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Abstract. In this paper we wilt describe and analyze a class of multidimen- 
sional random walks in random environments which contain the one 
dimensional nearest neighbor situation as a special case and have the pleasant 
feature that quite a lot can be said about  them. Our results make rigorous a 
heuristic argument of Marinari et al. (1983), and show that in any d < cc we can 
have (a)X,  is recurrent and (b )X,~( logn)  2. 

1. Introduction 

In this paper we will describe some new results concerning multidimensional 
random walks in random environments (hereafter abbreviated RWRE). To put 
our results in perspective we will start by describing the one dimensionalnearest- 
neighbor model and stating the results that we will generalize. Let p~ ~ (0, 1), x e Z 
be a stationary sequence [i.e., the distribution of (Px-j . . . .  px+~) is independent of 
x]. This sequence is the environment. We think of it as being generated at time 0 
and then fixed for all time while a particle wanders around on Z moving as a 
discrete time Markov Chain with transition probabilities p ( x , x + l ) = p ~ ,  

p ( x ,  x - 1) = 1 - p:,, i.e., if it is at x it flips a coin with these probabilities to determine 
its next position. If we let X,  be the position of the particle at time n then X,  is our 
RWRE. When the environment is nonrandom (and by stationarity constant) X ,  is 
a random walk, so with results about these systems in mind, the first question we 
would like to ask is "Will X,  return to 0 infinitely often?". Ifpx-= p then the answer 
is yes if and only ifp = 1/2, so one might guess than the answer in the random case is 
E p x =  1/2. This is wrong, however, but the correct answer is not difficult to 
determine and is given by 

* AMS "Mid Career" Fellowship 1984-1986. Research also partially supported by NSF 
Grant MCS 83-00836 
** Address after July 1,1985: Department of Math., Cornell University, Ithaca, NY 14853, USA 



88 R. Dur re t t  

Theorem A. Suppose Px, x~  Z is ergodie. I f  Elog(1--px/px)~:O then for almost 
every environment P(X,  = 0 infinitely often) = O. I f  E log(1 - px/p~) = 0 then for a.e. 
environment P(X,  = 0 i.o.) = 1. 

Since X,  is a birth and death chain and one has explicit formulas for the 
probability of hitting a before b the proof is almost trivial. 

Solomon (1975, p. 4) gives the result in the i.i.d, case but it is trivial to extend his 
result to prove the first result above (all that was used is the strong law of large 
numbers which can be replaced by the ergodic theorem). The second result is more 
subtle. It is a consequence of a "well known" fact about random walks with 
stationary increments [see Durrett, 1984a, (2) on p. 1011]. A nice completely 
different self-contained proof can be found in Kotani (1985). 

Solomon (1975) showed than when E l o g ( 1 - p J p ~ ) < 0  (and hence X , ~  
almost surely) we have X , / n ~  a positive limit if and only if E(1 - p J p ~ ) <  1. This 
was the first indication that RWRE's can have much different limiting behavior 
from random walks (where p~ -  p), a fact which became clearer when Kesten et al. 
(1975) showed that in the sublinear case (E(log (1 - p J p ~ )  < 0 and E(1 -p~/p~) > 1), 
if we let k ~ (0, 1) be the unique positive number so that E(1 __p~/p~)k= 1, then as 
h ~ X , / n *  converges in distribution (hereafter denoted ~ )  to a nondegenerate 
limit Z. 

From the results above we see that when we are near the recurrent case X~ 
grows like a small power, so it is natural to guess that when E log(1-  pJpx)= O, 
[Xt] grows like a power of logt. Ritter (1976) showed 

max [Xml/(logn) 2 ~ Z ,  
O < m < n  

where Z is a nondegenerate random variable. A complete solution of the problem 
had to wait until Sinai (1982) proved 

Theorem B. Suppose the Px are iid with e<p~< 1 - e ,  Elog((1-p~)/px)=O, and 
p~-½, then as n ~ c e ,  

XJ(logn) 2 => Z ,  

where Z is a nondegenerate random variable. 

