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Summary. In this paper we will give some results concerning the critical 
exponents of percolation processes which are valid for "any"  model. These 
results show that in several respects the behavior which occurs for percola- 
tion on the binary tree provides bounds on one side for what happens in 
general. These results and their proofs are closely related to their analogues 
for the Ising model. 

1. Introduction, Description of Models 

In order to state the results which have been obtained for the critical ex- 
ponents of percolation processes we have to first describe the class of models 
to which our results can be applied. To use a little legal jargon, this includes 
but is not limited to the following four examples: 

1. B o n d  P e r c o l a t i o n  in Z d. We consider Z d as a graph with edges connecting all 
points x and y which are "nearest neighbors" (i.e. ] [ x - y / l a = l ) .  Each edge is 
independently open with probability p and closed with probability 1 - p .  We 
think of open bonds as permitting us to go along the bond and with this in 
mind we make the following definitions 

x ~ y  (y can be reached from x or x leads to y) 

if there is an open path from x to y: that is, there is a sequence x 0 
= x ,  x 1 . . . .  , x , = y  of points in Z d such that for each k < n  the edge from x k_ 1 to 

x k is open. 
Once the definition of x---,y is made it becomes natural to make two more 

definitions 

C o (the cluster containing 0) is {x: 0 ~ x } ,  
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i.e. the set of all points which can be reached from x 

f2oo = {I Col = oe} = "percolation occurs" 

and ask a number  of questions, but we will suppress these urges until we finish 
describing the models. The next two are simple modifications of the first. 

2. Oriented Percolation in Z a. In this variation of 1, if e i is the ith unit vector 
then each bond is oriented x ~ x + e i  and we make the obvious change in the 
definition of x ~ y :  we are only allowed to go in the direction of the orientation 
(and only along open bonds). 

3. The Discrete Time Contact Process. In this variation of 2 we view the last 
coordinate as time and write Z a = Z " x  Z. Each (x, t ) e Z n x  Z is connected by 
oriented arcs to each ( x + y , t + l )  with lyl__<l and the arcs are each inde- 
pendently open with probabil i ty p. In this model we interpret (x, t)~ C o as 
saying that there is a particle at x at time t so we view the presence of a bond 
from (x, t) to ( x , t + l )  as saying that the particle survived, and a bond from 
(x, t) to (x+y,  t+ 1) as saying that the particle gave birth to a new particle at x 
+ y  (subject to the restriction of there being only one particle per site). For 
more about  this interpretation see Griffeath (1979) or Durret t  (1984). 

Last but not least we have the example which will be used to give bounds 
on the others. 

4. Percolation on the Binary Tree (a Galton-Watson Process). Let S be the set 
of finite sequence of 0's and l 's  (including the sequence which has length zero) 
and connect each x e S  by an oriented arc to the two strings x0 and x l  which 
are obtained by adding a 0 or 1 at the end. If each edge is independently open 
with probabil i ty p and we let Z ,  be the number  of x 6 C o with length n then Zn 
is a Gal ton Watson process with offspring distribution given by p0=(1 _p)2, Pl 
= 2 p ( 1 - p ) ,  and p z ~ p  2 (so the m e a n = 2 p ) .  

The four models described above are always included when we say below 
that our results are valid for "any"  model and it will not be hard to see from 
the proofs that the results can be extended to other related which have been 
considered. In particular (a) we can consider percolation problems in which 
sites as well as bonds are open, (b) we can replace Z a by a "periodic graph" 
(for a precise definition see Kesten (1982) Chap. 2), (c) in example 3 we can 
make different types of edges open with dirrerent probabilities and construct a 
large family of discrete time growth models, (d) we can take limits of systems 
in (c) to construct continuous time processes (for more about  this see Griffeath 
(1981)), and (e) in example 4 we can consider more general branching distri- 
butions (e.g. the results of Erd6s and Renyi graphs correspond to those for 
Gal ton-Watson processes with Poisson offspring distributions, see Spencer 
(1973)). 

