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1. Introduction 

This paper deals primarily with the basic contact processes introduced and 
studied by Harris [12- t4] .  These are random evolutions on the state space 
S={a l l  subsets of Z a} (Zd=the  d-dimensional integer lattice) with extremely 
simple local dynamics. Namely, if we think of the contact process (~) as 
representing the spread of an infection, { t eS  denoting the set of infected sites 
at time t, then x E it becomes healthy at exponential rate 1 while x ~ Z a -  {t is 
infected at a rate proport ional  to the number  of sites neighboring x where 
infection is present. The proportionali ty constant 2 is called the infection 
parameter. Contact  processes are perhaps the simplest S-valued Markov pro- 
cesses which exhibit a "critical phenomenon":  infection emanating from a 
single site dies out with probabili ty one for small positive 2., but has positive 
probability of surviving for all time when ;, is large. There is a critical value 
2~ d) where the ~ transition" occurs. Principal objectives of analysis are the 
precise formulation of the critical phenomenon,  and detailed description of the 
ergodic behavior both below and above )(a} " ' c  " 

Our recent survey articles [10] and I-6] provide introductions to contact 
processes, and to the general field of interacting S-valued systems, respectively, 
We will make constant use of notation and techniques from the surveys, 
assuming that the reader is familiar with thern. The article [10] describes in 
some detail the current state of knowledge concerning one dimensional contact 
processes. The theory for d =  1 is now fairly complete with two major  excep- 
tions: )~1) is not even determined to one decimal place (1.18<2~1)<2 are 
rigorous bounds), and very little is known about  the behavior of the critical 
contact process (the case 2 =  2~1~). 

If  ({~(2)) is the d-dimensional basic contact process with parameter  )o, 
starting at time 0 with infection everywhere on Z d, then for 2>2(~ e~ there is an 
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invariant measure vx4=8O (6O="all healthy") such that as t--.oo ~ ( 2 ) ~  v~, i.e. 
~(2) converges weakly to vx. One of the fundamental results which has been 
proved for d =  1 is called the complete convergence theorem. It asserts that if 
(~ta(2)) is the contact process with parameter 2 and initial state A e S ,  and if zA 
is the time that (~A) first hits the trap ~, then 

~{ ~ p(rA < ~)  (50 + p(.cA = o0) v,z (1) 

for any A eS. This shows, in particular, that all the invariant measures for the 
Markov system {(~A); A e S} are convex combinations of c5~ and v~. To prove 

4 ~ (1), one studies the process (~) which starts with a single infected site at the 
origin. For 2>2~, this process lives forever with positive probability, and (1) 
with A = {0} can be rewritten as 

(~~176 = oo)~  vx. (1') 

It is not hard to deduce (1) from (1'), and in attempting to prove (1') it is 
natural to investigate the almost sure behavior of t~t)=t~t'5~ ,;o,lro= oo). Let 

1 ~ = m i n  {x:  ~o xe~t  }, r ~  {x: xe  ~~ 

The edge processes (1 ~ and (rt ~ are defined for all t on {z~ oo}. In [5] it is 
proved that for 2 > 2  c there is an asymptotic speed c~(2)>0 such that 

l i m - t - l / ~ 1 7 6  a.s. on {z=oo}. (2) 
t ~ c O  t ~ o O  

Moreover, a copy of the contact process (~t) can be defined on the same 
probability space with (4 ~ in such a way that 

~~176176  ] foral l  t a.s. on {v~ (3) 

Thus ~o is "coupled" to it on a (random) interval of linearly increasing 
diameter; (1') follows rather easily from (2) and (3). See [5] for details. 

In two or more dimensions, (1) has not been proved for any value of 2. The 
only known result along these lines, due to Harris [13], states that if # is a 
translation invariant probability measure on S, then for any 2 > 2  c the contact 
process (~2(2)) with initial distribution # satisfies the analogue of (1). One of 
the main goals of this paper is to prove complete convergence for contact 
processes in several dimensions. The approach we adopt involves a multi- 
dimensional version of (2)-(3), i.e. an almost sure linear growth theorem for 
(~o). As for d = l ,  (1) will follow as a corollary. Intuitively, it seems most 
plausible that the infection should expand linearly "in radius" with time, 
acquire an asymptotic "shape", and converge to equilibrium within its "hull". 
Our main result is a precise formulation of these heuristics. 

Unfortunately, we are only able to carry out our program for sufficiently 
large 2. Presumably our results hold for all 2>2c, but the methodology has a 
serious shortcoming. Namely, we rely on imbedded one-dimensional contact 
processes, which must survive for the proofs to work. Thus we need to assume 
~. >,~51) . 
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The body of the paper is divided into two parts. Section 2 contains a rather 
general growth theorem for S-valued interacting systems with 0 as a trap. 
Systems of this sort have been studied extensively in the literature, especially 
since the appearance of Richardson's paper [18]. Until now the modelsconsid-  
ered tended to expand as solid "blobs", a property clearly not shared by 
contact processes. Nevertheless, techniques from previous work on growth 
models, notably from [18] and [3J, can be modified to meet our needs. The 
main tool is Hammersley-Kingman subadditivity theory [11, 17]. 

