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Abstract. Let p,(d) be the critical probability for oriented percolation in Z¢ and let
u#(d) be the time constant for the first passage process based on the exponential dis-
tribution. In this paper we show that as d — o0, dp,(d) - 1 and du(d) - y where y is
a constant in [e~1, 2-1] which we conjecture to be e~1. In the case of p (d) we have made
some progress toward obtaining an asymptotic expansion in powers of d-1. Our
results show

d1+3d3+0(d-®) < p,(d) < d1+d34+0(dH).
The left hand side agrees, up to o(d—?), with a (nonrigorous) series expansion of Blease
(1, 2):
P(d) =d 1+ 3d3+d 4+ 3d 5+ 31d 8+ 42d7+ O(d8).
1. Introduction

In this paper we will study oriented percolation and a companion process — first
passage percolation. In these models we view Z¢ as a graph with directed edges from
each vertex zeZ4 to x +e¢,, ...,z + ¢, where ¢, ..., e, are the d unit vectors. In oriented
percolation the edges b are independently open (X(b) = 0) or closed (X (b) = c0) with
probabilities p and 1— p respectively, the edge being open meaning that a fluid can
move from one end to the other in the direction indicated. In this model, which was
introduced by Hammersley (5), interest centres on whether or not there is an infinite
open path in the resulting random network (the occurrence of an infinite open path
indicates that the material is porous enough for the fluid to penetrate). A path r
from x to y is a sequence 7 = vy, by, vy, ..., b,, v, of vertices and edges, where v, = z,
v, =¥, v;€Z% and b, is the (directed) edge joining v;_, to v;, 4 =1,2,...,n. A path is
open if and only if all its edges are open.

It is easy to show that if p < 1/d there is no infinite open path (compare with a
branching process) and, if one thinks about it for a while, one can show that if d > 2
and p is close enough to 1 there is an infinite open path (this is not as easy as it sounds).
From the last two results and obvious monotonicity it follows that if we let Q, = {there
1s an infinite open path} then there is a critical probability p, = p.(d)€ (0, 1) so that
P(Q,)=0if p <p, and P(Q,) > 0 if p > p,.. The result mentioned above implies
2.(d) = 1/d. In this paper we will show that this trivial lower bound is asymptotically
correct as d — c0. To state the result preciscly we need 2 few definitions. Let X, X, ...
be iid with P(X,=¢,)=1/d for n>1, 1<i<d and form the random walk
S,=X,+...+X,, with S, =0. Let S, be an independent copy of S, and let
Pa = p(d) = P (for some m > 0, S,, = S, and S,,,. = Sp.,,) be the probability that
the graphs of the random walks have an edge in common. Our upper bound is

2.(d) < p(d). (1-1)
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This bound was first proved by Kesten (in response to a question asked by the authors).
In Section 2 we give his simple proof and derive the asymptotic formula

p(d) = d-1+d-3+0(d-Y). (1-2)

Combining (1-2) with the trivial lower bound p.d) > d~* we see that as d - o
dp.(d) - 1. This gives a new proof of Mityugin’s (6) result: dp,(d) - « and identifies
the constant o = 1.

In Section 3 we turn our attention to improving the lower bound on p.(d). By
considering a kth order branching process approximation we show that

k-1

-1
p(d) =2 d 1+ %

d-3+0(d),

and letting k& — co conclude
D) > A1+ 3d5+ o(d). (1-3)

This lower bound agrees up to o(d-3) with a nonrigorous series expansion of
Blease (1, 2). The reader should observe, however, that some new ideas will be needed
to improve this since (a) the upper bound is d-1+d~2+ 0(d—%) and (b) the occurrence
of k— 3k < } in the kth approximation prevents us from getting more terms in the
lower bound. Combining these results we obtain

THEOREM 1. Asd — oo, d-2+3d—3+0(d-3) < p (d) < d-1+d-3+0(d4).

