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Abstract. In this paper we describe the percolation analogues of the Gibbs and 
Helmholtz potentials and use these quantities to prove some general in- 
equalities concerning the critical exponents of percolation processes. 

I. Introduction 

The main results in this paper and the reason for interest in them can be explained 
in a few words: Scaling theory (see e.g. [11, Sect. 4]) predicts that the critical 
exponents of a percolation process should satisfy 

~,'=/~(a - 1), 

Na+ 1)=2-a ' ,  

a 

and we have been able to show 

~ '~ f l (5 -1 ) ,  (1) 

fl(6 + 1) = 2 -  ~2, (2) 

A >2 ,A '  > ( f l+y ' )A2  (3) 2------ 2 ~  

To make these inequalities meaningful we will have to give a number of 
definitions. 

The first thing we have to describe is the class of models under consideration. 
The basic ingredients for a percolation process are 

(i) a set of sites S, 
(ii) a set of bonds B < S x S, 

(iii) a collection of random variables tl(x)x e S which take values in {0, 1}, 
(iv) a family Pp0 =< p__< 1 of probability measures so that under Pp the ~/'s are 

independent and have Pp( t / (x)=l)=p.  
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The following examples should illustrate the range of possibilities and help 
explain the definitions which will follow. 

1. Site percolation in Z d 

S = Z  d B = { ( x , y ) : t x - - y t = l  } . 

2. Oriented site percolation in Z d 

S = Z  d B={(x , y ) ' x<=y  I x - y l = l  }. 

3. Discrete time contact process in Z a- 1 

S = Z  d B = { ( ( x , n ) , ( y , n + l ) ) : x ,  y e Z  d-1 Ix-y[__< 1}. 

4. Bond percolation in Z d 

s={(x,y) zlx-yl= 1}, 

B = {((u, v), (x, y))" (u, v) and (x, y) have a common endpoint}. 

5. Percolation on the binary tree 

S =  finite strings of O's and l 's ,  

B =  {(x, x0), (x, xl)  "x e S}. 

We think of the x e S as points in space, which are open if t/(x) = 1, and closed if 
~/(x) = 0, and we think of the set of bonds B as indicating which points are adjacent. 
With these interpretations in mind we say that y can be reached from x and write 
x ~ y  if there is a sequence of sites Xo, . . . ,x, ,  with Xo=X, Xm=y which has (a) 
(x~_l,x~)eB for all l < i < m  and (b) t/(xi)= 1 for all O < i < M .  

Let Co = {x : 0~x}  = the set of points which can be reached from 0 and let ICo[ 
= the number of points in Co. The main object of study in percolation is the 
distribution of IC01 and in particular what is the probability off2~ = {ICof = oo} -- 
"percolation" occurs. It is easy to show that if we throw out the trivial case S = Z ~, 
then in the examples above, Pc = inf{p : Pp(f2~) > 0} is in (0,1) but it has turned out 
to be very difficult to answer basic questions about Pc and the behavior of the 
process at the critical value: 

(i) What  is pfi 
(ii) Is Pp(O~)=0 when P=Pc? 
For  Examples 1-4 above these are open problems in d ~ 2 and only known in 

d = 2  for (i) Example 4, (ii) Examples 1 and 4, see [18] for details. 
Given the state of our knowledge concerning pc it may come as somewhat of a 

surprise that it has been possible to prove general results concerning the behavior 
of percolation quantities as p ~Pc without knowing what Pc is! To state the results 
which have obtained and explain our contribution we have to introduce the 
critical exponents which appear in (1)-(3). To save time we will simply define them 
in one fell swoop and then make some comments to explain the definitions. 

To shorten the definitions of our critical exponents we will write 

f ( p ) ~ , ( p - p c )  ~ as pSpc 

as an abbreviation for: f ( p ) = ( p - p ~ ) X L ( p - p c ) ,  where L is a slowly varying 
function, i.e. 

l imL(ty)/L(t) = 1 for all y s (0, oo). 
t~o 
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This is a little stronger than the usual definition (see e.g. [22, p. 32]) but  (a) it is 
expected that most examples will have this type of behavior and (b) this definition 
allows us to use familiar Tauberian theorems rather than having to invent new 
ones. 