In Sect. 3 we check that the basic contact processes in any dimension with 
sufficiently large parameter 2 satisfy the hypotheses, and hence the conclusions, 
of our growth theorem. Some new ergodic theorems for multi-dimensional 
contact processes, complete convergence for example, are established as corol- 
laries. 

2. A Limit Theorem for a Class of Growth Models 

In this section we formulate and prove a theorem which describes the asymp- 
totic behavior of certain Markov processes with state space S =  {all subsets of 
Zd}. Probably the simplest model of the type we have in mind is the following. 

Example 1. Denote by {({ta(2));AeS} the family of Markov chains such that 
({t A) starts with infection on the set A, such that xe~t a remains infected at later 
times u > t (i.e. no recovery takes place), and such that xEZ d -  ~A is infected at t 

rate 
2. the number of infected neighbors of x. 

Here ;~>0 is a parameter; note however that as ~t varies the (~r differ only 
by a change in the time scale. Thus there is essentially only one system with 
these dynamics, which we call Richardson's model (cf. [18]). 

The interacting systems we propose to call growth models may be viewed 
as generalizations of {(~,tA)}; for our purposes we will need four key properties. 

Definition. A family {(the)} of S-valued Markov processes is called a growth 
model if 0 is an absorbing state, and the family is 

(TI) translation invariant: the translated process x + th  a is a copy of r hx+A; 

(A) attractive: if A c B e S  th a and r/~ can be defined on the same probability 
space in such a way that r/tA c t/t B for all t; 

(L) local: there is an L<oe  so that if Ac~{x: [Ix/I < g } = 0  then P(Oetha)=o(t) 
as t-+0. 

Clearly Richardson's model satisfies our axioms; here are three additional 
examples. 

Example 2. Coalescing random walks with nearest neighbor births. Particles 
undergo continuous time rate-1 simple random walks. In addition, the particles 
give birth to new particles (i.e. they branch) at neighboring sites at rates 
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tr 
- - - >  0. Whenever two particles attempt to occupy the same site they coalesce 

2d 
into one particle. 

Example 3. Williams-Bjerknes growth models ([-21, 2, 3]). This is an infection 
model such that x~Za-t/A is infected at rate 

~. the number of infected neighbors of x, 

while x~t/A becomes healthy at rate 

1. the number of healthy neighbors of x. 

Here ~c> 1 is a parameter (called the "carcinogenic advantage" in [21]). 

Example 4. The basic contact processes, described in Sect. 1. 
A few remarks about the four examples are in order here. Richardson's 

model is the simplest largely because of two features, both due to the absence 
of recovery: 

(a) The growth of the system can be analyzed in terms of "chains of 
infection", i.e. imbedded Z<valued Markov chains which are controlled to 
move in a specified direction. 

(b) The process starting from {0} tends to evolve as a solid Nob. (Z a is a 
trap for {(~A)}.) 

Example 2 enjoys feature (a), since by exploiting the branching effect we 
can find imbedded random walks with drift. Due to the coalescence, however, 
(b) fails; intuition suggests that an equilibrium of occupied and vacant sites is 
approached within the cloud of particles. For  Example 3, (a) fails. This obstacle 
was overcome in [2] with the aid of dual processes (which turn out to be those 
of Example 2). The Williams-Bjerknes models do exhibit feature (b), since 
recovery can only occur at the boundary of the infection. Lastly, the basic 
contact processes satisfy neither (a) nor (b). There is no tractable way to find 
an imbedded Markov "chain of infection", and as mentioned in the introduc- 
tion, (4 ~ should spread like a "blob in equilibrium". Thus the basic contact 
processes constitute the most complex of the four examples. 

Let us now proceed to formulate our theorem. Given a growth model 
{(t/A)}, we introduce the random times 

~A=min{t: t/A =0} A~S, 

tA(x)=min{t: x~t/A} AeS, x~Z  ~. 

Our attention will focus on the one-site growth process (t/t ~ ) starting from the 
singleton {0}, so we abbreviate 

=~o, t(x)=t~ 

Say that (t/~ is permanent if 

P(~= oo) > O. 
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It will be convenient  to identify each x ~ Z  a with the unit cube in R d, having 
center x; in this manner ,  the spread of the one-site process up to time t is 
represented by 

H t = {y~Ra: ~ x ~ Z  e with IIx-yll  <�89 and t(x) < t}. 