In Section 4 we turn our attention to first passage percolation. In this model there
is associated with each edge b in the graph an independent non-negative random
variable X (b) which gives the time it takes the fluid to pass through the edge in the
direction indicated (movement in the other direction is impossible). For each path »
we let ¢(r) = X, ., X(b), and consider {(z,y) = min{{(r) |  is a path from z to y}, the
time it takes the fluid to get from x to y. Many results are known about the limiting
behaviour of {(z, ) as | —y| — co (see Smythe and Wierman ((7); Cox and Durrett (3)).
In this paper we will restrict our attention to the limiting behaviour of the ‘point to
line’ process

7, = min {{(0,z):z€ H,},
H, = {a:: Zd 2= n]
i=1
It is a consequence of Kingman’s subadditive ergodic theorem that if E7; < co then
as n — o0
n1r, - inf E(n—1r,) a.s.
nz=1

If we denote the limit by pxx(d) to record the dependence upon the dimension d
and the distribution ¥ of the X(b), then by generalizing Mityugin’s (6) construction
to first passage percolation we can obtain the following comparison result:

THEOREM 2. If F,(x) = 1— (1 — F(2))* is the distribution of the minimum of n inde-
pendent random variables with distribution F, then

wp(nd) < pg (d). (1-4)

If E(z)=(1—e=)* is the exponential distribution with mean 1 then
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E, (x) =1-(1-E(z))* = (1—-e™)* is the exponential distribution with mean 1/x.
So (1-4) becomes
I
pg(nd) < pg (d) = a#&(d)a

or
ndpg(nd) < dpg(d),

and it follows easily (see Section 4 for the details) that

Y = limdpug(d)
d—x
exists.
To show that y > ¢~1is simple. There are d” paths of length  so
na/d) n—-1 n
m)—d“f( P ee gy < (20

na
P(Tﬂ(d)Q?)SJ“P(UnS? —an [ s 2

where U, is the sum of » iid random variables with distribution E(z). Fora < e

na

% P(rﬂ(d) < ?) < 00,

i.e.
-1

liminfa-1r (d) > % a.8.

The lower bound calculated above is exactly analogous to the argument for oriented
percolation which gave p, > 1/d so we conjecture the lower bound e~1/d is asymptotic-
ally exact in this case as well. We have not been able to prove this result because we
have not been able to get good upper bounds. It follows from subadditivity that, for
each n,

lu'E(d) <n'E Tn(d)!
providing an infinite sequence of upper bounds for xz(d). We expect that n-1Er,(d) =
¢,871+ 0(d~2) and letting n - oo will produce the right asymptotics. The computations
required are trivial for n = 1, easy for n = 2 but become horribly complicated when
n > 3 and we see no hope of letting » — co. Summarizing our results we have

THEOREM 3. T'here is a constant y such that du(E) -y asd -0, and e <y < 271

In addition to the problem of determining the constant y there is the problem of
investigating the limit of du,(d) for a general distribution F. If F'(0) = 1 then n
times the minimum of » such independent random variables converges weakly to an
exponential with mean 1, so it seems reasonable to conjecture that for such a dis-
tribution

dpp(d) > Ve
where 7, is the limit for the exponential distribution. Using Theorem 2 we have been
able to show that if [ 2*dF(z) < co for some € > 0 then

limsupdug{d) < v, (1-5)
d—o

but we have not been able to show

liminfdug(d) > yg.
d—w

We do not include the proof of (1-5) in this paper.
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2. Proof of the upper bound for p(d)
In this section we will prove the following results which we stated in the introduction,

2(d) < p(d) (2-1)
and
pd)=d1+d23+0(d%) as d-> . (2-2)

Proof of (2-1). Let %, be the collection of all possible (oriented) paths from 0 to
H, = {z:Z,x, = n} and let N, be the number of open paths in Z,. Let G, be the
collection of vertices and edges in the region I ,z; < » and let &, be the o-field
generated by {X(b),b€@,,}. Then

W, = N,/(dp)* is martingale with respect to {Z,}. (2-3)

To prove this suppose be G, ,, — G, and we let 2, be the end point of & which is in &@,,,
then
Noii= X lxp=0N()

beGui—CGn

where N (z,) is the number of open paths from 0 to z,. Since N(z,) € %, and the X (b),
be@,,, -G, are iid and independent of .Z,,, it follows that

EN,w|#F)=p X N(z)=dph,,
beGn+1—Gh
ie. EW, | %) =W, as.

