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Abstract

The mechanisms responsible for the preservation of duplicate genes have been debated for more than 70 years. Recently, Lynch

and Force have proposed a new explanation: subfunctionalization—after duplication the two gene copies specialize to perform

complementary functions. We investigate the probability that subfunctionalization occurs, the amount of time after duplication that

it takes for the outcome to be resolved, and the relationship of these quantities to the population size and mutation rates.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Duplication of individual genes, chromosomal seg-
ments or even whole genomes, is a common occurrence
in genome evolution and has historically been viewed as
an important mechanism in the evolution of new gene
functions (Ohno, 1970) or in providing protection
against deleterious mutations (Clark, 1994; Nowak
et al., 1997; Wagner, 1999). Despite the benefits of
duplication, the mechanisms that lead to the preserva-
tion of these duplicate copies are not clear. There are
three alternative outcomes in the evolution of duplicate
genes: (i) one copy may be silenced by degenerative
mutations; (ii) one copy may acquire a novel beneficial
function; or (iii) a gene with two or more functions after
duplication may result in a pair of genes specialized to
perform complementary functions. For surveys, see
Prince and Pickett (2002) and Walsh (2003).
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Haldane (1933) argued that in the absence of fitness
differences between the two copies, mutation would
eventually inactivate one of the copies. A number of
authors have investigated this model in which all
individuals with at least one working copy are equally
fit (Bailey et al., 1978; Kimura and King, 1979;
Takahata and Maruyama, 1979; Watterson, 1983) and
concluded that fixation takes a long time. However this
observation cannot explain the high frequency of
duplicates preserved in tetraploid fish, since there is no
evidence that in these fishes the number of copies is
polymorphic.

It is intuitively appealing that gene duplication allows
the gene to experiment with mutations that would be
deleterious to a single copy gene. However, theoretical
work of Walsh (1995) has shown that preservation of
duplicate copies due to positive selection is rare unless
the ratio of favorable mutations to deleterious ones is
not small and their effects are strongly beneficial. Recent
studies of a number of fully sequenced genomes (see e.g.,
Lynch and Conrey, 2000 and Kondrashov et al., 2002)
support the notion of a period of relaxed constraint by
the observation that the ratio of nonsynonymous to
synonymous substitutions is larger for young duplicates.
Further evidence comes from a comparative study of 26
groups of orthologous genes from human, mouse,
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Fig. 1. Probability of subfunctionalization versus population size. In

the top panel we have plotted probability versus log-population size as

in Lynch and Force (2000). In the lower panel we have plotted log-

probability versus population, which clearly shows the exponential

decay.
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chicken, Xenopus, and zebrafish by Van de Peer et al.
(2001) who found an increase in evolutionary rate in
about half of the duplicated genes.

The third explanation introduced by Force et al.
(1999) is that complementary degenerative mutations
in the two copies lead to preservation of the duplicate
copies. To explain this, consider a gene with two
different functions controlled by different regulatory
elements. If after duplication the first function is
lost in the first gene and the second function lost
in the second gene, then both genes are essential and
will be preserved. This outcome is called subfunctiona-

lization. Of course it is also possible for one copy
to completely lose its functions while the other
continues to perform both. We call this outcome loss

of function.
In order to determine the relevance of subfunctiona-

lization as an explanation of gene duplication, we need
to understand what the model predicts. Lynch and
Force (2000), see also Lynch et al. (2001), investigated
the probability of subfunctionalization and the time
until the outcome is determined in a Wright–Fisher
model with constant population size N. In their model,
each subfunction is lost with probability mr per genera-
tion and a gene loses all functions with probability mc. In
this paper, we will take a closer look at these quantities
for their model.

Lynch and Force only considered diploid individuals.
However, as the reader will see, it is informative
to compare the diploid case with the behavior in the
haploid case. We will consider both unlinked and
completely linked loci. The first case occurs when the
duplicate copy ends up on a different chromosome, for
example when a whole genome or chromosome is
duplicated. The second case of complete linkage is a
reasonable approximation for tandem duplication of
genes, where the distance between copies is small.
Finally, while Lynch and Force (2000) consider genes
with more than two subfunctions we will restrict our
attention to the case of two subfunctions.