However, proving our results in a way that accomodates all these examples 
is unthinkable. It  would strain our notation and the readers willingness to 
believe our proofs to the breaking point, so we will only prove the results for 
the four examples. In Sect. 2 we will state the results we have obtained. In 
Sect. 3 we will prove the results for percolation on the binary tree, and in Sects. 
4 and 5 we will prove the results for the other three models. 
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2. Definitions of Critical Exponents, Description of Main Results 

Having described the percolation processes that we will consider, our next step 
is to introduce the "critical exponents" we referred to above. In doing this we 
will use the notation which is now standard in the physics literature and we 
would like to encourage others to do so because it facilitates comparing results 
for percolation with their analogues for the Ising model. 

Perhaps the most basic quantities associated with a percolation process are 
P(~J~)=the probability of percolation and G = i n f { p :  P(f2oo)>0}, so we will 
start by defining the corresponding exponent: ft. Intuitively fi measures the rate 
(i.e. power of P-Pc) at which P(f2~o)10 when PSPc. In most examples we expect 
to find 

P(f2~) ~ C(p - p y  
where ~ means 

lim P((2oo) _1  
p+pc C(p-P3 ~ 

but this notion is too strong for some examples (and too hard to prove) so we 
will replace ~ by the weaker notion 

where ~ means 
P ( t? ) (p - p c) 

lim l o g P ( ~ )  _ 1. 
p;pc fi log (P-Pc) 

The second definition allows logarithmic factors (or slowly varying functions) 
or much worse behavior, but as we will see below, in most cases we do not 
know that the limit used to define fi exists. To be able to talk about  fi without 
assuming its existence we will extend the definition above and say 

,. log P(f2~o) 
fi < c if nm sup -< c 

P;Pc l o g ( P - P c ) -  

log P(t2~) 
fl > c if lim inf - - - -  > c. 

p+Fc l o g ( P - P c ) -  

For percolation on the tree it is easy to compute ft. In this case the theory 
of branching processes tells us that 1 - P ( t ? ~ )  is the smallest solution of ( (1 -p )  
+px)2=x with x ~ [ 0 , 1 ]  (see Athreya and Ney (1972), Chap. 1), so a little 
algebra gives 

p(f2oo) = {20P 1_p-2 p>=�89 
p=�89 

Differentiating the formula for p> �89  gives - 2 ( p - 2 - p  -3) which is 8 at p= �89  so 
we have 

P((2~) ~ 8 (p-pc)  as P,~G 

and the critical exponent fl = 1. 
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Differentiating -2(p-2-p -3) again explains why fl< 1 in this case. The 
derivative is 4p-3 -6p -4=(4p-6 )p  -4 which is negative for p < 3  so 
O(p)-P(f2j is concave on [Pc, 1] and hence we must have 

lira inf P ( f ~ )  > 0. 
p*pc P-Pc 

We believe that the last conclusion and probably the one before it are true in 
general, but at this point in time the only argument we can give for this 
viewpoint is that it would be in keeping with the pattern established by the 
results for 7, 7', and A below. The results which have been shown are so weak 
that we don't know that fl__<l in ANY example (except for percolation on 
trees). 

For  bond and site percolation on Z 2 (and some other models) Kesten 
(1981) has shown that there are constants Cg, c~g ~ (0, co) so that 

C3(p- pc)~3 <=P(~2~)< C4(p-pc) ~'. 

The proof of this fact and in particular the proof of the lower bound, requires 
a lot of ingenuity, but the e~ which are obtain are not very good. Tracing back 
through the proof of the upper bound gives (in Kesten's notation) 

fi0 - l o g ( i - Y 0 )  
c~4 2 2 log 3 

where 70 is the probability of a special event which is trivially __<(�89 (for bond 
percolation) and for which a typical lower bound is 2-12(0.2929)64 (see Smythe 
and Wierman (1978), p. 41). The lower bound is harder to compute (c%= 
- 2 ( c ~ i 2 - 1 ) C 1 9 = . . . )  and is probably just as bad, but in any case it is clear 
from the proof that it is much larger than 1. 