Remark. We use the notation W, = N,/(dp)* to suggest an analogy with the
branching process result: Z, /m® is a martingale. Since W, > 0 it follows immediately
from (2-3) that, as n — o0,

N, /(dp)* - W as., (2-4)

EW < 1and
P(N, > 0foralln) > P(W > 0). (2-5)

From (2-5) we see that to prove p > p, it suffices to show that P(W > 0) > 0. A com-
mon way to do this (and the one which gives the bound quoted above) is to show

EW2 —>c<o0 as m—>o0, (2-6)
for then we have EW = 1 and an application of Cauchy-Schwarz

(EW)e = B(W1gy.0)* < EWP(W > 0)
leads to the estimate
2
(EW) ; (2:7)

P(W >0 = e >

To estimate E W2 we observe that

ENZ= 3 P{(r)=0,ts)=0)= 3 p2n-E~s

r,8cR, 7, 86@R,

where K(r,s) is the number of edges r and s have in common. Rewriting the last
expression in terms of the random walks we have

ENE; s (dP)Zn EP_KM)s

where K(n) is the number of edges the two random walks paths S,,,0 < m < n, and
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S, 0 < m < n, have in common. As n - o0 K(n)} K = the number of edges two
random walks ever have in common so it follows from monotone convergence that

EW?} - E(p~E).
By the strong Markov property

P(K = k) = p5(1—py),
80 E(p~X) < oo if and only if p > p,, in which case
B@") = 3 pob1-pa) = (1-pa) (1-5¢)”
k=0 P

Combining this result with (2:7) we see that if p > p,

1—pa/p _ _P—Pa 2.8
PW>02 000 = pi-pa B

proving (2-1). We turn now to the proof of
p(d) = d1+d-3+0(d-9). (2-2)
Proof. Let 7 = inf{k > 0:8, = 8}, 8,.; = St11} (Whereinf & = co). In this notation
p(d) = P(r < o). Simple counting shows
Plr=0)=d,
Pir=1)=0,
P(r=2)=d3-d™,
so the proof of (2-2) will be complete when we show

md#P(r > 1) = imd+P(r = 1) < 1. (2+9)

d—w d—m

Remark. It is possible to compute the second limit explicitly when [ is small but
we have not been able to find a formula.
Proof of (2-9). We note first that

P(r = k) < d1P(S, = 8}),
and since S, and S}, are independent

P(8, = 8;) < max P(S; = x).

reHk

When 1 < k < d the maximum occurs when all the steps have been taken in different

directions so we have
P(S, = z) < d~*k!

and combining these estimates gives
d
Plgsr<d)gd? Zl ~kL! < d-Yd- U+ 34 1) - {d 1) d~a+2){g+2}!}
k=
< A1 4 4 0+(] 4 3)1.

It remains then to estimate P(r > d). A little thought shows that if k& > jd

(ga)!
P(Sk == ) g drirrrs (Jl)d
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Using now the form of Stirling’s formula given in Feller (4), p. 54

. n! :
[ 13-€W(27Tﬂ) -..<.-1 (??.r 1), (2 10)
we get .
74(2m jd) Y3 s
P(Sk = x) < U;?(—%j);%'_?')a = {2ﬂd)&5‘u mi3(615/4(2ﬂ))d,

Combining the estimates above with the fact that d > 4
(j+1)ad Yo
Pd<T1 <o) <d? 2 S P(S,=8;) < (2md)t (\/(2 )) 2 it

j=1k=jd+1

which approaches zero exponentially rapidly as d — oo (efs < 4/(2m)).

3. Lower bounds for the critical probability

One of the first things that was noticed about oriented percolation is that if we let
Z,, be a branching process with Z, = 1 and offspring distribution

P(Z, = j) = (j.)pf(i _p)yii (0<j<d),

then the branching process and the percolation process can be constructed (coupled)
on the same probability space with the following property. If W, is the set of vertices
we can reach from 0 along open paths, then

Z,> |Wyn B,

where | 4| denotes the cardinality of the set 4. Since the branching process becomes
extinet almost surely when EZ; = dp < 1, it follows that

pd) > d-L. (3-1)

It is easy to see how this bound can be improved and a sequence of lower bounds
can be developed. For each positive integer m we construct a branching process
{Z.n, n}n=0,,2... With Z, o = 1 and offspring distribution

P(Zp,y =j)= P([Won H,| =
Again, by coupling we have

Pz, ., >0 > P(|WnH,,] >0),
and it follows that

Pc(d) 2 ﬂm(d} = SUP{P I Ezm,l < 1}‘
Let f,,(p) = EZ
It is easy to compute my(d). By considering the cases x = 2¢; and x = ¢;+¢; we

obtain

Jalp) = dp*+3d(d— 1) (2p*—

Setting f,(») = 1 and solving for p? gives

o(d) = d =1 — (1—2d-2 4 2d-3)i1H,

and a little patience shows tha.t
(@) =d1+3}d3+0(d%) as d-> 0. (3-2)
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The computational procedure just employed breaks down when m = 3. This time
if we consider the possible cases 3e;, 2¢,+ ¢;, €; + ¢; + ¢, and use the inclusion—exclusion
formula to compute the probability of at least one open path we find after several
hours of computing and checking (see (3-5) below) that

fs(p) = dp*+d(d—1) (3p°— 2p° — p° + p7)
+3d(d —1) (d—2) (6p° — 6p° — 9p® + 6p7 + 12p° — 4p° — 9p10 + 6p!1 — p'?),

details left to the reader. It is clear that it is not possible to solve for 74(p).