(Here and throughout  the paper we use the L ~~ norm on Ra.) Now for any 
attractive system, there is an invariant  measure v given by 

�9 zd 
v = w k - l l m P O h  ~'),  

t~O 

and the s tat ionary process (t/~') and the one-site process (t/~ can be defined on 
the same space in such a way that t /oc t /~c t / z  d for all t. These matters  are 
discussed in [6], for example. Thus we can introduce the coupled region 

K~ = {y~Ra: 3 x e Z  a with l[x - Yll <�89 and t/~ (x) = t/;(x)}. 

Here  and below we use the coordinate  nota t ion  

t/~ (x )=  1 x~t/~ 

= 0  

Very loosely, t/o is "in equil ibrium" on K t. 
The  main result of this section is a criterion for linear growth of (qo) 

=(t/o I~ = oo). By linear growth we mean that t - l H ,  approaches a convex set U 
as t -+m,  and that  t - l (H~c~Kt)  approaches the same U. Roughly,  then, t/~ is 
completely coupled on t U and completely absent from Z e -  t U. The criterion 
is that  three sorts of probabilit ies should decay exponential ly in time. 

Theorem. Let  (t/o) be a permanent one-site growth process�9 Suppose that there are 
constants y, c, Ce(O, oo) such that 

P ( t < ~ < o v ) < C e  - ~  t>O, (4) 
and 

P ( t ( x ) > t , z = o o ) < = C e  -''t t>O, l[x[]<ct. (5) 

Then there is a convex subset U of  R d such that .for any ~ > O, 

(1  - -  g) g c t -  1 H t  ~ (1  t -  g) U eventually (6) 

a.s. on {~ = oo}. If, in addition, 

P ( x ( ~ K , , ~ = o o ) < C e  -~e~ t>O, t lxll<ct,  (7) 

then t/,)=(i/, ]z = oc) grows linearly, i.e. -0 0 

(1 - e) U c t -  1 (H~ c~ Kt) c (1 + ~) U eventually (8) 
a.s .  o n  = o o } .  

Before we prove the theorem, some remarks concerning the hypotheses:  In 
Sect. 3 we will verify (4), (5) and (7) for the basic contact  processes with ,;~>)~p). 
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The hypotheses can also be checked for Examples 1 through 3 and related 
growth models. Since we will only treat the contact processes in detail, let us 
discuss briefly the other applications. First, note that (4) is trivially satisfied if 
P ( z < o o ) = 0  (as in Examples 1 and 2). Also, if Z d is a trap (as in Examples 1 
and 3), then v({Zd})= 1 and 

K t = {y~lR: ][y-xll <�89 for some xer/~ 

In this case Kt~Ht ,  so that (7) implies (5). If recovery is impossible (as in 
Example 1), then Kt=H,,  and (7) is equivalent to (5). Thus, to prove linear 
growth of Richardson's process using our theorem, it suffices to check (5). This 
can be done by considering the imbedded chain of infection in C ~ which travels 
from 0 to x along a path of minimal length. The exponential estimate then 
reduces to a simple large deviations result for sums of exponential random 
variables. This argument can be extended to any process t/A which dominates 
{(CA(2)}, i.e. which can be defined so that 

C A , ) , ~  A t t ~  r/t for a l l t  a.s. 

In this case (5) holds by comparison with Richardson's process, and again (r/0) 
grows linearly; some examples of this sort are considered in [20]. 

For Example 2 one checks (5) and (7) by analyzing imbedded random 
walks which arise by following a tagged particle and switching to follow its 
offspring if this brings you closer to the desired location (see [2] for details). 
For Example 3 one needs to show (4) and (7). Hypothesis (4) can be verified 
using the fact that the cardinality of (r/OO) is a (randomly) accelerated version of 
a simple random walk with positive drift on {1,2,...} and absorption at 0. 
Condition (7) follows from the methods of [2] and [3], although the proof 
given there of linear growth proceeds along somewhat different lines. 

One final remark. For simplicity we will only prove our growth theorem 
for systems dominated by Richardson's process. By this we mean that for some 
2>0,  (r/A) and (CA(2)) can be defined on a common probability space so that 
rl A ~ C A / 2' t t t J for all t a.s. Clearly Examples 1 through 4 are of this type. With 
minor changes our techniques handle the general local case. 

Proof of the Theorem. Let {(r/A)} be a growth model which satisfies the 
hypotheses. Our first goal is to establish (6) for the conditional process (f/OO) 
=(r/~ oo). Henceforth we write /5( . )=P( ' l~--  oo), /~[.] = E [ ' ] ~ =  oo]. After 
the argument for (6) is finished we will prove (8). Axioms which ensure linear 
growth have been developed by Richardson [18], Kesten [15] and Ham- 
mersley [11]. A fairly detailed description of their program is given in Sect. 2 
of [3]; as explained in that paper, (6) follows from the following two proper- 
ties: 

I. (snbadditivity). t ( x+y)<t (x )+s(y )+v(x ,y )  a.s., where s(y) is an approp- 
riately chosen copy of t(y) which is independent of t(x), and where 

E[v2(x, y)] = o ( l l x  + ylr). 
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II. (regularity properties). There is an r > 0 such that 

E[t2(kx)] < k 2 r- 1 [Ix II 2 + Ox(k), 

and such that for each c~ > 0, 

fi(B x,ra dg {y: I t (kx) -  t(k y)[ < 6 k } ) =  Oa(k). 

