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Downcrossings and Local Time

Kai Lai Chung and Richard Durrett*
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Let {W(t): t =0} be the standard Brownian motion with all paths continuous. Let
M()= [max W(s) be the maximum process and Y(t)=M(t)— W(t) be reflecting
=s=t

Brownian motion. If 4,(t) is the number of times Y crosses down from e to 0 before
time ¢, then it was Paul Lévy’s idea that

P{lir%edg(t)=M(t) forall t=0}=1. (1)

In [3] 1t6 and McKean demonstrated the almost sure convergence of zd,(f)
using martingale methods. To identify the limit they used the hard fact, due to
Lévy, that

P{lir% (2e)~" measure {s: Y(s)<¢, s<t}=M(t) for all t=0} =1 )

and computed the second moment of the difference of the expressions in (1)
and (2). In this paper, by examining the excursions in Brownian motion and
using a new formula for the distribution of their maxima, we obtain a direct
identification of the limit in (1) without using (2).

Let T,=inf{r: W(t)=x}, T,=inf{t: Y(t)=x}. For a>0 let R{=0, R{=
1, + Ty 0 07, and for n=2 let R;=R;_; +R{ o O, . Here {0,,120} is the usual
collection of shift operators: W(s, 6,w)=W(s+t, ) and if S is a random variable,
Os=0, on {S=t}. If § is a random variable, let d,(S)=sup {n: R2<S}. d,(S) is the
number of downcrossings of (0, a) by Y before time S. ’

Scaling shows that d,,,(T,) and d(T,,,) have the same distribution. Using the
strong Markov property d,(T,,,) is the sum of m independent random Variables with

the same distribution as d,(7;) so from the strong law of large numbers dylT)
converges in probability to E(ed,(T})) as m — co.

To compute that E(ed,(T))=a we examine the excursions in Brownian
motion: (a, f) is an excursion interval of the path Y(-, w) if a<f, Y(x, w)=0=
Y(B, w) and Y(s, w)>0 for a<s<f; {Y(s,w),a<s< B} is called an excursion if
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(o, B) is an excursion interval —see [ 1] for a more complete discussion. Observe
that we can count the number of down-crossings of (0, ¢) by Y before T, by counting
the number of excursions in. [0, T,] with maxima =e&. The advantage of this view-
point is that the excursions in [0, 7,] when scaled and suitably enumerated are
independent and have the same law. To state this result precisely we need to
introduce the enumeration of the excursions given in [3] on page 75. Let Z(w)=
{t: Y(t, w)=0}. Since Y has continuous paths, Z is a closed subset of [0, co).
Let (y,, B,,) be the open interval of [0, co)—Z containing the first number of the
list 1,4,3, 2, 4,3 3 7 2 41 3 .. not included in Z or U (Vs B

Let e,(t)= Y(y,+14,)/4% where 4,=,—7,. Now, if we modify j, of (4) on page 76
of [3] to be a function of [(Y(s), M(s)); s=<y,], then the proof on pages 75-78
gives that {e,; n=1} is independent of {(y,, B,); n=1} and M, so if we let N,=0
and for n=1, N,=inf{k>N,_,; B, <T,} and define e,=ey , then {e,: n=1} are
independent, and each has the same law as e;. Further, if 4,=8y —yy , then
{e,;n=1} and {4;; n=1} are independent since {e,; n=1} and {4,; n=1} are, and
N, is determined by {(y,, f,); n=1} and M.

With the preliminaries on independence established, we are ready to compute
the desired expectation. If we let M;= sup ej(s), then from [1] (4.5, p.23) or
[2] (5.1, p. 21) we have

F(x)=P(M;<x)=1-2 Z (4n*x%2—1) exp(—2n*x?)

n=1

and since e, and 4, are independent,

E(ed (T))=¢ Z jP(M’>8u %) P(4edu).
j=10
Now the excursion intervals (yy_, fy,) correspond to jumps of the passage time
process {T,: x<a}, so from the Lévy decomposition ((12), p. 27 in [3]) we know
that a(2nu®)~* du is the expected number of 4, with length in (u, u +du), and using
Fubini’s theorem converts the above formula to

2 2 2.2
E(ed(T))= 2asj Z (4 1) exp (_2nus )(2nu3)‘%du.
0n=1 / /
Computing the above integral requires some care, because a haphazard integration
term by term gives the absurdity E(ed,(T,))=0. However, if we integrate only
on [0, K&?], then for n=K?%/2 the summand in the integral is nonnegative on
[0, Ke?] so we can invoke monotone convergence. To integrate the n-th term of
the sum let « =4n?¢2, change variables x =o/2u and integrate the second integral
of the result by parts to get
Ke2 0

2ae | (i—l)e‘“/z"(27tu3)“%du=20c8(7m)“% [ @x*—x"%e 7 dx
o \u

/2K g2
=a(8/nK)te~2"/K,
The remaining term

3? [1—F(en ]Qnu’) *dug(2/nK)*



Downcrossings and Local Time 149

SO

Bled,(T)= lim a(2/nK)* [1+2 % e %]

K—w n=1

Recognizing the term in brackets as Jacobi’s theta function evaluated at 2/nK
and using the identity 8(f)=t"*0(t~!) we get

E(ed,(T)= lim a8 (52-15) —a.

K—-w
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