Fortunately, to derive a bound for 74(d) of the form a,d-!+a,d—2+a,d—3+0(d~)
we do not have to solve the equation f3(p) = 1 or worry about any terms in the expan-
sion of f3(p) which are of order p? or larger. We will describe our method first in &
casual fashion and at the end give the short supplementary argument needed to make
our computation rigorous.

Let p = Z}_,a,d . When we put this into f;(p) we get something of the form
238 00, d". When p = my(d), f4(p) = 1, and so setting b, = 1, b; = by = b; = 0 gives
four equations in the a;, 1 < i < 4. The solution is @, =1, @, =0, ag = 3%, a3 = §.
(The reader who is interested in seeing the details without too much work should try
this method to derive the result for 7,(d).)

This computation suggests that

mg(d) = d-1+3d-2 + O(d—4). (3-3)

To prove this, we now set p, = d~1+ }d—2 + }d—* and for ¢ > 0 substitute p, + ed—*in f;
to obtain

fs(Do+e€d™) = 1+ 3ed—3+0(d™4),
fa(po—ed—%) = 1—-3ed—2+0(d ).
Clearly fy(p,—ed— ]. < 1 < fo(py+ed—?) for sufficiently large d, which implies
Po—€d—2 < my(d) < py+edt,

a somewhat stronger statement than (3-3).

Neither my(d) or m4(d) is as good as the lower bound given in Theorem 1. To achieve
this bound we must consider 7,(d) and let & — co. Let p = Z%_,e,d " and expand
Ji(p) in the form

filp) = T cim,n)dp™ = 3 b,d".
n, m=20 n=0
Setting by = 1, b, = b, = by = 0 and solving for the a,, 1 < ¢ < 4, willinvolve only the
terms c,(m, n) d*p™ with m —n < 3, which means we can ignore the higher order terms.
We will prove that

k -; 1 dk—lpk+2 e %(k - 2) dkpk+3 + 3 ck(m, n) dﬂpm_

m—n>3
(3.4)

fulp) = g2 sy

Consequently, if

k—1 -3 2k—5
% ¢ T ok

fuPo+ed=4) = 1+ ked—3+0(d—H),

Ju(po—€d—2) = 1 —ked—3+0(d™H).

a4,

Po=d1+
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This shows that, for fixed k, as d = o0
md) = d- 1+ 1 -5 4 0(d~).
2k

We turn now to the proof of (3-4), assuming always that k <d. Let II(k) =
{o = (), @, ..., ): @, are integers, 1 <oy L a4y < ...y, T, = k} be the set of
partitions of the integer k. For a« = (¢, ay, ..., ;) € II(k) let z* be the element of H,
whose ith coordinate is a;, 1 < i < j, and let Hy(a) = {ze H;: a permutation of the
coordinates of z yields 2%}. Then H, is the disjoint union H), = U,y Hi(x). Let Z(z)
be the set of paths from 0 to 2. If ze Hy(«), then [2(z)| = |Z(z*)| = k!/,!...a;! and
P(U, e g {7 i8 open}) = P(U, .z« {r is open}). It is also clear that |H,(x)| is a poly-
nomial in d of degree at most k.

Using the decomposition of H), we obtain

Julp) = Z P( U {ris open})

zeHr red(z)
|Hk(oc)l{ E P(?’ isopen)—% 3 P(r,sare open)

aell re®@(* T, semgz“)
+'& >  P(r,s,tare open)—...}, " (3-5)
r?s?’lﬁﬁﬁg?t
where there are |#(z%)| terms in the inclusion—exclusion expansion. Since each of the
probabilities above is & polynomial in p, and |Hk(a)| is a polynomial in d, this expresses
fiu(p) in the form X, 5 ,c.(m, n) d"p™, ¢, (m,n) independent of p and d.
The first term in the expansion is
|H(@)] ¥ P(risopen)= ¥ 3 p*=(dp)- (36)
a e II(k) reR(z*) zeHy reR(z)
We will begin by showing that the third and higher order terms can be neglected.
Note that if »,,r,,...,7, I > 3, are distinct elements of #(z*), then P(r,,7,,...,7, aTe
open) = p*+? for some 7 > 4 since there must be at least k+ 4 distinct edges in the
union of the paths r,,7,, ..., 7. Since |H(a)| is a polynomial in d of degree at most k,
this shows that the third and higher order terms in (3:5) contain only terms of the
form ¢, (m,n)d"p™ with n < k and m > k+ 4, and hence can be neglected. It remains
to evaluate the second term of the inclusion-exclusion expansion.
As in Section 2 let K(r, 8) be the number of edges 7 and s have in common. Then

