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Let { W(t): t > 0} be the standard Brownian motion with all paths continuous. Let 
M(t)= max W(s) be the maximum process and Y ( t ) = M ( t ) -  W(t) be reflecting 

O<_s<_t 

Brownian motion. If d~(t) is the number of times Y crosses down from e to 0 before 
time t, then it was Paul L6vy's idea that 

P {!ira ~ ~ d~ (t) = M(t)  for all t > 0} = 1. (1) 

In [3] It6 and McKean demonstrated the almost sure convergence of ed~(t) 
using martingale methods. To identify the limit they used the hard fact, due to 
L6vy, that 

P{lim(2e) -1 measure {s: r(s)<~, s<__t} =M(t)  for all t>0}  = 1 (2) 
e ~ 0  

and computed the second moment of the difference of the expressions in (1) 
and (2). In this paper, by examining the excursions in Brownian motion and 
using a new formula for the distribution of their maxima, we obtain a direct 
identification of the limit in (1) without using (2). 

Let Tx=inf{t: W(t )=x} ,  Tx=inf{t:  Y( t )=x} .  For a > 0  let R~=0,  R~= 
T/, + T/~ o Or,~, and for n> 2 let R~= R~,_ 1 + R~ o OR~_ 1 . Here {0~, t>0} is the usual 
collection of shift operators: W(s, Ot co) = W(s + t, co) and if S is a random variable, 
Os=O t on {S=t}. If S is a random variable, let d , (S )=sup{n:  R~,<S}. da(S ) is the 
number of downcrossings of (0, a) by Y before time S. 

Scaling shows that d~/m(T~) and de(Tma ) have the same distribution. Using the 
strong Markov property d~(Tma ) is the sum ofm independent random variables with 

g 
the same distribution as d~(T~) so from the strong law of large numbers --d~/,n(Ta) 

m converges in probability to E(ed~(T,)) as m ~ Go. 
To compute that E(ed~(T,))=a we examine the excursions in Brownian 

motion: (e, fi) is an excursion interval of the path Y(., co) if e < fl, Y(c~, co)= 0 = 
Y(fl, co) and Y(s, co) > 0 for ~ < s < fl; { Y(s, co), c~ < s < fl} is called an excursion if 
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(e,/3) is an excursion interval-see [1] for a more complete discussion. Observe 
that we can count the number of down-crossings of (0, e) by Ybefore T, by counting 
the number of excursions in [0, T,] with maxima > e. The advantage of this view- 
point is that the excursions in [0, T j  when scaled and suitably enumerated are 
independent and have the same law. To state this result precisely we need to 
introduce the enumeration of the excursions given in [3] on page 75. Let Z(co)-- 
{t: Y(t, co)=0}. Since Y has continuous paths, Z is a closed subset of [0, oe). 
Let (Y,, ft,) be the open interval of [0, oe) -  Z containing the first number of the 
list 1, �89 3, 2, �88 3, �88 �88 9, �89 3, . . .  not included in Z or Q) (7,., /~,.). 

m < n  

Let e,(t) = Y(y, + tA,)/A~ where A, =/~, - 7,. Now, if we modify Jx of (4) on page 76 
of [3] to be a function of [(Y(s), M(s)); s<71], then the proof on pages 75-78 
gives that {e,; n > 1} is independent of {(7,,/~,); n > 1} and M, so if we let N o = 0 
and for n > l ,  N , = i n f { k > N , _ l ;  /~k< Ta} and define e;=eN,, then {e',: n=>l} are 
independent, and each has the same law as e 1. Further, if A',=/~N --yN., then 
{e',; n> 1} and {A',; n> 1} are independent since {e,; n >  1} and {A.; n>  1} are, and 
N, is determined by {(7,,/~,); n >  1} and M. 

With the preliminaries on independence established, we are ready to compute 
the desired expectation. If we let MJ=o~Ple) (s  ), then from [1] (4.5, p. 23)or  
[2] (5.1, p. 21) we have 

oo 

F(x)=P(Mj  <=x)= 1 - 2  ~ (4nax 2 - 1) e x p ( - 2 n Z x  2) 
n = l  

and since e'. and A'. are independent, 

E(gd~(T~))=e ~, ~P(Mj>eu-~)P(A)~du) .  
j= to  

Now the excursion intervals (~N., fiN.) correspond to jumps of the passage time 
process {T~: x<=a}, so from the L6vy decomposition ((12), p. 27 in [3]) we know 
that a (2 ~ u3) - ~ du is the expected number of d'. with length in (u, u + du), and using 
Fubini's theorem converts the above formula to 

E(ed.(T,))=2ae~ ~ 4 ez 2nZeZ - 1 exp - (2zcu3)-~du. 
0 n = l  ~ /A , 

Computing the above integral requires some care, because a haphazard integration 
term by term gives the absurdity E(ed~(T~))=0. However, if we integrate only 
on [0, Ke2], then for n = K - / 2  the summand in the integral is nonnegative on 
[0, Ke 2] so we can invoke monotone convergence. To integrate the n-th term of 
the sum let ~ = 4n 2 ~2, change variables x = c~/2u and integrate the second integral 
of the result by parts to get 

2a~ [ - 1  e-~/z"(2nu3)-~du=2~e(n~) -~ (2x~-x -~)e -~ 'dx  
o;]2 K e 2 

= a(8/rcK) ~ e'Z"~m. 

The remaining term 

~ [ 1 - F(e n--~)] (2 n u 3)- ~ du < (2/nK) ~ 
K e  2 
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so 

E(ed~(T.)) = lim a(2/zcK) -~ [1 + 2 E e-2"2/K] " 
K ~  n = l  .t 

Recognizing the term in brackets as Jacobi's theta function evaluated at 2InK 
and using the identity O(t)=t -~O(t 1) we get 

E(ed~(Ta)) lim a0 (re@) 
K ~ o o  
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