With the ~ notation introduced, we can quickly define the Greek letters which 
appear in our inequalities: 

Pp(Qoo)~(p-pc) ~, as P S Pc, 

EplCol,~(p-pc) -~, as p T pc, 

Ep(lCol;lCol< Oo)~(p-pc) -~', as P S Pc, 

EplColk/EplCol ~'- ~ ~ I p - p c l - ~ ,  as p T pc, 
~2 

@zEp(lCol-1;ICol>l),~(p-p,) -~'~, as pJ, p¢, 

Oa 
@3 Ep(lCol-~;ICot> l)g(p-pc) -~6-~, as P J, Pc, 

P~,o(ICol>n)~n -l/a, as n--,oo, 

where in the last line have we used an obvious extension of the definition of ~ .  
The first three definitions and the last one are self-explanatory (or if they are 

not see [9]). If you compare the second and third and look at the fourth, you see 
that we could have defined A~ by considering the behavior of Ep(lColk; [Col < oo) as 
P $ Pc, and a quick glance at the table confirms that with the exception of/~ (which 
only makes sense for p + Pc), primes are used to indicate approach from p > Pc- We 
use the same Greek letters for p T P~ and p + Pc because "conventional wisdom" tells 
us that the exponents coming from the two directions of approach will be equal. 
This is true in Example 5 (see [9]) but it is far from obvious why this should be true 
in general. 

Last but not least we have the two definitions of e. The first one is the naive 
analogue of the Ising model definition and not coincidentally the one that we can 
prove something about. The second definition is probably the right definition. 
Kesten has shown (see [18, Theorem 9.4]) that for two dimensional percolation 
problems which are part of a matching pair (e.g. Examples I and 4), then 
Ep([Col- 1 ; [C0t ~> 1) is C 2 on [0,1] (and hence e~ = 0) and his calculations suggest 
that ~3F/@3~ oo. The reader should note that thanks to the - 1 in the definition 

t ~ >  t " • • t • t t + o f ~  we have ~z = %  with equahty if~ z >0,  Le. c~ z =(~3) , So if you want, (2) can be 
rewritten as/~(1 + 6) > 2 -  (~)  +. 

With the definitions of the critical exponents completed we have finally 
introduced all the variables which appear in our inequalities. The last step in 
making (i)-(3) meaningful statements is to state what we must assume about  
percolation for our proofs to work: 

(i) K = supl{y" (x, y) ~ B}I < o% 
x~S  

(ii) Pc e (0, 1), 
(iii) ep( f2~)=0 when P=Pc. 
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Of these the first two are very natural and are known to hold for all our 
examples (in d ~ 2). The third is a little undesirable but the first inequality is trivial 
if f l=0 and our proof of the second breaks down if Pp(t2~)-~O as p J, Pc- 

The rest of the paper is devoted to proving (I)-(3) and explaining why they 
hold. In Sect. 2 we (re)define the free energy F(p, h), discuss some of its properties 
and prove (1). In Sect. 3 we show that although F(p, h) is not always convex in p (it 
is not in Example 5), if we pick C large enough then C(p --pc) 2 +F(p, h) is a convex 
function of (p, h) near (Pc, 0). In Sect. 4 we define the Helmholtz potential 

a(p, 0)= sup(0h-F(p,  h)) 
h > 0  

(a.k.a. conjugate convex function) and show that it looks enough like its Ising 
model analogue so that we can use Griffith's [15] argument to prove (2). Finally 
the proof of (3) is given in Sect. 5. It is a simple computation which is essentially 
independent of previous developments. 