(Here and below, Bx,r={y: I[x-yll __<r} is the r-ball centered at x.) Our argu- 
ments for I, II and (8) will be modelled after ones in [3]; in particular we will 
prove 

II'. For some 7, c, C~(0, oo), 

fi(Bx,ctdgHt(x)+za+, forsome' t>O)<Ce -'e~. 

It is not hard to see that II follows from II'. To give structure to our proof, the 
remainder of this section is divided into three propositions, which assert 
respectively that II', I and (8) hold. 

A word about notation in what follows: 7, c and C will denote positive 
finite constants whose values are unimportant and in general will change from 
line to line. This abuse of notation should help focus attention on the main 
ideas and alleviate clutter; when chaos threatens we will try to alert the reader. 

Proposition 1. Assuming (4) and (5), II' holds. 

Proof of Proposition i. If [[x[] <cl 2 the verification is easy: 

ff(Bx,ctCH,(x)+12+, for some t>0)  

<_P(B,~,aCHl2+t for some t>0)  

<P(Bo,aCH t for s o m e  t>=12). 

Using (5) now gives the above 

x ( iBO,cl  2 C 

<= C e - yt2.  

Thus we can assume HxlL >cl 2 and let T1, T 2 be the respective times at which 
(~)  first hits Bx, z, Bx, g/2. Suppose we can construct 

(a) a random time a so that 

/~(o- ~ T2) ~ Ce -~'l, (9) 
and 

(b) a copy (t/,+t) of (fff) for some random 2eBb, l with 

g/~+~ = f/o+, P-a.s. (10) 

Then by (9), (10) and (5), with overwhelming probability (i.e. > 1 -  Ce -~l) Oo+t 
starts at 2eB~,~ at time a < T z < t ( x  ) and expands at a linear rate. Hence, after 
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the additional "lag time" 12, (q~+t) will cover B~, a with overwhehning probabil- 
ity. To finish the proof of II', it therefore suffices to construct o- and (0~+t) and 
check (9) and (10). The construction is carried out as follows. Let vo=0, and 
for k >  1 inductively define a restart procedure by: 

G=inf{ t>Vk_l:  ~ c~B~,ld=0}; 

xk=a randomly chosen site in ~ ~B~,~; 

(~(k) ~ = a copy of ( ~ )  such that "1~ k @ t] 

-(k) c - o  for all t /5-a.s. 
t luk-k t  t /Uk-- t  

(this can be accomplished because {(t/A)} is monotone); 

Stop at 

Now let 

v k = sup {t: g/}k)~= 0}. 

k o =inf{k: Vk= cO}. 

O" = b/ko , t la+t  ~-~t(k~ "ta+t" 

The inclusion (10) holds by construction, so we need only check (9). To do so, 
we consider the occupation times 

t 

O(t) = 1 l~,on~x.., o} ds. 
0 

and show that for some C, 7 

and 
ff(O(a)>=m)< Ce -~m, 

ff(O( T2) < el) < Ce -~'. 

Inequality (9) follows immediately from (11) and (12), since 

To prove (11) write 

P(~ > T2) < P(O(r >= O(T2)) 

~ff(@(~)>=el)+ ff(gt(T2)<=d) 

<Ce-Yl. 

k o -  1 

0(o) = Z ~ j -~ j -1 ,  
j ~ l  

and observe that 
(i) The P-distribution of k o is geometric (each restart 

probability p -- P(z x = oo)), 
(ii) given ko=k, the v;-v;_l ( l<=j<=k-1 ) are 

which has exponential tail by (4), and 
(iii) facts (i) and (ii) imply (11). 
To get (12) we let 

T(t) = sup {s: O(s) =< t}, 

i.i.d. 

i s  

with 

(11) 

(12) 

the last with 

a distribution 
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choose 2 so that  Richardson 's  process {(~A(2)} domina tes  {(t/tA)}, and  note that  
we can construct  a coupl ing with 

~ /~  ) for all t /5-a.s. 

Thus it suffices to show that  

/5(~B~'~(2) c~Bx,i/2 4=0 for some t<=al)<= Ce -7l. (13) 

For  the event on the left side to occur, some imbedded  chain start ing f rom the 
b o u n d a r y  of Bx, z mus t  m a k e  at least I/2 rate-2 j umps  in t ime el. The  probabi l i -  
ty is therefore bounded  by 

IOBxl (2d)l/2p (~ mean-2  -1 exponentials  sum to __<el). 

For  small e, a s tandard  large deviat ions result yields (13), and hence (12). The  
p roo f  of  Propos i t ion  1 is finished. 