Our knowledge of P ( O J  for oriented percolation in Z 2 is better and worse. 
We have shown (see Durrett  (1984), Sect. 5) that 

P(O~) >= 4 (p - p c )  2 

so the lower bound is much better (although still not > C(p-pc)) but on the 
other hand we do not know whether or not 

P(O~)$O as P+Pc. 

This question is also an open problem for bond and site percolation in Z d 
when d >__ 3. 

After the percolation probability the next most important quantity as- 
sociated with percolation is the mean cluster size E I Col. This quantity has its 
own critical value 

pr=inf{p: E[Col=  co} 

which is possibly different from Pc (but usually isn't and trivially satisfies 
pr<=pc) so we define 
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7 = - l i m  logElCo[ 
p~w log (Pr-P)  

(with the conventions discussed above in force when the limit does not exist). 
For percolation on the tree 

E]CoI= ~ (2p)n=(1-2p) -1 
n--O 

1 so pr=~(=pc) and as P'~Pr 

ElCol=(2(pr-p))  -1 

and the critical exponent 7 - 1 .  Recently Aizenman and Newman (!984) have 
shown that this behavior gives a lower bound on the singularity for bond 
percolation. We will give a version of their proof below based on 
van den Berg's inequality which makes it clear that the result is valid for "any"  
model. For another version of this proof see van den Berg and Kesten (198). 

To state the lower bound and describe its ramifications, we need some 
notation. Let x = E ]  Col. The key to proving 7> 1 is to show 

~ /s 2 (1) p -  

where K=the coordination number= the  number of points which can be 
reached from 0 in one step. From this it follows immediately that 

o > d ~ p >  -~c 

so we have 

X >( tc(pr -p) )  a (2) 

(which becomes an equality for percolation on the tree). 
The last result sharpens one side of an inequality proved by Kesten (1981) 

for two dimensional percolation processes 

Cs(pr_p)  ~s <=El Co[ =< C6(pr-p)  -~6 

(again e5 is rather small and is trivially less than 1, see (3.46) in Kesten's 
paper). The inequality (1) which led to (2) is also useful by itself for it allows us 
to conclude that X-1 is Lipshitz continuous and hence 

As P'~PT, ZT ~176 (3) 

This result (which was first proved for percolation on periodic graphs by 
Kesten (1981), see Corollary 2 in his paper) is in sharp contrast to the state of 
affairs for the percolation probability described above. There we do not know 
if we have in general 

P(s as PJ, Pc. 

When p >Pc, E ICo[ = oo for the trivial reason that P([ Co[ = oo)>0, so if we 
let 

S(p)=E(ICol; ICol< oo) 
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we have a hope of getting something which is not = on for P>Pc and in fact, 
for percolation on the tree, it is not hard to show (see Sect. 3) that if p > Pc. 

SO)) = (1 - P(f2oo)) S(1 - p )  < oo. 

So it follows that as PJ, Pc 
S(p)/S(1 -p)-~ 1, 

i.e. in this case S(p) has the same singularity as P~,Pc or pTpc The hope that 
this might be true in general and the skepticism that it might not lead to the 
following definition 

logS(p) 
7' = - lim 

p;pc log(P-Pc)  

(with the usual conventions in force when the limit does not exist). 
For  percolation on the tree we have 7 '=  1 so by analogy with (2) we might 

hope to show 7 '>  1. The next result proves more and less than this 
If P(~2oo);0 as PSPc then for all e > 0  

Pc + 

R(p)dp= on (4) 
Pe 

where R(p)<=~cS(p) is size of the "'external boundary"  of C O (see Sect. 5 for a 
precise definition). 

Again there are results of Kesten (1981) concerning two dimensional mod- 
els, which continuing the pattern established above may be written as 

CT(P--pc) -~7 <E(I  C01; I Col < ~)_-< c 8 ( p - p c )  -~8. 

This time however the form of our result does not allow us to improve the 
lower bound. In view of the conjectured equality of 7 and 7' it is interesting to 
note that Kesten's argument leads to c~ 5 = eT, c% = %. 