2. The Gibbs Potential 

The first step in our investigation of relationships between critical exponents is to 
(re)define the percolation analogue of the free energy of a magnetic system or, to be 
precise - 1  times the Gibbs potential (see [23, p. 29]). We let 

F(p,h)=h(1-~o(p))+ Y. n-lo~,(p)e -"h, (1) 
n = l  

where c~,(p)=Pp(ICol=n), and the sum here and below is over 1 <n<oo .  The 
second term in the expression above was first introduced by Kasteleyn and 
Fortuin (1969) to set up a correspondence between quantities for percolation and 
analogous quantities for magnetic systems which we will now describe. 

If G(T, H) is the Gibbs potential for a magnetic system at temperature T and in 
an external field H, then the magnetization M is defined by 

M(T,H)=- ~ T 

(see [23, p. 34], the subscript T indicates a derivative taken "at constant 
temperature"). If we differentiate F(p, h) with respect to h, we get 

~F 
ah (P'h)= 1 - ~ ° ( P ) -  ~ a"(P)e-"h' 

n = l  

and when we set h = 0 we get 

~---~ (p, 0) -- P,(ICol = ~ ) .  

[This is one reason for adding h(1 -ao(p)) to the old definition, another one will 
appear in Sect. 4.] 

The last computation suggests that we should think of h as the "external 
magnetic field" and M(p, h)-OF/Oh(p, h) as being the "magnetization." For 
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arguments below it is useful to note that these quantities have interpretations for 
percolation. Consider a new percolation process in which each site in S is 
connected by a bond to a "ghost" site * and each of the bonds is dosed with 
probability e -h and open with probability 1--e -h. If in the modified system 
[Col = n then * ~ C o and hence no point in C o can be connected to *, so introducing 
some obvious notation for probabilities in the new system we have 

Pp, h(ICol =n)  = o~n(p)e -"h , 

and 

M(p, h) = Pp, h(ICol = ~ ) .  

Having taken one derivative and found the percolation probability, the 
inevitable next step is to take another and see what we get 

O2F 
Z(P, h) = - ~ ( p ,  h) = ~, nCz,(p)e-"h= Ep, h(ICoI; ICol < ~ ) ,  

n = l  

i.e. the mean size of finite clusters in the modified system. We have used the letter Z 
above because the mean duster  size is the analogue of the (isothermal) 
susceptibility of magnetic systems which is obtained by differentiating the 
magnetic field M with respect to H (see [23, p. 35]). The reader should note that 
thanks to the exclusion of n = ~ from the sum 

Z(P, 0) = lim~((p, h) = Ep(ICol;ICol < ~ ) .  
h ~ 0  

The analogue of this quantity for the Ising model is 

Z ¢ ( x ) )  + - + + ,  
x 

where ( f ) + =  ~ fd#+,# + being the Gibbs state which is the limit with + 
boundary conditions (for more about  this quantity see [22] or [1]). 

Having found how M and ;~ (and hence fl and ~) are related to the free energy, 
the next step is to fred 6 and ~ ,  

M(pc, h) -m(pc ,  O)= ~ ",(Pc)(1--e-h"), 
n=O  

and we have assumed M(pc, 0 )=0 ,  so if Pp(ICol > n)~n-1/~ and 6 > 1, it follows 
from a standard Tauberian theorem (see e.g. [12, Sect. 13]) that M(p, h)~,h 1/~. 

On the other hand F(p,O)=Ep(]Col-1; ICol->__ 1), so 

O2F 
t3p2 (p, O) ~ (p - Pc)- ~'~ as p $ Pc. 

Comparing the last two formulas with the definition of fl, and the two 7's 

M(p,O),~(p-p~) ~ as p,~pc, 

~M , ~(P-Pc)-~ P ~ Pc 
Z(P,O)=~-ff(P 0 )~  ( (p_pc)_  ~, P+Pc 
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shows that all the exponents are concerned with some aspect of the behavior of 
M(p, h) near (Pc, 0), and given this it should not be surprising that there are some 
relationships between the exponents which hold for all percolation processes. If 
one is optimistic one can hope that near (Pc, 0) the "singular part" of the free energy 
can be written as 

F~i,g(p, h) g IP - Pc[ 2 - ~ ~(h/[p - pcl ~) (*) 

(see [11, Formula (4.27)]) or what is almost the same is that the "equation of state" 
has the homogeneous form, 

h = m ° ~((p - pc)/M lip) (**) 

(see [3, p. 9]). From either one of these assumptions (see [11, Sect. 4.3] or [3, p. 9]) 
one can conclude that 

7 = V = N 6 - 1 ) .  