Our aim in this paper is to generalize the results of Solomon, Ritter, and Sinai 
to a class of multidimensional models. The new results are called Theorems 1-3, 
respectively. In Sect. 2 we will describe our model and state and prove Theorem 1. 
In Sect. 3 we will state Theorems 2 and 3 and describe their connection with the 
work of Marinari et al. (1983). In Sect. 4 we will apply Theorems 2 and 3 to two 
classes of examples: one dimensional nearest neighbor systems and a family of 
multidimensional processes constructed from random potentials with Gaussian 
distributions. In the latter examples X, is recurrent (in any d < ~ ) ,  and depending 
upon the value of a parameter fl ~ (0, 2) we have X,~ ( logn )  zip. 

The last conclusion casts doubt on (but does not contradict) speculations of 
Derrida and Luck (1983), Luck (1983, 1984), and Fisher (1984) that [-in a model 
where the p(x, .)x ~ Z d are independent] "the critical dimension is 2. For d > 2 the 
mean square displacement (xz(t)) is linear in time." We will discuss this briefly at 
the end of Sect. 4 and then turn to the proofs of Theorems 2 and 3 in Sect. 5. 
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2. Description of the Model, Theorem 1 

Let V:R~-~R be a random function with stationary increments [i.e., the 
distribution of (V(x + Yl) - V(x) , . . .  V(x + Yn) - V(x)) does not depend on x]. We 
call V a random potential and think of the graph (x, V(x)) E R d ÷ 1 as a random 
hillside. For  all x , y ~ Z  a with I x - y ] = 1 ,  we let ~ ( x , y ) = e x p ( - V ( x + y / 2 ) ) ,  the 
minus sign being put in so that our process will have a preference for stepping 
downhill, and we define 

o~(x) = ~_. e(x, y) ,  p(x, y) = c~(x, y)/o~(x), 
Y 

e(x, y) ~ 0 so we have p(x, y) > 0 and ~2 p(x, y) = 1. 
y 

In one dimension a little arithmetic shows 
- 1  

p ( x , x + l ) =  1+ c~(x ,x+l )J  = ( l + e x p ( V ( x + ½ ) - V ( x - ½ ) ) ) - ~ '  

so we can generate any stationary sequence by picking V to have stationary 
increments, and in particular if we want the p(x, x + 1), x ~ Z to be independent 
then we want V(x + ½-), x ~ Z to be a random walk. 

In dimensions d > 1 (or in d = 1 when nonnearest neighbor steps are allowed) 
the computations in the last paragraph break down and in fact not every RWRE 
can be generated in this way. Our definitions imply that 

c~(x)p(x, y) = ~(x, y) = c~(y, x) = c~(y)p(y, x ) ,  (1) 

SO 

c~(x) p(y, x) 

o~(y) p(x, y ) '  

and if xo, xl  . . . .  x.  is a sequence of points with x . = x o  and p(x,._~, x , . )>0  for 
m = l ,  . . . ,n 

,,, = 1 p(x,,,_ ~, x,,,) - ,,,: ~ ~(Xm) -- 1, 

since C~(x,.)=c~(xo). F rom the last equation we see that if the vectors 
p(x) = (p(x, y):  I x -y ]  = 1) are independant and non-constant this condition will 
almost surely not be satisfied. 

The observations in the last paragraph show that the "usual" case in which the 
p(x)x e Z a d > 1 are independent is never a special case of our model. This is a little 
disappointing, but having sacrificed some generality we have put ourselves in the 
"reversible" case and given ourselves a powerful tool: the "Dirichlet principle." 