Having considered the divergence of EI C0l as P~Pr and P~Pc it becomes 
natural  to ask about  the divergence of the higher moments. The first and most 
basic question is: Do all the moments  El Cot k k = l ,  2 . . . .  blow up at the same 
point? The next result shows that this is correct and provides a bound on 
P(I Col > n). 

in 2 
If P<PT and ~ = ~ _ ; g - 1  then 

P ( 0 ~  x) _-< 2 exp ( -  e lx I). (5) 

With the simultaneous divergence of the El Col k established we can define the 
corresponding critical exponent(s). I have put the s in parentheses because we 
will define a sequence of "gap  exponents" by 

EICol k 
EiColk_l~(pr--p) -~k as P'rPT 

but it is widely believed (by many physicists at least) that all the A k are equal. 
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To try to convince you that this is true we let 

a.(p) = P([ Col = n) 

b,(p)=na,(p)/S(p) 

and let Yp be a random variable with 

P(Yp = n)= b.(p), 

It is easy to explain our interest in Yv" If k >= 2 

E Y~-i = ~ nk a,(p)/S(p) 
n 

= E lColk/S(p). 

From this observation it is only a small leap to the conclusion that Ak=_A, for 
if we have 

Yp/(Pr-P) A ~ a non-zero limit 

and everything goes well then 

El Co[k~S(p)EY2 -1 ~(PT--P) ,-(k-1)a 

For percolation on the tree a,(p) can be found explicitly and then it is a 
simple matter  to conclude that as P'rPT 

Y 
P(Yp<=y4 X ( p r - p ) - a ) ~  ~ C x - ~ e  Xdx (6) 

0 

and that 
ElColkAk(p_p)  1--(k- 1)2 

where A k is a constant which depends upon k. 
The proof of the last result relies very heavily on the fact that we have an 

explicit formula for a,(p) so we are far from proving anything like this in 
general. However in keeping with the theme of the paper the behavior on the 
tree provides bounds on one side for what happens in general. Aizenman and 
Newman (1984) have also shown that 

l i m s u p E  ( Yv ]J p~pT \S(p)Z ] <mj (7) 

where mj is the j th  moment  of the chi-square distribution. 
(7) is a simple corollary of some inequalities called "tree graph inequali- 

ties," which in turn are (as we will show in Sect. 4) are simple consequences of 
van den Berg's lemma. This result is yet another indication that quantities for 
the tree should bound those quantities in general. Looking back at (6) we see 
that the norming is 4-1(pr-p)-Z=S(p)  2 and that the limit is indeed a chi 
square, but it is �89 the square of a standard normal. 

As a corollary of (7) we see that for Kesten's two dimensional models when 

P<Pr 
(C5 (Pr - P ) -  ~5)k =< E i Colk < (C6 (pr _ p) -  ~6)2k+ 1 
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the first inequality being due to Jensen. Extending the reasoning used to obtain 
these inequalities it is easy to show that A k is an increasing function of k__>2 
and satisfies 

7NAkN27 (8) 

(see Sect. 5 for details). 
Combining the last result with (2) gives ~k>l but if you trust (as we do) 

the philosophy that the exponents for the tree should provide bounds on one 
side for what happens in general you realize that something stronger must be 
true 

A2>2 (9) 

and it is. This fact was discovered by one of my students (B. Nguyen) and is 
proved in our joint paper (see references). 

3. Percolation on the Binary Tree 

In this section we will prove the statements we have made concerning percola- 
tion on the tree. The facts concerning fl and 7 were proved in Sect. 2, so we 
will begin by showing that ~'=1. To do this we observe that if Z,  is the 
number of wet sites on level n (see Sect. 1 for a precise definition) then Z,  is a 
Markov chain with transition probability 

PiJ= j 

so a simple application of the Markov property shows that if we let Zn be Z.  
conditioned on f2~o then Z.  is a Markov chain with transition probability. 