Consider first the case in which the population size
N=1. Given two copies the probability the first
mutation results in loss of one subfunction in one copy
is 4mr/(4mr+2mc). Given this, the probability that the
next mutation knocks out the complementary subfunc-
tion in the other gene is mr/(2mr+mc). The probability of
subfunctionalization is thus

Ps ¼ 2ðmr=ð2mr þ mcÞÞ2:

If one notes that regulatory sequences are small
compared to the size of genes and sets mr=0.1mc then
Ps=0.01388 is very small. However if we assume mr=mc,
then Ps=2/9=0.2222. Lynch and Force (2000) per-
formed simulations which show that the qualitative
behavior of probability of subfunctionalization is the
same when mr/mc is 3.0, 1.0, 0.3, or 0.1. Thus for
simplicity, we only perform simulations for the case
mr=mc. All of our theoretical calculations are for general
mr and mc.

In Fig. 1 we have simulated the process with m=10�4

and various values of N. As the top panel in Fig. 1
shows, Ps=2/9 provides a good estimate when N is
small. To explain our choice of m, we note that if a gene
has 1000 nucleotides and we assume a per nucleotide per
generation mutation rate of 10�8, then m=10�5. We
have increased the mutation rate to m=10�4 to speed up
our simulations by a factor of 10. The answers are for
large N determined by the value of Nm, so in comparing
with results of Lynch and Force (2000) one should
compensate for our choice of mutation rate by dividing
the population size by 10. That is, in our set up humans
will roughly correspond to N=1000 and Drosophila to
N=100,000.

To compute the mean time to resolution, ET, when
N=1, we note that the mean time to the first mutation is
1/(4mr+2mc). If the first mutation is complete loss of
function for one gene we are done. If not, an event of
probability 2mr/(2mr+mc), then the waiting time to the
next event has mean 1/(2mr+mc). Adding the two parts
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gives

ET ¼ 6mr þ mc

2ð2mr þ mcÞ
2
:

When mr=mc=m, the expected time is 7/18m. For
m=10�4 this is approximately 3900 generations. As the
top panel in Fig. 2 shows, this is accurate when N is
small.

When N41 the last formula is an underestimate since
it ignores the time for the mutation to become fixed in
the population. Recalling that the average time until
fixation for a mutation that is destined to fix is 2N,
suggests 7/18m+2N as an improved approximation.
This reasoning ignores various complexities associated
with the process but, as Fig. 2 shows, it provides a
reasonable approximation for the linked cases when N is
10,000 or less.

Lynch and Force (2000) plotted population size on a
logarithmic scale. The results are clearer if one plots the
population on an ordinary scale and in the first case
plots the logarithm of Ps. See the lower panels of Figs. 1
and 2. In each case the data is almost a straight line
indicating exponential decay of Ps as N increases in the
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Fig. 2. Average time to resolution (subfunctionalization or loss of

function) versus population size. In the top panel we have plotted

average time versus log-population size as in Lynch and Force (2000).

In the lower panel we have plotted average time versus population,

which clearly shows the linear growth.
first case and the linear growth of ET with population
size in the second.
2. Linked loci

The main goal of this paper is to understand what
happens in the subfunctionalization model when N

is large. From Figs. 1 and 2 we see that the haploid
and diploid linked cases show very similar behavior,
so for simplicity we will consider the haploid linked
model. Fig. 3 shows simulations with mr=mc=10�3

and N=2500, and 40,000. Using four digit
binary numbers to indicate the states of the two
subfunctions in the two genes, there are nine possible
states for viable individuals in the haploid linked model.
To reduce the dimension we have color coded them as
follows:
white
 all working
 1111,

yellow
 3 out of 4 functions
 1110, 1101, 1011, 0111,

green
 subfunctionalization
 1001, 0110,

red
 loss of function
 1100, 0011.

Fig. 3 shows that as the population size increases the

model converges to the deterministic model in which
offspring are produced with the expected frequencies.
Writing x3, x2, x1, and x0 for the frequencies of white,
yellow, green and red, and using a ¼ mc and a ¼ mr to
simplify notation, the deterministic equations can be
written as

x3
0 ¼ x3ð1 � 2a � 4bÞ=z;

x2
0 ¼ 4bx3 þ x2ð1 � 2a � 3bÞ=z;

x1
0 ¼ bx2 þ x1ð1 � 2a � 2bÞ=z;

x0
0 ¼ 2ax3 þ ða þ bÞx2 þ x0ð1 � a � 2bÞ=z;

where z ¼ x3 þ x2ð1 � a � bÞ þ x1ð1 � 2a � 2bÞ þ x0

ð1 � a � 2bÞ is a normalization that makes the x0 sum
to 1.