To explain the words in quotation marks we observe that (1) implies 

~(x)p(x, y) = Y~ ~(y)p(y, x) = c~(y), 
X X 

so e is a stationary measure for p, and furthermore satisfies the "detailed balance 
condition" 

~(x)p(x, y) = ~(y)p(y, x ) ,  
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i.e., in equilibrium the amount  of mass which goes from x to y in one step is equal to 
the amount  which goes from y to x. When this happens we say e(x) is a reversible 
measure and we have 

The Dirichlet Principle. Let A C Z a be a set with 0 CA and Z a - A  finite. The 
function which minimizes the "energy" Z e(x, y)(h(x)-h(y)) 2 among all the 

x y  

functions with h (0 )= l  and h (x)=0  for x s A  is h(x)=Px(To<Ta), where 
To = inf{n > 0 : X,  = 0} and TA = inf {n > 0 : X,  e A}, and furthermore the minimum 
energy is 2e(O)Po(T A < To +), where To + = inf {n > 1 : X,  = 0}. 

Proof See Griffeath and Liggett (1982, p. 885) or Liggett (1985, Sect. 2.6). 

The first part of this is the analogue of the classical Dirichtet principle, i.e., the 
function which minimizes ~ [VulZdx among all the functions (in a suitable class) 

o 
which are equal to f on OG is the harmonic function with those boundary values. 

The second part of the conclusion which gives the minimum energy is the more 
important  for it implies that as the minimum energy $0 as A$~b if and only if the 
process is recurrent [i.e., Po(Ta < TO+)--.0] and this gives us the following 

Comparison Theorem. If c~(x, y) < c~(x, y) for all x, y, then gis more recurrent that e, 
i.e., 

(a) if c~ is recurrent then ~ is, 
(b) if e is transient then ~ is 

[where we have used "e is transient" as shorthand for "the Markov Chain with 
transition probabilities p(x, y)= c~(x, y)/e(x) is transient"]. 

If we use the comparison theorem in d = 2  with e (x ,y )=  1 for t x - y l =  1 and 
c~(x, y) = 1 if (x, y) ~ "the infinite cluster in bond percolation" or any other subgraph 
of Z 2 we see that a random walk on such an object is recurrent. 

If we let e(x, y) = e x p ( -  V(x + y)/2) and compare with 

e(x,y) if y=x+_e i 
8i(x, y) = 0 otherwise ' 

we get 

Theorem 1. Suppose the random potential V is such that the vector valued process 
p(x) = (p(x, y), Ix - yJ = 1) is stationary and ergodic. A necessary condition for X ,  to 
be recurrent is 

Elog (p(x ,x+ei))  = 0  for i= 1 ... .  d. 
\ p ( x , x - e i ) J  

Proof. (q is a family of one dimensional RWRE. If Elog(p(x,x+ei)/p(x, 
x-e~))  40 ,  then it follows from Theorem A that c~ i is transient and from the 
comparison theorem that e is. 

I find it amazing that in the reversible case the recurrence condition in d > 2 is 
such a mindless generalization of the answer in d = 1. Theorem 1 should be thought 
of as the RWRE analogue of the following result for random walks. 
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Theorem 1'. I f  S.  is a random walk (i.e., p(x)= const) then a necessary condition 
for recurrence is 

i i E ( S . - S . _ O = O  for 1=1 .... d. 

In words Theorem 1' says that "in recurrent random walks the increments must 
have mean zero, while Theorem 1 says that the same thing is true for RWRE if we 
define the mean of the increments to be the vector 

E log (p(x, x + eO/p(x, x - e,)). 

With such a simple answer in the reversible case it is tempting to conjecture 
that Theorem 1 gives the answer in general, but we will not do so because we 
believe that this is not correct and that in d > 1 the condition for recurrence will not 
be just in terms of the one-dimensional distributions. 

3. Theorems 2 and 3 

Theorem 1 generalizes half of Theorem A to higher dimensions. Theorems 2 and 3 
give our extension of Theorem B. The first result makes precise a heuristic 
argument of Marinari et al. (1983) (which we discovered after we proved our 
theorem) so we will indicate their reasoning before we state our result. 