Proposit ion 2. Assuming (4) and (5), I holds. 

Proof. Fix x, y e Z  e, and write r =  Ilxlk 1/2. First, using the restar t  cons t ruc t ion  of 
Propos i t ion  1, we find a t ime o, and a one-site process (O~+t) which starts in 
B~,,. and lives forever. F r o m  (9), 

fi(a < t(x)) > 1 - Ce -'r. (14) 

N o w  there are two cases: o<t(x) and o>t(x). When  aNt(x) we begin a restart  
cons t ruc t ion  at t ime t(x) to find a t ime # > t ( x )  and  a one-site process (0~+t) 
which lives forever and  is imbedded  in (r/~+t). When  o>t(x) we simply begin a 
restart  cons t ruc t ion  at t ime t(x) to find a process (O~+t) which lives forever and 
is imbedded  in (~+~). In  either case let {z} =0~, and define 

s(y) = inf{t: O~+~z + y}. 

Clearly s(y) has the same dis tr ibut ion as r(y), and is independent  of t(x). 
Moreover ,  if we define 

v(x, y) = [ 6 -  t(x)] + ]-t(x + y) - # - s(y)] + 

= Vo -t-/)i, 
then 

t(x + y) < t(x) + s(y) + v(x, y). 

We now proceed to est imate v~ and v 2 in order  to show that  ff~[v2(x,y)] 
=o(llxLI). Note  that  v o is a sum of a geometr ic  number  of  i.i.d, variables  with 
the dis tr ibut ion of z [~<c~ .  F r o m  (4) we conclude that  E [ v g ] < o o  is inde- 
pendent  of  x. Thus  it suffices to handle  v~, which we b reak  in two:  v' 1 
= v 11~ <t~, v'~ = v 11~> t~. Tempora r i ly  write P '  =/5( .  a {a < t}), P"  =/5( .  c~ {a > t}). 
To  bound  E[(v'02],  we first show that  z is close to x with overwhelming  
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probability. Let T be the time at which ~ first hits Bx, r. Since T < ~  we can 
find c, C and 7 such that 

yE~Bx,r 

< Cre-~ ~. 

Moreover, the restart construction yields 

P' ( f - t (x )>12)G Ce -''2, (15) 

so for a new ? and C we get 

P' @-a>r -+12)  71. 

Since (O~+t) spreads at most linearly, 

P' @ - a < = r + 1 2 , [ I z - x l , > r + K  (r+12)) 

< Ce- ' (~  <2) 

for some K and some new choice of c, C, 7. Combining the last two in- 
equalities, 

P'(Ilz-x][ > g(r  + I2))~ Ce -" .  (16) 

Now by monotonicity, t(z + y) < ~ + s(y), and hence 

P'(v 1 > K (r + Ie)) < P'(t (x + y) - t (z + y) > K(r + 12)). (17) 

Moreover, Proposition 1 asserts that 

P (t(x + y ) - t ( z  + y) > ][z-X[Ic +12) < Ce-~" (18) 

From (15)-(18) we conclude that 

P'(v, > K(r + 12)) < C e-  ~l, (19) 

and so/~[(V'x) a] =O(Hx]j). Finally, to estimate/~[(v'~) 2j we note that (5) and (15) 
imply 

P"(5 > K (IFxH + l))<__ Ce - ~(llxll +z) 

and, since (t/~ spreads at most linearly, 

P ' (max { Ilxl[, Irz/I} > g(llxlF +1)< C e  -'(llxll +o 
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for suitably altered constants. Arguing as for (19) we get 

p,,(vz> K([ix] [ +/2)) < Ce-~l. 

Together with (15), this last inequality yields 

E" [(v'0 2] < c IIx[I e - ' r  = o(llxlt). 

The proof of Proposition 2 is finished. 

Proposition 3. Assuming (4), (5), and (7), (8) holds. 

Proof An easy Borel-Cantelli argument using (7) yields 

ff(Bo,c, c K, eventually in t) = 1. 

Next we mimic the construction of Proposition 1 to get an appropriate imbed- 
ded one-site process (0,+,) which starts near x and lives forever. It follows that 

ff(Bx,c~r for some t > 0 ) <  Ce -'et. (20) 

(Monotonicity ensures that the coupled set /<~+t for (0,+,) is contained in 
Ko+t. ) Now the proof of (8) proceeds as in [3]. Recall from [18] that the limit 
set U is defined by 

t(nx) 
U={x:q)(x)<l} ,  where (p (x) = lim - -  

t l~oO n 

Fixing 8>0, and with c as in (20), we can cover ( l - e ) U  with finitely many 
balls B,=B~,{I_~(~,))c/2, l < i < N ( e ) .  Using (20), one can make sure that 
B~ c t-~ (H~ c~ Kt) for each t with overwhelming probability and hence by Borel- 
Cantelli that (1 - e) U c t -  1 (H t ~ Kt ) eventually if-as. The opposite inclusion 
follows from (6). See [3] for more details in a special case. 