To solve these equations it is convenient to consider
instead

X3
0 ¼ X3ð1 � 2a � 4bÞ;

X2
0 ¼ 4bX3 þ X2ð1 � 2a � 3bÞ;

X1
0 ¼ bX2 þ X1ð1 � 2a � 2bÞ;

X0
0 ¼ 2aX3 þ ða þ bÞX2 þ X0ð1 � a � 2bÞ:

Since the original equations are linear except for the
renormalization, it follows that if XiðnÞ and xiðnÞ are the
values in generation n and ZðnÞ ¼ X0ðnÞ þ X1ðnÞ þ
X2ðnÞ þ X3ðnÞ then xiðnÞ ¼ XiðnÞ=ZðnÞ:

The last set of equations is easy to solve. If we
suppose that X3ð0Þ ¼ 1 and the other Xið0Þ ¼ 0
then

X3ðnÞ ¼ ð1 � 2a � 4bÞn:
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Fig. 3. Proportion of white, yellow, green, and red individuals (see Section 2 for definitions) in the haploid linked subfunctionalization model,

showing convergence to the deterministic limit with increasing population size.
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Using this in the second equation we have

X2ðnÞ ¼
Xn�1

m¼0

4bð1 � 2a � 4bÞmð1 � 2a � 3bÞn�ðmþ1Þ:
Bringing 4bð1 � 2a � 3bÞn�1 out front, we have

X2ðnÞ ¼ 4bð1 � 2a � 3bÞn�1
Xn�1

m¼0

1 � b

1 � 2a � 3b

� �m

:
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Summing the geometric series, we have

X2ðnÞ ¼ 4b
ð1 � 2a � 3bÞn

b
1 � 1 � 2a � 4b

1 � 2a � 3b

� �n� �

¼ 4 ð1 � 2a � 3bÞn � ð1 � 2a � 4bÞn½ �:

Similar calculations that we have hidden away in the
appendix give

X1ðnÞ ¼ 2½ð1 � 2a � 2bÞn � 2ð1 � 2a � 3bÞn

þ ð1 � 2a � 4bÞn�;

X0ðnÞ ¼ 2 þ 4b

a þ 2b

� �
ð1 � a � 2bÞn � 2ð1 � 2a � 2bÞn

� 4ð1 � 2a � 3bÞn þ 4
a þ b

a þ 2b
ð1 � 2a � 4bÞn:

X0ðnÞ decays more slowly than X1ðnÞ so x0ðnÞ-1 as
n-N: Ignoring lower order terms and constants, in a
population of size N we will have fixation when there are
only a few 1s remaining and random fluctuations
takeover, i.e., when

1

N
E

X1ðnÞ
X0ðnÞ

E 1 � a

1 � a � 2b

� �n

:

Approximating 1 � a � 2bE1; it follows that
nEðlog NÞ=a: To see that it is permissible to ignore
the lower order terms we note that the last equation
implies

ð1 � 2a � 2bÞn

ð1 � a � 2bÞn E1=N; and
ð1 � 2a � 3bÞn

ð1 � 2a � 2bÞnE1=Nb=a:

The calculations above show that the deterministic
system always ends with loss of function. In a
population of size N, random fluctuations away from
the deterministic trajectory are of order 1=

ffiffiffiffiffi
N

p
: The

reasoning here is the same as the calculations. Kimura
and King (1979) used to derive the diffusion approx-
imation for the double null recessive model. We can thus
regard the Lynch and Force model as a random
perturbation of a dynamical system in the sense of
Freidlin and Wentzell (1998). Their results, see e.g.,
Theorem 2.1 in Chapter 3, imply that for any fixed d40
the probability of moving more than d away from the
deterministic trajectory is pC expð � cðdÞNÞ so in the
linked cases the probability of subfunctionalization
decay exponentially fast in N. Results in the next section
will show that in the unlinked case the deterministic
dynamics stay away from the subfunctionalization
outcomes, so the exponential decay holds in that case
as well.
3. Unlinked loci

In the linked cases when Nm is large, the system is
almost deterministic and follows a path that leads to loss
of function. The unlinked cases are more interesting. Let
3=11, 2=10, 1=01, and 0=00 denote the four possible
states of a gene copy and let xi and yi denote the
frequencies of states i and j at the first and second copy.
The black diamonds in Fig. 4 give the values of (x3,y3)
and of (x3,x2+x1) at various time in five simulations of
the diploid unlinked model with N=10,000 and
m=10�3.

