not able to refine an existing comparative map
but we can take a detailed one: the comparison of human and mouse X chromosome and extract
randomly chosen subsets of various sizes to examine the dependence of the estimate on the marker
density.
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