In combination, Propositions 1, 2, and 3 established our linear growth 
theorem. 

3. Limit Theorems for Contact Processes o n  Z d 

Our main objective in this section is to check the hypotheses of the growth 
theorem for contact systems {(~)} in several dimensions. At the end of the 
paper we discuss applications to the ergodic theory. As noted in the in- 
troduction, we are only able to verify (4), (5) and (7) for the case 

2> 2~ I) = the critical value in one dimension. 

(It is known [9, 16] that 1.18<2~1)<2.) When 2>2~ n one can exploit imbed- 
ded one-dimensional processes, and thereby appeal to the simpler theory on 
the line. Instead of the basic d =  1 contact system, we will need certain trun- 
cated one dimensional processes (+4~ which differ from the (4~ only in 
that infection cannot arise at x<0 .  For (+4~ let T + be the hitting time of %, 
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t+(n) the first time n is infected. We will appeal to the following exponential 
estimates; proofs may be found in a companion paper [7] which deals with 
supercritical one-dimensional basic contact processes and related models. 

Lemma. Let (+~o) be the one-dimensional truncated contact process with in- 
fection parameter 2>2~ 13. Then P ( z + = o o ) > 0 ,  and there are constants C, 7, 
aE(O, oo) such that 

P ( t < r  + < oo)< Ce -~t, 

P(t+(x) < 0% "c + < co)< Ce -'~1~1, 

P(t<t+(x) ,z+=oo)<=Ce - ' t  Ixl<at.  

(21) 

(22) 

(23) 

Stop at 

such that 
~(k) 0 

+ . ~ v k + t ~ v k + t  V t  a.s . ,  

vk+,=sup{s: + ~k)+ 0}. 

ko=min{k:  l)k=Fk+ 1 o r  Vk+ 1 = (Z)}. 

On each trial there is a positive probability that v k = oo so k o is majorized by a 
geometrically distributed random variable and 

{ t  < ~  < OO}={ t  <Vko< O0 }. 

Now given ko=k  , the v j - v j _  1 (1 <j<=k) are i.i.d., with exponential tail by (21), 
so the claim follows from the argument given for (11) in Sect. 2. 

The arguments for (5) and (7) are more involved and we need to make 
explicit use of percolation substructures. We will not review the basic proper- 
ties here. The reader is referred to [9] or [10] for background. 

Proposition 5. Exponential estimate (5) holds. 

Proof. To keep matters as simple as possible, we present only the case d=2.  
After digesting what follows, the reader should be convinced that the technique 
applies in any dimension. Fix x = ( x l ,  x2)~Z 2. Without loss of generality as- 

Proof See [7]. 
We now proceed to demonstrate (4), (5) nd (7) for the basic d-dimensional 

contact processes (~~ with 2 > 2~ 1). 

Proposition 4. Exponential estimate (4) holds. 

Proof Again we use a restart scheme. Fix t<oo.  Let v0=0, and for k > 0  
o 0 =Vk; otherwise let proceed inductively as follows: if ~ k =  , put Vk+ 1 

Xk=tXk, (1),..., x(a)k =a randomly chosen site in ~v ~ 

Z (k) = a copy of the d=  1 truncated contact process with parameter 2, start- + ~Vlc+t 
ing from xk, and living on 

{A • {x~ 2)} •  • {x~d)), A ~ Z}, 
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sume x l > 0 ,  x2>0.  The basic idea is to find imbedded one-dimensional pro- 
cesses which live forever and move in desired directions. By linking such 
processes appropriately, a path of infection from the origin to x is constructed 
by time c -1 ILx[I with overwhelming probability. In two dimensions this is 
typically a four step procedure involving random times T1, T2, T 3 and finally 
T 4 such that t (x)< T~ P-a.s., and for some C, 7, c 

P ( r ~ > t ) <  Ce - ~  Ilxkl <ct .  (24) 

To check (24) we need estimates for the four differences T~-Ti_ 1, i=  1, 2, 3, 4 
(To=0). Thus the proof is divided into six steps: first the construction, then the 
tour estimates, and finally we put all the pieces together. 

Step1, The construction. For i=1 ,2 ,  z~Z  e, s>__O, let (+~'s(t)) and (_~zsf ())t be 
truncated (one-dimensional) processes imbedded in the percolation substruc- 
ture for {(~A)}, starting at z=(z l ,  za) at time s. If i=1,  then infection only 
occurs in the first coordinate ( ~  or ~ ) ;  if i = 2  infection occurs only in the 
second coordinate (~ or +). The + processes only infect sites Y=(Yl,Y2) with 
y~>z~, whereas the - processes only infect sites with y~<z~. To begin, let z o =0,  
R o = 0, and for n > 0 inductively define: 

R,+ 1 =inf{t  > R,: ~'R~(t) = ~}, 

Zn+x=a random site in ~ o + .  
Put 

M = m i n { n ~ O : R , + l = o o } ,  y = z  M, T I = R  M. 