(This is an example of "Scaling Theory" at work.) 
These assumptions while probably true, are virtually impossible to verify in 

nontriviat examples and nontrivial to prove even in trivial examples (try it on the 
tree). In the light of these difficulties it is interesting to observe that by using simple 
properties of M we can show that 

7 ' > B ( 6 - 1 ) .  (2) 

Proof. The proof of this result is an almost word for word translation of Griffiths 
[15] proof of the corresponding result for the Ising model [see p. 1961, 
Formulas (23)-(25)]. 

aM 
-~ (p, h) = z(P, h) = lZ~,~(fCol; fCol < oo) 

is a decreasing function of h for fixed p, so h-.M(p, h) is concave and hence 

M(p, h) <= M(p, O) + hz(p, 0). (3) 

Now h~M(p,  h) is an increasing function for fixed p, and we have assumed that 
M(pc, 0)= 0 and Pc e (0, 1), so if p >Pc and near Pc we can pick h and h' so that 

M(p, h) = 2M(p, 0), 

M(pc, h3 = 2M(p, 0), 

and since p~M(p,  h) is an increasing function we have h'>h. Combining the 
results in the last sentence with (2) gives 

2M(p, 0) = M(p, h) =< M(p, 0) + hz(p, 0), 
(4) 

M(p, O) < hz(p, O) <= h' z(p, 0). 

Now the definitions of the critical exponents imply that as p + Pc 

U(p, 0 ) ~ ( p - p c )  e , 

z(p, o ) ~ ( p - p c )  -~' , 

h'~ (2M(p, 0)) ~ ~(p-pc)~ ', 
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so (4) implies [recall x2<x when x~(0,  1)], 

which is the desired inequality. 
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3. Convexity of the Modified Free Energy 

In the last section we used the fact that h~M(p,h)  is concave to prove a 
relationship between critical exponents. For  magnetic systems (see [23, p. 36]) the 
Gibbs potential is a concave function of(p, h) and this can be used to prove further 
inequalities between critical exponents. Based on this we might hope that our free 
energy F would be a convex function of (p, h) at least near (Pc, 0). The derivatives 
with respect to h have the right sign 

OF 
O---~(P,h)=l-o~o(P)- Z a.(P) e-"h>O, 

l < n < ~  

82F , 
(p h) = 1  __<,~< ~ n ~,(p) e -"h > 0, 

but the derivatives with respect to p are not. A little computation (and a number of 
checks and rechecks to make sure the signs are right) shows that for percolation on 
the binary tree (see Appendix for details) 

F(p, h)= hp + (1 - p) B(p(1 -- p)e-h) , 

where 

so  

x 1 
B ( x ) = 4 S ( I +  l~--@-4y)-2dy x <  ~, 

o 

0 2 F  
~p~(1/2, 0) = - B  (1/4) -- - 4 .  

The last example shows that convexity of F does not hotd in general. The next 
result provides a substitute for convexity which is still good enough for some 
purposes 

If C is sufficiently large, 

F(p, h) = C(p-pc)2 +F(p,  h) (1) 

is a convex function of (19, h) near (Pc, 0). 

Proof. The first step is get a more explicit expression for ep(ICol =n).  Let 

8Co={y:yCCo and there is an x~Co with (x ,y)~B}.  

A little thought reveals 

P(ICol = n, IOCof = m) = c~..mp"(1 - p)m, 
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where 

~..,. = the number of clusters containing 0 with size n and boundary of size m. 