On p. 2 of their paper they say (at various places up and down the page): "we 
assume that V belongs to an ensemble which is invariant (at least for the large 
distance behavior) under the transformation V-* V*, where 

v * ( , ~ x ) -  v*(o) = ,~(V(x)  - v (0 ) )  ." 

"We choose the diffusion equation to be 

0c 
- -  = k V . J ,  J = V c + c V V ,  (*) & 

This is the continuous limit of a random walk on a lattice with nearest neighbor 
transition i-*j proportional to exp½[vi-v j]." 

"The diffusion (*) is chosen such that it has an equilibrium distribution 
c ~ exp(-  v) in a bounded box .... In the landscape created by the potential V in R N 
one expects that X(t) will occasionally go through a mountain pass and then 
rapidly relax to equilibrium in the intermediate valleys." 

"Other things being similar, the flux through the mountain pass is proportional 
to the density c=exp(-v) .  When distances are multiplied by 2 the height of the 
mountain pass is multiplied by U and the flux through the pass changes from 
g(1)exp(-v) to 0(2)exp(-Uv), where g0~) is a polynomial. The time scale is 
corresponding multiplied by g(1)/g(2) exp ( (U-  i) V). Conversely multiplication of 
time by z corresponds to multiplication of distances by a factor 2(z),,~Oogz)l/'." 

The argument in the last paragraph is not a proof and in fact their conclusion is 
not even believed by some. Fisher (1984) says, "We will argue that contrary to the 
logarithmic time dependence suggested in ref. 1 (Marinafi et al.), in any dimension 
greater than two the mean square displacement of random walks in such random 
environments will be linear in time." Fisher's conclusions are based on renormaliz- 
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ation group calculations, a frequently used and usually reliable tool of the modern 
physicist, but this time it turns out that Marinari et al. are right. 

Theorem 2. Suppose V(O)=0, V is continuous, has stationary increments, and 
satisfies 

(i) as a--* oo V(az)/a ~ converges weakly to a limit W(z), 
(ii) z ~ W(z) is continuous, 

(iii) with probability 1, G(e) - the  component of {z: W(z)< e} containing 0 is 
bounded for some e > 0 (which may depend on o ) .  

Then for a.e. environment 
(a) X n is recurrent, 
(b) sup IX,,l=O(logl/~n) that is for all e>0  there is a K <oo so that 

m~n 

lim sup P (sup IX,.I > K logl/~n~ =< e. 
n-*oo km<=n / 

Assumption (i) is clearly in the spirit of the assumption Marinari et al. made 
concerning the long distance behavior of V, and I do not think they would object to 
(ii): continuity is natural if you think of V as a mountain range. (iii) is a technical 
assumption and may look a little mysterious at first. In words it says that "any path 
to oo must rise to a height > e(co)> 0 at some point." A simple argument using 
scaling and translation invariance (see Sect. 4) shows that if W has increments 
which are stationary, ergodic and satisfy (i) and (ii), then (iii) can only fail if the same 
paths have no valleys, i.e., there is no open set G which contains a point xo with 
W(x) > W(xo) for all x ~ OG. This would not happen if by some miracle W was 
always a harmonic function, but in most other cases we expect this to be satisfied, 
and in any case the existence of valleys is necessary for the heuristic argument given 
above and our proof to be given below. 

Theorem 2 gives bounds on the movement of Xn. The next result tries to 
describe where X,  goes and how long it stays there. 

Theorem 3. Let re(a) = inf { W(z) : z e G(a)}, let a* = inf {a : a -  re(a) > 1 }, and let 
Tn(a) = inf  {m : V(Xm)/logn > a}. 

(c) I f  6 > 0 then as n ~  oo 

P(T.(a* + 6 ) < n ) ~ O ,  P ( T . ( a * - f ) < n ) - ~ l  . 