Plj = Q (p)- i pi ~ Q (p)J 

where Q(p) = P(s ). 
Unscrambling the definition gives 

and when we plug this in a minor miracle occurs 

so the conditioned chain is obtained from the original one by changing the 
parameter from p>�89 to 1 - p .  From the last observation we see that if S(p) 
=g(ICol; IC01< oo) then for p>�89 

S(p)=Q(p)S(1 -p) 
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which proves the desired result since Q(p)~ l  as PJ, Pc and S ( 1 - p ) ~  C(p-pc) -1. 
From the argument above it follows immediately that if we let 

Sk(p)=E(] CoLk; I C0] < oe) 

then for p>pc, Sk(p)=Q(p)Sk(1--p) so the divergence of Sk(p) as pTpc or pJ, p~ is 
exactly the same right down to the value of the constant. 

Having dispensed with 7' our next task is to show that A =2.  The first step 
in doing this is to compute a,(p)=P(ICol=n ). To do this we use an obser- 
vation due to M. Dwass (1969). 

Let X 1 , X a . . . .  be i.i.d, with 

P(Xi=k)=(2k)Pk(1-p) 2 k k = 0 , 1 , 2 .  

k 

Let S k = l +  ~ (Xj-1). 
j = l  

Let r= in f{k :  Sk=0 }. 

Then we have 
a,(p)=P(~=n). (1) 

The original proof of this was not very transparent (see e.g. Jagers (1975), 
p. 40-41) but if you see the trick (due to Bondesson (1979)) the result is easier 
to prove than it is to state. Since the proof is nice and short and has only 
appeared in Swedish we give it here. 

Proof. Consider a modification of the Galton Watson process in which only 
one individual is chosen to reproduce at each time. If we start with one 
particle at time 0 then S k gives the number of particles alive at time k in the 
modified system. Clearly the total number of births is the same in both 
processes but when only one particle dies at a time we have time of extinction 
= the number of births + 1 (for the particle at time 0). 

With (1) established it is easy to compute a,(p) and find the limit of the 
rescaled cluster distributation. If we have a sample path with S o = 1 and S, = 0 
then exactly one cyclic permutation of the increments has the property that 
S , ,>0  for m<n so 

P(~=n)=Ip(s,=o) 

(this is also a consequence of the ballot theorem, see Feller (1968), p. 73) and 
hence 

a~(P)=~ (n2?l)Pn-l(1-p)'+l 

b,(p)=(n221)pn-l(1-p)'+a/(1-2p)-i 

=(1 - 2p) (n_12n)(�89 (1-p)p 
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Now Stirling's formula (or our knowledge of simple random walk) 
shows 

and if we let e=�89  then 

4p(1 - p ) =  4( �89  e)(�89 e)= 1 - 4e 2. 

Combining the last two observations with the formula for b,(p) suggest taking 
n ~ e-2. Doing this leads to 

P(Yp= ye-  2)~(2e,)( C y-~ e)(1-4eZ) ye-  2/4 

~e22  C y-~ e-4y 

from which it follows easily that for 0 < a < b < oo 

b 

p(ae- Z < y<be -  2)~S 2 C y-~ e-4Ydy, 
a 

which after a change of variables is (6) of Sect. 2. We leave it to the reader to 
check that we can conclude from this that 

EI Col k ~ Ak (pr-- p)- 1 -~k- llzt. 

4. Some Useful Inequalities 

In this section we will describe some inequalities which have been proved 
recently and which are the key to obtaining the bounds given in the next 
section. The most important  of these is what we call van den Berg's inequality. 
For simplicity we will only state a special case of his result 

If xl, y i ~ Z  d for i = l  . . . .  ,n  then 

P(xi~y  i pairwise disjoint pa ths )<  1~ P(x<-'Yi)" (1) 
i = 1  

Proof. See van den Berg and Kesten (198).  The result is stated for increasing 
functions of independent random variables so it is clear that it is valid for 
"any"  model. 

You will see in a minute that this result is a useful complement  to the 
statement we get from Harris '  F K G  inequality (see Kesten (1982), Sect. 4.1). 