To explain the curve of gray squares we will consider
the deterministic dynamics. Writing a=mc and b=mr to
simplify notation, the frequencies of gene 1 after the
mutation step in either the haploid or the diploid model
are

x3 ¼ x3ð1 � a � 2bÞ;
x2 ¼ x3b þ x2ð1 � a � bÞ;
x1 ¼ x3b þ x1ð1 � a � bÞ;
x0 ¼ x3a þ ðx1 þ x2Þða þ bÞ þ x0:

For the second locus there are similar formulas that
describe the frequencies Zi after the mutation step.

In the haploid case the fraction of viable offspring is

w ¼ x3 þ Z3 � x3Z3 þ x2Z1 þ x1Z2

so the frequencies at the first copy in the next generation
are

x3 ¼ x3=w;

x2 ¼ x2ðZ3 þ Z1Þ=w;

x1 ¼ x1ðZ3 þ Z2Þ=w;

x0 ¼ x0Z3=w

and the equations for the second copy are similar. Since
the xi and the yi each sum to one there are six variables
to solve for. It seems that we have six equations to
determine the equilibria, but the conditions that x3 and
y3 do not change in time lead to the same condition
w ¼ 1 � a � 2b:

Based on the last observation, one might guess that
there is a one-dimensional curve of possible equilibria.
The first step in verifying this is to note that as t-N

then x2(t)�x1(t)-0 and y2(t)�y1(t)-0. This is obvious
from numerical computations and can be confirmed by
algebraic manipulation of the equations for how x2 � x1

and y2 � y1 change in time (details not shown).
Once we know that in equilibria x2 ¼ x1 ¼ x and y2 ¼

y1 ¼ y; the equations become somewhat simpler to
solve. Letting a ¼ 1 � a � 2b and b ¼ 1 � a � b to
simplify things the equations for x3, x2, and y2 to be
constant in time become

x3 þ y3 � x3y3 þ 2xy ¼ a;

ax ¼ ðbx3 þ bxÞbðy3 þ yÞ;
ay ¼ ðby3 þ byÞbðx3 þ xÞ:
Let ei be the ith equation. By considering e2 � e3 and
b2e1 � e2 � e3 we get two equations which for fixed
values of x3 and y3 are linear in x and y. Solving gives
that x and y are linear functions of x3 and y3. Plugging
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the result into the first equation gives a relation between
x3 and y3 in which the highest power of either variable is
2, so we can use the quadratic equation to solve for y3 as
a function of x3.

The resulting expressions are very messy, but our
analysis has established that for the haploid unlinked
case there is a one-dimensional set of equilibria
parameterized by x3A [0,1]. Turning to the diploid
unlinked case, the changes due to mutation are the
same, but the greater number of gene copies makes the
computations much more difficult. Let u1 ¼ x1 þ x0 and
u2 ¼ x2 þ x0 be the probabilities that after mutation
functions 1 and 2 do not exist in the first copy and
v1 ¼ Z1 þ Z0 and v2 ¼ Z2 þ Z0 be the corresponding
quantities for the second copy. Let Fi be the event that
function i is present in at least one of the four copies.
The total fraction of viable offspring,

w ¼ PðF1-F2Þ ¼ 1 � PðFc
1,F c

2Þ
¼ 1 � PðF c

1Þ � PðF c
2Þ þ PðF c

1-Fc
2Þ

¼ 1 � u2
1v2

1 � u2
2v2

2 þ x0Z0ð Þ2:

The frequencies at the first copy in the next generation
are then

x3 ¼ x3=w;

x2 ¼ x2ð1 � u2v2
2Þ=w;

x1 ¼ x1ð1 � u1v2
1Þ=w;

x0 ¼ x0ð1 � u1v2
1 � u2v2

2 þ x0Z
2
0Þ=w:
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Again our system is six-dimensional but there are only
five equations since the ones for x3 and y3 to remain
constant both reduce to w ¼ 1 � a � 2b: This equation
may look familiar, but is different from the previous
one. In the current notation, the fraction of viable
offspring in the haploid case is

w ¼ 1 � u1v1 � u2v2 þ x0Z0:

Thus in contrast to the linked case, the quantitative
behavior of the haploid and diploid models is different.

We expect a one parameter family of solutions in
the diploid unlinked case, but we are not able to
algebraically solve the resulting equations. Fig. 4
however provides a numerical verification. The squares
plotted there are the result of running the deterministic
dynamics starting from a number of different
starting points and all the values lie on a single
curve.

The phenomenon we have observed in the unlinked
cases is reminiscent of Watterson’s (1983) computation
for the double recessive null model of gene duplication,
which is just the special case of the Lynch and Force
model in which each gene has only one function. In
Watterson’s case there are only two variables, x=the
fraction of individuals in which copy 1 is functioning
and y=the fraction for copy 2.