With this notation we can write 

F(p, h) = hp + ~ n - 1 ~., raP"( 1 -- p)m e-"h 
m~n 

[since co(P)= 1 - p  for site percolation] and differentiate to get 

Op h +  ~ n-lc~ e -nh - -  = . , m  p " ( 1  - p ) " ,  
m,. 1 p 

O2F ~_, . . - i .  e-nh-nrl -,m//n~p 1___--~)2 

-- m, nY~'n-ZO~nme-nhpn(1--p)m(~ 2 2 '  +(1  ~ n ~ p )  2 ) " 

The first term in a2F/Op 2 is >0, but the second is 

1 IOCol/ICol'] 
-Ep,n ~-~ 4 (1-p)Z j <0 .  

However we have supposed [{y'(x,y)~B}[<_K<ov for all x ~ S  and that 
pc~(0, 1), so we have [~Co[<KICo[, and it follows that near (pc,0) we have 

(-~ IOC°I/IC°I ~ < K' 
O<Ev,h + ( l_p)2  ,] ' 

where K'~(0, ~ ) ,  so if we pick C>2K', we will have 

t~21~t~p2 --~K"-~ m,n ~" n-lO~n'me-"h-"qP t -P)  P 1 p >0 . (2) 

To finish the proof of convexity we need to show that 

~ j  < Oh 2 t?p2. (3) 

To do this we observe 

0F OF 
Oh - O h  = P -  ~ ~"''P"(1--p)me-"h' 

m , n  

SO 

and 

~2f 

02p 
6~h2 - ~ n~.,~p"(1--p)me-"h. 

m , n  
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Now if we let c%,,(p, h)= C~,,mp"(1--p)me-"h we have 

a2ff < 1 +  ~ ( n  m ) h) .  
c~pc~h = ,,,n p 1 ~  p c%m(p, 

Squaring both sides leads to three terms on the right. To handle the last one we 
observe that the Cauchy-Schwarz inequality implies 

n m 2 m 2 

( 5 .  (P 1-~p)~. .m(p,h))< (~,,,n~,,,~O,h))(m~,,n -1 (~  l---p) ~.m(P, h)) 

/a~p\ /~p2 ,\ 

st jt  -K) 
by the choice of C made above. 

To complete the proof of (3) and hence of (1) it only remains to show that near 
(p~, 0) we have 

K t ~  ) > 1 + 2 . \P 1- ~ en,,,(p,h) , (4) 

but this is easy; 

t3h z = 2 n%, m~, h) > e 

near (Pc, 0) and O2F/t?h2(p c, 0) > 0, so (4) holds if K' is sufficiently large. 
At first glance the conclusion in (1) probably appears worthless because we 

have obtained the convexity by force. The next argument should show that (1) is 
indeed useful. More evidence will be given in the next section. 

The starting point of our derivation of Rushbrooke's inequality is the fact that 
the convexity of P implies 

s t , \ )  

[this was (3) above] and the definitions of the critical exponents imply that as p ,~ p<, 

02-¢ = C +  02F ~ - -~; 
o7 (mp<) , 

UP 02F 
~?h z = ~ ~'(.P--P~)-~", 

so if we strengthen the definition of fl to 

632ff t32F t3M 
= _ _ ~ ( p _ p y - 1  as PSPc, 

t3p Oh - ~p ~h Op 

it follows that we have 

2(fl- 1)> - ~ - ? '  

which is Rushbrooke's inequality. 
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The argument above is from Griffiths [t5]. In the next section we will show 
that with the usual definition of fl we have fl(1 + 6) > 2 -  e~. Combining that result 
with the inequality of Sect. 3 gives a proof of Rushbrooke's inequality which avoids 
the extra assumption about ft. 

4. Helmholtz Potential 

In Sect. 2 we defined the Gibbs potential. This is just one of four thermodynamic 
state functions for magnetic systems (see [23, pp. 22, 233). Another quantity which 
has been useful in studying the Ising model is the Helmholtz potential 

A(p, 0) = sup Oh- F(p, h). 
h>__o 

For fixed p O~A(p, O) is the convex function conjugate to the function 

h ~ {  F(p'h) h<0h>0 

(or in other words its Legendre transform) and as such is convex in 0 for fixed p 
(see [24, p. 156]). 

