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The purpose of this paper is to describe a two dimensional growth 

model with sexual reproduction (i.e. two particles are needed to produce 

a new one) and contrast its properties with those of a similar model 

with asexual reproduction (i.e. an additive process in the sense of Har- 

ris (1978) and Griffeath (1979)). The results reported here were ob- 

tained in collaboration with Larry Gray. Detailed proofs are given in 

Durrett and Gray (1985), a source which will be referred to as DG(1985) 

below. 

In both models the state of the system at time t is S t a sub- 

set of Z 2, and particles die at rate one, that is, if x e ~t then 

P(x ~ ~+61~t ) = 6 + 0(6) as 6+0, where ~t = °(~6:s~t) = the O- 

field generated by the process up to time t. The two models then are 

distinguished by their birth rates which can be described as follows: 

Example i. (asexual reproduction). 

If x 6 S t and x + (i,0) OR x + (0,i) e S t 

P(x e ~t+6I ~t) = ~6 + 0(6). 

then 

Example 2. (sexual reproduction) 

If x ~ St and x + (I,0) AND x + (0,i) e ~t then 

P(x e St+~i~t) = X6 + 0(6). 

The reasons for the names and the difference between the models can be 

seen in the two capitalized words. The rest of this paper is devoted 

to explaining how this simple change results in drastic differences in 

the behavior of the two processes. We will look at four aspects of their 

behavior below. 

A 
I. If we consider what happens when we start from S 0 = A, A a 

finite set, then immediately we see differences between the two models. 
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Ex. i. If I~4 then P(¢~ for all t) > O. 

Proof. If we restrict the process to {(x,O):x e Z} then it is a one- 

sided contact process so the conclusion follows from a result of Holley 

and Liggett (1978). 

A 
Ex. 2. If A is finite then P(¢~ for all t) = 0 for all ~. 

2 
Proof. If [-L,L] contains A then no births can ever occur out- 

side [-L,L] 2, so a simple argument shows there is an SL>O so that 

P([~)  ~ (1-aL)n. 

To sum things up if we let 

if = inf{y:P(~¢~ for all 

then we have 

E×. 1 

Ex. 2 

t) > 0 for some finite set A} 

IfJ4 

If=~. 

Remark. Projecting onto {(x,-x):x e Z} and comparing with the two 

sided contact process shows ~fj2 in Ex. i. It is trivial that 

If~½ and as usual practically impossible to figure out exactly what 

if is. 

If. Having started from a finite set the next thing we want to 
1 2 

contemplate is what happens when we start from ~o=Z . In both cases 

it follows from general results about attractive spin systems (see Lig- 

gett (1985), Chapter 3) that we have: 

(a) As t+~ ~t ~) stationary distribution. 

(b) If ~ = 6~ (the point mass on the empty set) then 

there are not other stationary distributions. 

From (a) and (b) it follows that if we let lc = inf{k:{~6~} then 
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the stationary distribution is 6@ for I<A c and is not unique for 

A>A . Comparing with the contact process again shows that in Ex. 1 
c 

A <4. The  c o r r e s p o n d i n g  r e s u l t  f o r  t h e  o t h e r  e x a m p l e  :is T h e o r e m  1 i n  
C - -  

D G ( 1 9 8 5 )  E x .  2 A < 1 1 0 .  The  l a s t  r e s u l t  g i v e s  a r i d i c u l o u s  u p p e r  
c - -  

bound for A (try to find a better one!). Simulations done by Tom 
c 

Liggett suggest ~ >12 and a look at the over estimates in the proof 
C 

in DG(1985) suggests A <20 but beyond this we have no idea what A c 
C-- 

is. 

Comparing the last result with the one in paragraph I. shows that 

in Ex. 2 

A <110 
c-- ~ f = ~  

and hence Ac~A f. (This result is somewhat surprising in view of the 

fact that Ac=A f in one dimensional attractive nearest neighbor (see 

Gray (1985)) and reversible nearest particle systems (see Liggett (1985), 

Chapter 7) and it was conjectured that Ac=A f for the contact process 

in any dimension (see Durrett and Griffeath (1982)). 

Note: For the reader who thinks we have cheated by putting Ac<m, 

Af=~ we would like to observe that if we let Ex. 3 = (I-E)Ex.2 + gEx.l 

and ~ is small then Ac<Af<m. This is Theorem 3 in DG(1985). 