Since )~>2~ 1), /5(T 1 < oe)= 1. (+~],r~ (t)) is a truncated process which lives for- 
ever, so each time this process hits a new site we can launch a new process of 
type i = 2  to try to reach the line (-,x2). Thus, we introduce 

S~=inf{t>O:(yt  +k, ; : y , r ~  = Y2)r v , .  k>O (So=r t )  , 
and set 

~k(t) = +_~2~(~+k"~)'s~(t) k>0,= 

where the sign is chosen to direct infection toward x 2 from Y2. The processes 
~k are independent, each with a positive probability of living forever. Those 
which do will bring us to (.,x2) , where we start launching more truncated 
processes heading towards x. Let Jo = - 1, and for n > 1 inductively define 

I n = rain {k > J~_ 1 : ~k lives forever}, 

S" = inf{t: (Yl + I., x2)~ ~.(t)}, 

(,(t)' =+~(Y~+~ .. . .  )'s~(t), 

J, = max {z :(z, x2)e U ~', (t)}. 
t 

Note that the S', are not necessarily increasing in n. Nevertheless, since 
I , > J , _  1 and the +~t processes are truncated, the fate of ~', is not influenced by 
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that  of  ( '~ , . . . ,~ ' , - r  The  cons t ruc t ion  is comple ted  by put t ing N = m i n { n : J ,  
= ~ } ,  and defining 

T2 = St, , ,  

! 

T 3 = S  N, 

T 4 = inf{t: x ~ + ~(1 yl +'~'x2)(t)}. 

No te  that  t ( x ) <  T 4 by construct ion.  We need to check (24). 

Step 2. Estimating TI. Arguing just  as for Propos i t ion  4, we have 

P ( T  I > t/lO, ~ = oo)=P(t / lO < T 1 < oo) < Ce  -~t. (25) 

Step 3. Estimating T 2 -  T~. The P-dis t r ibut ion of N is geometr ic  with success 
probabi l i ty  p + = P(z  + = oo) > 0, and given N = n, the I k - Jk- 1 (1 < k < n) are i.i.d. 
geometric,  also with success probabi l i ty  p +. Moreover ,  the Jk-- lk (1 < k_--< n) are 
i.i.d., with exponent ia l  tail by (22), and are independent  of  the I k - J k _  r It  
follows that  

P(I  u > t) <= C e - Tt. (26) 

Also, by virtue of  (23), we can choose a > 0 (and modify  C, 7) so that  if k < a t 

P(S  k -  T 1 >t)=< Ce -~'. 

The last two inequalities imply that  

P ( T  2 - T 1 > t/10) < C e - "  (27) 
for suitable C, 7. 

Step 4. Estimating T 3 - T  2. Condi t ioned  on IN=k,  (k(t) has the same distribu- 
t ion as • ~(2 x' +~'x2),sk(t) condi t ioned on nonextinct ion,  so by (23), 

P ( T  3 - T 2 > t/lO, I x 2 - Y2 t < a t/10) < C e -  y~ (28) 

for some C, 7. To  est imate the r a n d o m  coord ina te  Y2, note  that  

fi(l[Y][ >at/20)<=P(Ta >at)+P(t(z)<=st  for some z: IIzll >at~R0). 

The first probabi l i ty  on the right decays exponent ia l ly  in t for any fixed ~ by 
(25). The  second decays exponent ia l ly  for e sufficiently small, by compar i son  
with Richardson ' s  process. Hence  

and  we have if x 2 <at~20, 

for suitably chosen C, 7. 

P([lYll > a t / 2 0 ) <  Ce  - '~, 

P ( T  3 - T 2 > t/10) =< Ce -vt 

(29) 

(30) 
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Step 5. Estimating T 4 -  T 3. Arguing as in Step 4, we get that if x 1 <at/20,  

/5(Z 4 -  r 3 > t/10, Yl +IN <xl )  < Ce-~t (31) 
for some C, 7- 

Step 6. Denouement. There are two cases. 

Case 1. Ilxl[ >at/lO0. Then (29) and (26) show that P ( y x + I N > x O <  Ce -~, and 
(31) can be replaced by 

/5(T 4 - T 3 > t/10)< Ce -'t .  (32) 

Now combine (25), (27), (30), (32) to get that if [Ix][ <at~20 then 

P (T  4 > 4 t/10) < C e-Vt, 

proving (24) in this case. 