The definition of A may not appear natural at first, but the following 
computation should suggest that it is a useful quantity for studying percolation. If 
P > Pc, then 

0F 

Oh 

and h~F(p, h) is convex, so if 0 < M(p, 0), 

sup Oh-F(P, h) = - F(p, 0), 
h->0 

i.e. h~A(p,h) is constant for O<h<M(j)). 
The last conclusion is reminiscent of pictures of the free energy for magnetic 

systems (see Fig. 1 and/or cf. [23, p. 37]) and for the Ising model (see [15, p. 1959]) 
and O~A(p, O) is convex, so one might think (as Wu [25, p. 122] claimed) that we 
have all the basic ingredients needed in a derivation of Griffith's inequality. 
Unfortunately the crucial property for Griffith's proof is the fact that p ~A(p, 0) is 
concave for fixed 0 [see Formula (7) on p. 1960], and the results given for 
percolation on the tree in the last section show that this need not hold in general. 

Faced with this difficulty the way out as ii was in the last section is to look at the 
modified free energy 

if(p, h) = C(p - pc) 2 + F(p, h) 

and look at its Legendre transform 

-J(p, O) = sup(Oh- P(p, h)) = - C(p-  p~) 2 + A(p, 0). 
h>=O 

Since F(p, h) is a convex function of (p, h) it follows easily that we have 

p-*A(p, O) is concave for each 0. (1) 
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Fig. 1 

G= - F  A 

1 ........ I__/ 
M to) 

co r~c(:tve co Fi vex 

Proof .  Let Pl <P2, let e>0 ,  and pick h l h  2 so that  

Oh i -  F(,pi, hi) > A(pi ,  O) - g . 

If0_<2_<l 

£d(px, O) + (1 - 2) A(P2 ,  O) - -  8 

< 2(Oh~ - f ( , p t ,  hO)  + (1 - ~) (Oh 2 - if(P2, h2)) 

= O(2ht + (1 - 2) h 2 ) -  (2ff(p t, h,) + (1 - 2) ff(Pz, h2)) 

<= O(2h~ + (1 -2 )h2)  -ff(;~p, + (1 - 2)p2, 2hi + (1 - 2)h2) 

< f t (2p ,  + ( 1 - 2 ) p 2 , 0 ) ,  

and since ~ is arbitrary, the result follows. 
With (1) established we are now ready to follow Griffiths [15] argument  with A 

replaced by A. The argument can be summarized in one picture: 

Fig. 2 

,pc,0 

ill (3) , ,~, 

(pc, O) (p~O) 

Let 

~F ~F ~ ]  a a  0). )l~(p, h) = ~ -  (p, h) = ~h- (p' h), S(p, 0) = ~ p  (2, 0) + ~-p (iv, 

(The letter S stands for entropy, see [23, pp. 22, 23].) 
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As Griffiths [15] says "for both conceptual and computational purposes" it is 
convenient to introduce the starred quantities 

A*(p, O) = A(p, o) - A(pc, o) - ( p -  pc) g(Pc, 0), 

g*(p, o) = g(p, o) -  g(pc, o) = aA* (p, o). 
@ 

Concavity of A* implies 

A*(pc, O) ~ A*(p, O) + (iv- Pc) S*(P, 0), 

but if 0 < M(p, 0), 

A(p, o) = 2(p, o), 

s(p, o) = (p, o) = 7p (p' o), 

so we have 

(2) 

A*(p, 0) = A(p, o) - A(pc, o) - (p - pc) g(pc, 0 ) ,  
(3) 

g*(p, 0) = g~, o ) -  g(pc, o), 

and using (2) 

A*(p~, o) = A(p, o ) -  A(p~, o ) -  (p-p3  g(p~, o) + (p-  p~) (g(p, o ) -  g(pc, o)). 