Problem. Once you see the proof of Theorem 1 it is easy to construct 

lots of examples with Xc<~,lf=~. Since it is believed that for many 

models Ac=A f this brings up the problem of finding sufficient condi- 

tions for this to occur. It seems likely that this is true in Ex. 1 (al- 

though we do not know how to prove this) and we conjecture that this 

holds for all additive growth models but the latter question even in one 

dimension seems a very difficult problem. 

1 2 
III. Having started last time from <o=Z our next step is con- 

sider what happens starting from other simple initial distributions: 

{g = product measure with density p, i.e. the events {x e {g} are 

independent and each has probability p. With these initial distribu- 

tions, we have 

P Si for p>O. Ex. 1 S t =7 any 

Ex. 2 If p<p E]- (the critical probability for two dimensional or- 

iented percolation) then 

6@ 
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Proof. Suppose there is an infinite sequence x n e (<0)c so that for 

each n~O, Xn+ 1 e{x n + (i,0), x n + (0,])} then {Xn:n~O] C (~t)c for 

all t and an easy argument shows ~t =~ 6~. 

Looking back at the last proof we see that the only property of 

the product measures we needed was the existence of the Xn'S. This 

suggests that we cannot have an equilibrium distribution in which the 

density is too low, so we 

Conjecture: p(l)£P(O e $~) is discontinuous at lc" In support of 

the conjecture we would like to observe that if Z 2 is replaced by the 

binary tree a simple argument shows that kp(1)(l-p(~))~l (see 

DG(1985) Section 1 for details), so p(~) cannot ÷ 0 as ~+~c" 

The reader should note that "general nonsense" (see Griffeath (1981)) 

implies p(~) is right continuous and hence p(~c)>O. 

IV. Last but not least we want to consider what happens when we add 

spontaneous births at rate ~, i.e. the new birth rates = old rates 

+ 8. Again there is a drastic difference in the two results. 

Ex. 1. There is a unique stationary distribution and convergence to 

equilibrium occurs exponentially fast. 

Ex. 2. If 1 is such that ~i~6~ when B=O, and 

so that 6B < 1 then the process with parameters 

has two translation invariant stationary distributions. 

In view of the results in III i.e. 

Ex. 1 ~P --~ ~ioo for any p>O 

Ex. 2 ~P --> 6~ for p<p ~.345 

is chosen 

B and 

these conclusions should not be surprising. In Ex. 1 6~ is an un- 

stable equilibrium because points artibtarily close to it converge to 

another fixed point. In Ex. 2 it is an attracting fixed point and hence 

a stable equi]ibrium. 

It would be nice to prove results which make the last two sentences 

precise, but failing this we are satisfied with the result given above 

because outside of the Ising model and some examples due to Toom, there 

are very few (if any) examples in which all the flip rates are positive 

and there are two stationary distributions, and furthermore the new ex- 

ample has two new properties the old ones don't. (i) There is an open 
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set of nonergodic examples in the set of nearest neighbor translation 

invariant growth models and (ii) as ~+~ the lower hound on the 
C 

allowed 8's approaches 1/64A3>0 a phenomenon which suggests that 
C 

~i~ at ~c" 

The statements of the results above are already quite lengthy so 

there is no time or space to do anything but to make some simple gener- 

al remarks about the proofs. 

A. The proofs for Ex. 1 are all based on the fact that Jt is an 

process and has a set valued dual process ~t C Z 2 For additive • gx ° 

2 no such dual exists but we can define a new type of dual process 

(which can be defined for any attractive process and reduces to the 

usual notion for additive processes) where the state at time t X t 

is a collection of subsets of Z 2 with the interpretation that {0} 

is in ~t if and only if some A e Xt is completely occupied in 60 . 

B. Theorems i, 2, and 3 all concern the behavior when some para- 

metric (i.e. I/h, 8, or s respectively) is small so it should 

not come as a surprise that the results are proved by "perturbation 

arguments." We write an expansion for the quantity of interest in terms 

of the small parameter and prove that the series has a positive radius 

of convergence. 

Proofs of the type referred to above are "contour arguments." 

A good example of an argument of this type is the proof given in Gray 

and Griffeath (1982) and in fact with hindsight our proofs of Theorems 

i, 2, and 3 are straightforward generalizations of the argument ob- 

tained by rewriting the easy case of Gray and Griffeath's proof in terms 

of the dual process. Further details are left to the reader or see 

DG(1985). 
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