Y |Hf(x)] X P('r 8 are open)

aell(k) o sf#
= 3 |Hla)| = ): p¥*-i|{se B(2*): K(r,8) =j}| (37)
ae (k) ref(zy) =0
(K(r,s) = k—1 or k is impossible if 7 + s). Since | H()| is a polynomial in d of degree

at most k we can neglect the terms with j < k— 4 in this expansion. For the remaining
terms we have

|Hi(@)] = E p”‘"l{se@ﬂ‘ ): K(r,8) = j}|

a€Ik(k) TER(%) j=
=p"+2 > Y  l=ptss 3 T 1 (38
teHy r,sedz) zeHy r,8e8z)
E(r,8)=k-2 E(r,8)=k=-3
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Let #;, = U g, %(2), and for re R, let 7, be the ith point of Z2 of 7. Then

5 Y 1= 3 |{seZ:K(r,8) =k—-2}
zeHy r,8¢dz) re&e
E(r,5)=k—2

k—1
i=1redix
Since
o 1 if ry~r;y Fr50—75
[{seRy:8; + 75,8, =7y fori +j}| = {0 othe;wise
and

|{re®y:rs—riy £ ry—r3| = d*¥d-1),

X 3 1= (k—1)d=Yd-1). (3-9)
zeHy r,8ed(z)
K(r,8)=k—2

The argument for the second term is similar but slightly more involved. The first
step is
= S 1= 3 |{s€Z: K(r,s) = k—38}|

eeHy r,8e3(z) reRe
E(r,8)=k—13
k—2 ; - 7
=3 3 ({868 74,8141 F Ty41,8, =1y ford + 75,7+ 1}
i=1re®:

Letting A; =14~ 75,44,
[{s€ Ry: 55 + 15,8549 + 7540, 8; = v for i + 5,5 + 1}
3 if A, A, A, distinet,
0 otherwise,
and

I{rE@k:ﬁo = Al =|'—' &2, or &1 = Ag =|= &ﬂ}l = 2dk_2(d— 1)-
This gives us

3 S 1= (k—2)dF%d—1)(3d—4). (3:10)
z€EHy T,8€R(2)
K(r,8)=k—3

By combining (3:5)—(3:10) we obtain (3-4).

4. First passage percolation proofs
In this section we will prove the results about first passage percolation which we
stated in the introduction. We will start with

TeEOREM 2. If F,(x) = 1~ (1 — F())* is the distribution of the minimum of n inde-
pendent random variables with distribution F, then
pr(nd) < pg (d). (41)

Proof. Suppose the nd-dimensional process is constructed from iid variables
X(b), bez"@ with distribution F, defined on some probability space (Q, #, P), and
let ¢(z) be the associated passage time from 0 to z. To prove the lemma we will define a
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mapping ¢: Q x 24 - 7% and iid variables Y (b) b€ Z¢ with distribution ¥, in such a
way that, if ¢'(z) is the associated passage time from 0 to z for the Y (b) variables, then

tHgx) < t'(x) and gz, = ||zl (4-2)

where for z = (“r]! Loy vvey xd)’ ”xnl = z:‘If=l. Ix‘il'
Since (4-2) clearly implies (4:1) the proof will be done when we have described
how to construct ¢ and the variables Y (b).
Step 0. Let ¢(w, 0) = 0 for all w.
Step 1. Let a;; be the edge from 0 to e;_,),; in Z™ and let b, be the edge from 0
to e; in Z%. We let
Y(b,) = min{X(a;), 1 <¢ < n},
i(j) = min {i: X(a;,;) = Y(b,)},
?-l’((!), ej') = €(j-1) n4ily)
Induction Step. Let m:Z7* — Z4 be the projection operator

in
(ﬂx)j = - E x-;l
i=(F-1)n+l
and assume that @ has been defined on Q x G, in such a way that 7¢(w,y) = y (this
is true when k = 1). Let ze H,,,, and for each j for which z—e,e H; let z; = z—e¢; and
let b, be the edge from z, to z. Our problem is to define ¥ (b;) and ¢(z). The first definition
is handled as before: let a,; be the edge from ¢(z,) to gb (24) + €j_pn4s and let