Now ,4(p, 0) = -/~(p, 0) = - F(p, 0 ) -  C : (P-Pc)  , so if 

02F 
~p2 ~ (P -- Pc)-  c~'~ as P ~ Pc, 

it follows that the fight-hand side ~ ( p -  pc) 2 - ~ as p ~ Pc- To compute the behavior 
of the left-hand side we observe that 

A*(p c, O) = A(p~, O) - g(pc, O) = A(pc, O) - A(pc, O) 

= s u p ( 0 h -  F(pc, h)) + F(pc, 0). 
h>__0 

If 0 > 0 the maximum of Oh-  F(pc, h) occurs at the h(O) which is the solution of 

~h (Pc, h)=O, 

i.e. at the external magnetic field strength needed to produce a percolation 
probability = 0, and we have assumed 

0F 
-~-~(pc, h )~h  1/~ , 

as h ~ 0  so h(O)~O ~. Now writing 

Oh(O)- F(p~, h(O)) + F(p~, O) hi°) OF 
= O -  (Pc, Y) dy, 

o ?h 
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and observing that y~F/ah (pc ,  y) is increasing and = 0 at y = h(O), we see that the 
last expression (=  A*(pc, 0)) is 

,~,Oh(O) gOl +~ ~(p-pc)~u +a) , 

so we must  have fl(1 + 6) > 2 -  e~, the desired inequality. 

5. Inequalities for d 2 

In this section we will prove 

The starting point is letting 

and observing that 

SO 

A2>2, (3) 

A i > ( f l + 7 ' ) ^  2. (33 

z(p) = E~(ICol; ICoi < oo), 

)C(P) = Z nc%,,.p"(1-p)", 
n , rtt 

= m 2 

\~l \ . ,=  \ p  , - p /  ' / '  

and using Cauchy-Schwarz gives 

where 

_5) 2 ) 
1 c~.,,.(p) , (*) 

c~..,~(p) = c~., ~p"(1 -- p)m = Pv(ICol = n, I0 Co I = m). 

The first term on the right-hand side of (*) is Ev(] Co I z; [Col< oo). To bound the 
second we let M(P)=Pp(tCol = oo), and observe that  

M(p) = 1 - co(P) -  Z e.,mp"(1 _p)m, 
rl~ tit 

and 1 -  co(P)=P, so differentiating gives 

0M Z (n  
@ = l - - . , m  p 

~2M-~p2 . , ~ ( p  

+ + - -  

1 rap)  c%,,,~P"(I -- P) m , 

1 --~p c(., raP"(1 - p)~ 

°) 
(1 Z-p)2 °~",mp"(1--P)"" 
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If p < Pc then M(p) = 0 so 

n +  
n,~m(; l~p)2Ctn'm(P)=n,m(-~ - - ~ )  

=E (1-p)U <-- + ElCol, 

where K = sup~ ]{Y : (x, y) ~ B}[ is the maximum coordination number of the lattice. 
We have assumed K < oo and Pc ~ (0, 1), so near Pc we have 

~pj ~(glCol2)K'z 

for some K'  ~ (0, oe) or 

EjCoi2  K' (a )2 - z (p )  \ d p /  

ff dz/dp,~ (p - Pc)- y- 1 then X(P) "~ ( P -  Pc)- ~ and the right-hand side ~ ( p -  Pc)- z 
proving (3). 

When p > Pc, things are a little more complicated. M(p )~  0 so we have 

Z 1Sp ~,,,(P)- \pC +( l_p)2]  @2 . 

Now gM/@ > O, but nothing is known about the sign of O2M/Op2. In most models 
we expect that M will be concave near Pc (since we expect fl < 1 in general), so we 
will start with that case. 

When - ~2M/c~p2 > 0 near Pc there is no possibility of cancellation so we have 
(recall x-2=~>x - t  when 0 < x <  1) 

( ~  IOC°l ~ t~2M 
g(p)=E + 1 --p2/I -- ~-p-f- ~(P--Pc)-~^(fl-2)' 

EiCol > ( gCol) = \  Op j R ( p ) - ~ ( p  

and hence 

7--A'zN2(--7"--l)--(--7' A(fl--2)). 