P(xi~y  i for i=1  . . . . .  n)> ~I P(xi-~Yi)" 
i = 1  

(2) 

From (1) we get a number  of useful corollaries. To state the first of these 
we need a definition. We say that A c Z  d separates x and y if x, y(~A but any 
path connecting x and y contains an element of A. 
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Simon's Inequality. If A separates x and y then 

P(x~y)< ~ P(x~z)P(z-~y). (3) 
z E A  

Remark. This inequality is named after its analogue for the Ising model given 
in Simon (1980). The percolation analogue was discovered independently by a 
number of people and has consequently not yet been published so we will 
prove it. 

Proof. If x--*y then there is a nonself intersecting path from x to y. If z is the 
first point in A on this path then there are disjoint paths from x to z and from 
z to y so applying (1) and summing over z gives (3). 

Remark (Lieb's improvement). For  some purposes it is useful to note that the 
argument above proves more. If B is the component  of A c which contains x 
and P~(x~z) is the probabili ty x is connected to z within B then 

P (x--, y) ____ y~ PB (x--, z) P (z--, y). (3') 
Z ~ A  

From (3) we immediately get 

In 2 Z t then If P<Pr and ~ = ~ -  

P (0--* x) < 2 exp ( - e Ix [). (4) 

Proof. The proof  is based on the following observation (Theorem 1.3 in Simon 
(1980)). 

Let f be a nonnegative bounded function on Z a and suppose that for some 
subset Be{x:  ]x[<R} and all y with [y l>R we have 

f(y) < ~ a(x) f (y-x)  (5) 
x ~ B  

where a(x)>O and ~ a(x)=Ao< 1 then 
x ~ B  

L f(x)l <_- II f q/~ exp ( -  m o R [1 x[/R]) 

where too=- - R  -1 lnA o. 
To get (4) from (5) let B . = { x :  IxL=n} and let 

N = i n f { n :  ~ P ( 0 ~ x ) < � 8 9  
x ~ B n  

Clearly Z ~ N/2. Applying (5) with B = B N then gives 

P(O~ x) < exp ( -  m o []xl/N]) 

where m o = N -  1 log 2 so we have 

P (0--+ x) __< 2 exp ( - log 2 (] x L/g)) 

( l~  Ixl) < 2  exp \ - ~ -  . 
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Extending the reasoning above to three points gives an inequality due to 
Aizenman and Newman (1981) 

P (x, y ~ Co) =< ~ P (0 ~ z) P (x ~ z) P (y ~ z). (6) 
z 

Proof. By van den Berg's lemma it suffices to show that if x, y ~ C o then there is 
a point z z C o which is connected to 0, x, and y by disjoint paths. To find z 
systematically remove bonds from C o making sure that the deleted set is 
always connected. The first time x can no longer be reached from y you have 
found z. 

Extending the reasoning above to n points we get a sequence of inequalities 
due to Aizenman and Newman,  which are called the tree graph inequalities. 
The first of these is 

-1 ) 
y,~ \ 2 - - z - - 3 /  

\ l - - z - - 3 ~  

\ l - - z - - 4 ~  

where on the right hand side 0, 1, 2, 3 are shorthand for 0, x~, x 2, x 3 and the 
lines stand for disjoint paths connecting the indicated sites. 

F rom this example it should be clear what the general pattern is so we will 
only state the general result in words: 

P(x  1, . . . ,  x ,  ~ Co) < the sum of probabilities of all the tree graphs which end 
in 0, x~ . . . . .  x , = t h e  number  of ways of connecting these points " two at a 
time". 

We have given only a vague description of the result because we think it is 
clearer than a precise one. The reader who is bothered by the ambiguity 
should be comforted by the fact that we will use this result only once below 
and at that time we will give some more details. 

5. Bounds for Percolation Processes on Z d 

In this section we will prove the statements we made in Sect. 2 concerning the 
critical exponents for Examples 1-3. For  concreteness and simplicity we will 
prove our results first for bond percolation and then show that the same proof  
works for the two oriented examples with the only change being that some of 
the steps are simpler. 