In Watterson’s case the state of the system moves
quickly to within 1/N1/2 of the curve xy=m1/2. By
decomposing the motion into a component along the
curve and one perpendicular to it, Watterson was able to
approximate the time to loss of one copy as

Nðlogð2NÞ � cðy=2ÞÞ;

where y=4Nm is the rescaled mutation rate, c is the
digamma function

cðxÞ ¼ �gþ
XN
i¼0

1

i þ 1
� 1

i þ x

and gE0.57721 is Euler’s constant.
Given that the qualitative behavior of the subfunctio-

nalization model is similar to that of Watterson’s
process, it is not unreasonable to hope (see Fig. 5 in
Lynch and Force, 2000) that N(log(2N)�c(y/2)) will
give a good approximation to the time to resolution.
However, this is just a hope since there is no reason
that Watterson’s proof for the one function case, which
depends on the specific form of the equilibrium curve
in that case, will generalize to the case of two
subfunctions. Consulting Fig. 3 we see that it gives a
reasonable approximation to the haploid unlinked case
but not to the values for the diploid unlinked case, in
contrast to what is shown in Fig. 5 of Lynch and Force
(2000).
4. Summary

We have investigated properties of the subfunctiona-
lization model of Lynch and Force (2000). When
the population size times the mutation rate, Nm, is
small the probability of subfunctionalization and
the time until resolution are well approximated by
the values when N=1. When Nm gets large the
subfunctionalization probability decays exponentially
fast to 0.

In the linked cases, the frequencies of chromosomes of
various types are quantitatively similar in the haploid
and diploid cases. Simulations suggest that the time to
resolution grows linearly with c=Nm but analytical
results show that for fixed mutation rate the time grows
like log N when N is large.

In the unlinked cases, chromosome frequencies are
different in the haploid and diploid cases but the models
are qualitatively similar. When Nm is large, the observed
values of the states of the two copies stay close to a one
dimensional subset of the six-dimensional space of
probabilities. This phenomenon is similar to what
Watterson (1983) observed for the double recessive null
model. His formula works well to predict the time to
resolution in the haploid unlinked case but not in the
diploid case.
Appendix

Using the formula for X2ðnÞ in the equation for X1ðnÞ
gives

X1ðnÞ ¼
Xn�1

m¼0

4b½ð1 � 2a � 3bÞm

� ð1 � 2a � 4bÞm�ð1 � 2a � 2bÞn�m�1

¼ 4bð1 � 2a � 2bÞn�1
Xn�1

m¼0

1 � b

1 � 2a � 2b

� �m

� 1 � 2b

1 � 2a � 2b

� �m

:

The sum is equal to

1 � 2a � 2b

b
1 � 1 � 2a � 3b

1 � 2a � 2b

� �n� �

� 1 � 2a � 2b

2b
1 � 1 � 2a � 4b

1 � 2a � 2b

� �n� �
:

Multiplying and dividing by 2 in the first term we can
combine the two terms. Inserting the result into the
previous equation gives

X1ðnÞ ¼ 2½ð1 � 2a � 2bÞn � 2ð1 � 2a � 3bÞn

þ ð1 � 2a � 4bÞn�:
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Using the formula for X2ðnÞ in the equation for X0ðnÞ
gives

X0ðnÞ ¼
Xn�1

m¼0

2að1 � 2a � 2bÞmð1 � a � 2bÞn�m�1

þ
Xn�1

m¼0

ða þ bÞ4½ð1 � 2a � 3bÞm

� ð1 � 2a � 4bÞm�ð1 � a � 2bÞn�m�1:

Doing the sums gives

X0ðnÞ ¼ 2að1 � a � 2bÞn�11 � a � 2b

a


 1 � 1 � 2a � 2b

1 � a � 2b

� �n� �
þ 4ða þ bÞð1 � a � 2bÞn�1


 1 � a � 2b

a þ b
1 � 1 � 2a � 3b

1 � 2a � 2b

� �n� �
� 1 � a � 2b

a þ 2b

	


 1 � 1 � 2a � 4b

1 � 2a � 2b

� �n� �

:

After a little algebra this reduces to

X0ðnÞ ¼ 2 þ 4b

a þ 2b

� �
ð1 � a � 2bÞn

� 2ð1 � 2a � 2bÞn � 4ð1 � 2a � 3bÞn

þ 4
a þ b

a þ 2b
ð1 � 2a � 4bÞn:
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