If f i - 2 >  -7 ' ,  the above reduces to - A ~ <  - 2 .  If f l - 2 <  -7 ' ,  then we get -A~  
< - 7 ' -  ft. Combining the two inequalities gives A ~ > 2/x (fl + 73, which is (3) when 
632M/c3p 2 < 0 near Pc. 

If ~32M/~3p 2 is bounded above then the last proof still works, so ignoring 
pathologies we are left with the case O2M/Op2~ + ~ as P--'Pc (which we conjecture 
never occurs). In this case we can ignore the second term and argue as in the case 
P < Pc to conclude that A '>  2, which is the desired inequality since R(p)> 0 implies 
f l - - 2 >  --7', i.e. fi+7"_>__2. 
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Appendix .  Free  Energy  for Perco la t ion  on the B inary  Tree  

In this section we will consider percolation on the binary tree (Example 5 of Sect. 1) 
and derive an exact expression for the free energy F(p, h) defined in Sect. 2. The 
derivation given below is based on arguments of I-i3]. The starting point is the 
observation that (in the notation of Sect. 2) 

~. , , .=0 unless m = n + l .  (1) 

To prove (I) we observe that it is true for n = 1 and adding a site in 0Co removes one 
boundary site but adds two new ones, 

With (1) in hand, the problem of calculating F(p, h) becomes greatly simplified 
because 

F(p ,h )=hp+ k -1 . . + l e - . a  ' n ~., .+lP ( l - p )  
n = l  

and if we let b.=n- le . , , ,+t  and 

B(O) = 

then we can write 

Now if p < ½, 

Y.b,O",  
n = l  

F(p, h) = hp + (1 - p) B(p(1 - p) e-  h) . 

aF 
M(p, O) = - ~  (so, O) = O, 

so differentiating (2) with respect to h and setting h = 0 gives 

OF 
Oh (p' h) = p + (1 - p) B'(p(1 - p) e -  h) ( __ e - hp(1 -- p)), 

0 = p - p ( 1  - p y  B'(p(1 - p ) ) ,  

o r  

(2) 

B'(p(1 - p ) ) =  1/(1 _p)Z.  (3) 

Now if p(1 - p) = x,  then  pZ _ p + x = 0, so solving gives 

P . . . . . . . .  2 - 

The right-hand side is < 1/2 if we pick the solution with - ,  so substituting this root 
for p in (3) gives 

B , ( x ) = I / ( I + / 1 - - e x ) 2  1 
2 x<-~, 

and since B(0)= 0, it follows that 

1 
B(0)= i4/(1 + g~ i -4y )a  dy,  x <  4" (4) 

0 
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The  reader  should note  tha t  B ' (1 /4 )=4 ,  so B does not  ~ o o  at  x =  1/4, it jus t  
becomes  complex  for x > 1/4. 

Equa t ions  (2) and  (4) when combined  give the fo rmula  we gave for F(p, h) in 
Sect. 3. T o  verify n o w  tha t  a2F/Op 2 < 0  it remains  then to differentiate (2) and  
evaluate  the result, 

F(p,  0) = (1 - p )  B(p(1 - p ) ) ,  

~-~(p, 0) = -- 1 - p)) + 1 p) 1 -- p)) 1 B(p( ( B'(p( ( 2p) ,  

dZF 
@2 (P, 0) = ( - (1 - 2p) - (1 - 2p) - 2(1 - p)) B'(p(1 - p)) 

+ (1  - p ) ( 1  - 2p)2 S"(p(1 - p ) ) .  

The  second te rm ~ 0  as p~ l /2  [B"~oo but  ( 1 - 2 p ) 2 ~ 0  faster], so 

#ZF ( t /2 ,  0) = - B'(1/4) = - 4  
0p2 

as we claimed in Sect. 3. The  reader  should note  that  differentiating again  leads to a 
t e rm of the fo rm 2 ( 1 - / ) ) ( 1 -  2 p ) B " ( p ( 1 - p ) ) ,  and  

2 I~-Z~_ 4x -(-4)' 

SO c33F/c)p 3 is d iscont inuous  at  (1/2, 0). This  result is, of  course,  "well known,"  see 
[11]. 
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