We will begin by proving that 7 > 1. By remarks in Sect. 2, it is enough, to 
show that 

 z< z2 (1) 
dp = 
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where ~c=the coordination number of the lattice. The starting point for the 
proof is the observation that 

x=EICoI=~P(O-~x). 
x 

Differentiating with respect to p (and postponing for a moment the justification 
of this step) gives 

~Pb (2) 

where the first sum is over all the bonds and Pb indicates the probability 
assigned to b in a general nonhomogeneous percolation model. 

To evaluate the derivative in the sum above we use Russo's formula (see 
Kesten (1982), Sect. 4.2) to conclude that 

O P(O--+ x) 
-P(b  is "pivotal" for {0--.x}) 

0Pb 

where the word in quotation marks means that changing the state of b changes 
the occurence of {0~x}.  It is easy to see that in order for b to be pivotal for 
{0~x},  0 must be connected to one end of b (call it y), x must be connected to 
the other (call it z), and there must be no path from 0--,x which does not 
contain b. The last fact implies that any paths from 0--,y and z ~ x  must be 
disjoint so if we write b = (bl, b2) then van den Berg's lemma implies that 

~P(O--*x) < P(O--.b~) P(b 2--.x) + n(0~b2)  P(bl ~x).  (3) 
dPb 

If we use (2) and sum the last inequality first over x and then b we get 

~p <= )~(~ P (Oob l) + P (O-*b 2))= ~c Z z 
b 

so the only detail which remains is to justify (2). To do this we begin by 
observing that the result is true if we are considering percolation in 
{ - n ,  ..., n} d=An, and then we pass to the limit using the following 

If f~ is a sequence of differentiable functions which has the property that for 
some 6 > 0 ~ f / a n d  ~ f{ converge uniformly in [p - 6, p + b] then ~ fi is dif- 
ferentiable at p and 

(~  f~(P))' = Z f{(P)" (4) 

For  a proof of this (see Durrett  (1984), Sect. 15). To get (2) from (4) let fi(P) 
= P ( 0 ~ x  by a path which lies in A i but not in Ai_l) and use (3) and the 
bound 

e(0--*x) < 2 exp( -~ lx l )  

proved in the last section to check uniform convergence. The details are 
somewhat tedious and left to the reader. 
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Remark. From the proof of (1) given above the reader can see that the same 
proof works for Examples 2 and 3 and in fact the argument simplifies for 
oriented percolation since we know which ends of b, 0 and x will be connected 
to and if b=(y,  z) there is no need to use van den Berg's inequality since we 
have 

P ( 0 ~ y ,  z~x) = P ( 0 ~ y )  P(z~x). 

Having established the behavior of E]Co[ as p'rpr we now turn our atten- 
tion to what happens when PSPc. Following Sokal (1981) (see p. 33) we will 
prove our result by looking at M(p)=P(~2J .  (The M stands for magnetization, 
the Ising model analogue of the percolation probability.) Differentiating with 
respect to p (this time leaving the justification to the reader) and applying 
Russo's formula gives 

< ? M  
0 = - ~ p  = b~ P(b is pivotal for 0~oo)  

= ~ P ( 0 ~ x ,  y ~ o o  but if (x, y) is closed then 0-7 'o  ) 
(x, y) 

where the sum is over all ordered pairs of neighboring sites. 
A little thought (or a look at Kesten (1982), p. 79) shows that the event "b 

is pivotal for 0-* oo" is independent of the state of b so we can write the last 
expression as 

1 2 P ((x, y) is closed, l Col < oo,]. 
( l - p )  (~.y) \ xeC  o and y---,oo ! 