Y(b;) = min{X(a): < n}.
The definition of ¢(2) is a little more subtle: using the passage times for the edges in
G} and the Y (b;)’s just defined compute #'(z), the travel time form 0 to z. Find all the
routes from 0 to z which have this travel time and let C(z) be the set of points in H,
which appear in some route. Clearly C(z) + @ so we can let z* be the lexicographic
minimum of C(z), define % by z, = z* and let
i(h) = min{i: X(a;) = Y (ba)},
P(2) = P(2*) + ey nrstn-
It is clear from the construction that the new ¥’s are iid and independent of the
ones previously constructed, that #¢(w,z) = z and consequently that ||@z|; = |lz|l;.

It remains then to show ¢'(z) > t(¢z). To prove this observe that the travel time from
0 to z* on an optimal route from 0 to z must equal t'(z*) so

t'(z) = t'(2*)+ Y (b) > t($(z*)) + X(an) 2 Hd(2)).
This completes the proof of Theorem 2.
Now consider the exponential distribution E(x) = (1 —e~%)*. The next result is

THEOREM 3. There is a constant -y such that

dug(d)—>y as d-> oo, (4-3)
and
el<y <27 (4-4)

Proof. Forz > 0, E,(x) = 1— (1 - E{@))* = 1 —e™2, 50 ug (d) = n~ug(d), and (4-1)
becomes
pp(nd) < 07 pg(d).
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To show limg_, , dpz(d) exists, suppose nd < j < n(d+ 1), then

Jue(j) < jpend) < jnpg(d) < (@ +1) pp(d).
Since pz(d) < Et, = 1/d, it follows that
lim supjug(j) < liminfdug(d) < 1,
Jr0 d—o

and
v = limjuyg(y) exists.
)

At this point we have proved (4-3) so we turn our attention to the inequality (4-4).
The lower bound was proved in the Introduction. There are several ways of obtaining
the upper bound y < 2-1. The simplest way is to use ‘ordinary’ oriented percolation
to construct paths with small travel times. Let t; > 0 such that 1 —e¢~% > p(d). Call
an edge b open if X(b) < ¢; and closed otherwise. Then for all  in some Q, < Q,
with P(Q,) > 0, there is an infinite connected path of open edges starting at 0. Let
R, be the minimal (in the lexicographical order) infinite path of open edges and let
R, be the part of R, from 0 to H,. Then for we Q,

< % X(b),
beRy
where R, is random, and the variables X(b), b€ B(k) are independent of R, and they
are conditioned to be no larger than ¢,;. By the strong law, a.s. on Q,

1—eta—t e td
1—eta

lim k7, < lim k! 3 X(b) = BE(X(b)| X() <ty) =
k—w k—w beR:
The right hand side above is therefore an upper bound for x(d) for all ¢; such that
1—etd > 1—p(d). Consequently

ug(d) < 14+p(d)*(1-p.(d))In (1l —p,(d)) =

Since dp,(d) > 1asd - o0, y < 271,
An approach suggested by Kesten shows that

Le(d) < p(d)/2, (4-5)

which gives the same bound y < 2-1. The inequality (4-6) is proved using the method
of Section 2. Fix a > p(d)/2 and let N, be the number of paths » from 0 to H, with
t(r) < an. Somewhat detailed estimates of EN, and ENZ show
(BN,
e
which implies #z(d) < a. Since this method does not improve the upper bound for y
we will not present the details.
Finally, as mentioned in the introduction, subadditivity gives us the sequence of
inequalities

ﬁMa

l10,:(‘%)“/7%(7& +1).

>0,

pu(d) < n1Er(d).

The case n = 1 was considered in the proof of (4-2); it yields uz(d) < d~*. Explicit
calculations can be made for n = 2; it can be shown that

P(1y(d) > 8) = ¢* [1 +d_il (1 _e—(d-m)] ’
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and that
E7,(d) ~ d(e—-1).

This yields ¥ < 2-(e— 1), which is not as good as (4-3). Presumably the cases n > 3
give better bounds, but the details become horrendously complicated.

It is a pleasure to thank Harry Kesten for his help with this work and for allowing
us to present his proof of p,(d) < p(d).
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