Case2. ]Lxil<at/lO0. If x is too close to 0 we will not have /5(y 1 
+ I N > x l ) < C e - C  To circumvent this, we use the argument just completed in 
Case 1 to find a path of infection from the origin to w=([6t], [6t]) where 
6=at/50. After hitting w, the idea is to "turn around" and head back toward x. 
This is accomplished by restarting in the +31 process which hits w 1 (and lives 
forever) until we find a k > w  1 and a time T s > T  4 such that _~k,w2),r5 lives 
forever. Then we can mimic the construction of Case 1 with x as our goal. If 
all the ('~, 1 < i <  N, have died out by time T4, then the second construction is 
unaffected by the first; using the estimates from Case 1 it is not hard to check 
that the probability of a ~'i, l < i < N ,  surviving to time T 4 is at most Ce -~t. 
Finally, since the second construction fails with exponentially small probabili- 
ty, we conclude that if IIx[I <at/lO0, 

P(t(x) > t) < C e - Tt 

for suitable c, 7, proving the desired result in this case. Further details are left 
to the reader. 

Proposition 6. Exponential estimate (7) holds. 

Proof. There are two steps; the first is to show 

P(~Zd(x) 4= ~;(x)) < Ce - ' t  x e Z  d, (33) 

the second to show that (for some c > O) 

/5(~~ 4= ~Zd(x)) < C e - "  Ilxil <ct. (34) 

The desired result (7) follows immediately from (33) and (34). To demonstrate 
the last two estimates we exploit the self-duality of basic contact processes. In 
particular, we assume that the reader is familiar with graphical representations 
whereby dual processes can be defined on a .common probability space by 
means of "time/arrow reversal". See e.g. [9] for background. 
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Argument for (33). If ~t and ~z, are constructed on the same percolation 
substructure, 

P(ff~(x) + ~;(x)) = PCZ~(x) = 1) - / ' r  = 1) 

=P(t<z<ov)  

by self duality. Thus (33) is equivalent to (4), which was proved in Proposi- 
tion 4. 

Argument for (34). Now fix x, t, and for s > 0 define 

~o = {y: ~ path up from (0, 0) to (y, s)}, 

~'~ = {y: 3 path down from (x, t) to (y, t - s)}. 

Note that (~) is a basic contact process starting from x. Moreover, 

= {3 path from Z e x {0} to (x, t), ~ path from (0, 0) 

to time 0% 3 path from (0, 0) to (x, t)}. 

Since a path from (0, 0) to (y, s) and a path from (y, s) to (x, t) yield a path from 
(0,0) to (x, t) whenever sE[0, t], the event on the right implies 

~'~ t} {(~) dies after time 

~o y0 u { ( ~ ) a n d  r ~ - (~s) live forever but ~s n~ t -~ -0Vs~[0 ,  t]}. 

By Proposition 4, the first event has probability at most Ce -~t. Call the second 
event E. Without loss of generality assume x 1 >0, and for es(0, 1/2), introduce 

F1 = { v =  oo, 3 path from (0,0) at time 0 to {(yl,0):yl <0} 

at time t - e t  such that at time et the path is in {(y~,0):yl >0} 

and stays in the plane {(yl,O):y~Z} after time et}, 

F2 = {(~' ) lives forever, 3 path from {(yl,0):ya <0} at time 8t to x 

at time t such that at time t - e t  the path is in {(yD0):yx __>0} 

and stays in the plane {(ya,O):yl~Z } at times before t - e t } .  

Using the construction in the proof of Proposition 5 to guide the paths, we can 
find e, c > 0  so that P ( F 1 ) > I - C e  ~ and P ( F 2 ) > I - C e  -~t whenever IFxl]<ct. 

~ ~  for some s~[ct,(1-c)t],  we have Since F I e F  2 implies that ~s 
E c ( F  1 c~F2) c. Hence P(E)< Ce -yt, and (34) holds. 

Having completed the proof of our growth theorem for contact processes, 
let us now discuss briefly its applications to the ergodic theory. If A is any 
finite set, then an immediate consequence of (8) is 

/5(~o n A = ~ ~ A eventually in t) = 1. (35) 
In particular, 

/5(~o~.) ~ v as t--+oo, 
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i.e. (1') holds. As mentioned in the introduction, complete convergence (1) 
follows without difficulty. See [5] or [9], for example. Another consequence of 
(35) is the complete pointwise ergodic theorem: 

lim-1 S f ( ~ 2 ) d s = S f  d v /5_a.s., 
t ~oo  t 0 

for any continuous function f on S. Again, see [9]. Finally, a more subtle 
application of (8) is the law of large numbers for the number of particles: 

t a 'PIUI  /~-a.s., 

where p is the density of v and I UI is the volume of the limit set U. This is 
proved in [7] for d = 1 ; the proof when d > 1 proceeds along the same lines. 

In closing, it should be noted that the hypotheses (4), (5) and (7) can be 
checked for other additive growth models by a similar analysis. However the 
foremost open problem connected with our results is to prove linear growth of 
the d-dimensional basic contact processes for all 2>)@. This will require new 
techniques which rely less heavily on imbedded one dimensional systems. 
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