To bound the probability in the sum it is convenient to break things down 
according to the exact shape of C o. Let K(0, x; y) be the set of finite clusters A 
which (i) contain 0 and x, (ii) do not contain y (and hence not (x, y)) and 
furthermore (iii) y can be connected to oo in Aft With this notation we can 
write the probability above as 

Z P(Co=A , y--*oo) 
A~K(O,x;y) 

P( Co= A) P(Y~oO[ Co= A) �9 
AeK(O,x;y) 

Since y ~ A ~ it is easy to see that 

P(y---+oo[ Co=A)=P(y~oo]all bonds in OA are closed) 

<=P(y~ oo) 

by Harris' inequality, so the last sum above 

<= ~_, P ( C o = A ) P ( Y ~ )  
AeK(O,x;y) 

=M ~ P(Co=A) 
AeK(O,x;y) 

{I Col < ~ ,  x e  C o, yr  C o and y can be connected] 
=MP\ to  ~ i n  C~ ] 
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Summing the last probabili ty over (x, y) and calling the result R(p) gives 

~M 1 
O <=-~p-p <= ~p_ p M (p) R (p). 

Near  Pc we can rewrite the last inequality as 

eM -1 O M =<R(p) 

where e > 0 so if Pc < a < b 

(5) 

b b ~ M  

~ R(p)dp> e S M -  I ~P-P a 

= e (log M (b) - log M (a)). 

If  M ( p ) ~ 0  as P~Pc then letting b=pc+e where e > 0  and asp c shows 

b e + e  

R(p)dp=oo 
pe 

proving (4) of Sect. 2. 
The last thing we have to do in this section is to prove that y < A k < 2 y for 

k > 2 .  To do this we begin by proving the right hand inequality for k=2.  To 
prove the result in this case we use the first tree graph inequality 

EICo[ 2= ~ P(x, ye  Co) 
x , y  

<- ~, P(O--*z)P(x-+z)P(y~z).  
x , y , z  

Summing first over x and y and then over z gives 

El Col 2 <(El  Col) 3 (6) 

so if the L H S ~ ( p c - p )  -~-~2 and the RHS..~(pc-p)  -3~ we must have A 2 <27.  
To extend this to k > 3 we will use the tree graph inequalities. To keep from 

drowning in notation we will prove the result first for k = 3 and then proceed 
to the general case. 

EICol 3= 
X 1 , X 2 , X 3  

< 2 
X I , X 2 , X 3  

P(x l ,xE,  x3 ~ C O ) 

( (o1 ; ) 
P _ + 2 similar terms 

y,z \ 2 - - z - - 3 /  

EI Col k < Bk )~2k- 1 (8) 

Summing first over Xx, Xa, x3, then over z and y gives 

El Co[ 3 _-< 3 Z 5. (7) 

Looking back at the last argument and comparing (6) and (7) should 
suggest that in general 
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where B k is the n u m b e r  of terms on the right hand  side of the inequality.  To 
evaluate B k (and explain why the e x p o n e n t = 2 k - 1 )  we observe that  all the 
tree graphs for the k +  1 m o m e n t  can be ob ta ined  by taking the tree graphs for 
the kth m o m e n t  and  systematically gluing an arc ending in k +  1 to the middle  
of each existing arc, so one concludes by induc t ion  that  the tree graphs for the 
kth m o m e n t  have 2 k - 1  arcs and  hence 

B k + 1 . = ( 2 k - 1 ) ( 2 k -  3 ) . . . 3  . 1 .  

With  (8) established the rest is easy, for if 

k 
-V-  ~ Aj 

L H S ~ ( p c - p )  ~:2 

and  

we must  have 

R H S  ~ ( p ~ - p ) -  ~(2k- 1l 

k 

A j < ( 2 k - 2 ) 7 .  
j ~ 2  

To improve this to the desired result we observe that  the Cauchy Schwarz 
inequal i ty  implies that  if X > 0 and  m => 1 

m--  1. m +  1 

(Exm)2=(EX 2 X 2 ) 2  

<~ E X  m- 1. E x m +  1 

so 
E x m +  1 E X "  
- - >  

E X m = E X " -  I " 

Lett ing X =  I C0l shows A m_ 1 ~ A m  so k - ~ A  k is increasing and  each Ag>=A1. =Y- 
Lett ing k ~  ov in (9) now shows that  for any j 

A j<  lira Ak<2 7. 
k ~ o o  
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