(d) log[{m < n : X,. = O} I/log n =~ a*, 
and (e) the joint distributions of the occupation times 

log]{m < T.(a): X., =xlogX/~n}[ 

converge to those of 

0 a x ~ G ( a )  

- W ( x )  x e G(a )"  

(d) and (c) sharpen the conclusions (a) and (h) in Theorem 1. (c) is the 
multidimensional analogue of Ritter's limit theorem for max{lX,,I : m < n}. (e) is 
our attempt to generalize Sinai's result. Its strength is that it tells us in great detail 
about the sites visited at times m__< T,(a). For example, it allows us to conclude that 
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T,(a) ~ n a '~("), extending the result in (c), but the last observation also points out 
the weakness of our result: a~m(a) is nonincreasing and discontinuous, so there 
are large gaps between the times we can say something about. 

We had hoped (and in fact claimed in some lectures we have given) to prove a 

result about the limiting behavior of the empirical distribution 1 t{m-<_ n" X,, ~- }]. 
n 

When a* - re(a*) = 1, it is a simple consequence of (c) and (e) in Theorem 3 that 

I 
- ] { m < n : X , , ~ ' } l ~ a z ,  (*) 
n 

where 6z denotes a point mass at Z the point indicated in Fig. 1. 
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Fig. 3 
holes 

Unfortunately Fig. 1 is not the only possibility. There is also Fig. 2. F rom (e) we 
see that X,  will leave the little valleys near zero at a time < n a* + b +~ with a* + b < 1 
but not exit G(a* + 6) until a time > n a* + ~- ~ with a* + c > 4. In the outcome drawn 
it is not hard to show that X"* will reach Z in time o(n) and then not escape from the 
corresponding valley until time n, so (*)  is again true. 

The last argument makes crucial use of the fact that in one dimension you have 
to go through the valley marked Z to get to the one marked Y. This is not true in 
two dimensions (see Fig. 3 this is a "top view" of something which from the "side 
view" would look like Fig. 2) and we have not been able to solve the problem of 
predicting which hole the process will be trapped in at time n. 

4. Examples 

In this section we will apply the abstract result in the last section to two examples. 
The first is the one dimensional case where we recover some earlier results. In the 
second we describe a family of examples which show that the behavior described in 
Theorem 2 can occur in any d < ec. 

Example 1. Suppose that the increments V(x + 3 ) -  V ( x -  3), x ~ Z are such that 
the central limit theorem holds in the form V(aO/al/2~aBt, where Bt, 
- o o  < t < oo is a (two-sided) Brownian motion. This holds in particular if the 
V(x+½)-V(x-½) are independent and have mean 0 and variance 0 < o  -2 
=E(V(x+~)-V(x-½))  2 < o  o, but the weaker statement in the last sentence is 
obviously all we need to conclude that (i) holds. 

It is well known (see, e.g., Durrett, I984b, Chap. 1) that Brownian motion has 
continuous paths and lim sup Bt = o% so (ii) and (iii) hold and we can conclude 

t---~ oO 

from Theorem 2 that (a) the corresponding RWRE is recurrent (a fact which also 
follows from Theorem A) and (b) sup [X"*[ =0(logZn). The last conclusion is 

almost Ritter's result. His theorem is one of the things we get from Theorem 3. Let 
T~ + = inf {t > 0 : Bt > a}, let T~- = sup {t < 0 : Bt > a}. It follows from (c) [with a little 
help from (e)] that 

1 (minX,, ,  max) ~ (T~;-, T~+). 
logn \,,=<, "*__<,) 
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Part (d) is a new result. It shows that there are approximately n :  visits to 0 by 
time n. If you notice that for ordinary random walk the number of visits to 0 is 

n 1/2 in d = 1 and ,-, (logn) in d = 2, and you like mysterious phrases you could say 
that "the effective dimension is 2 - 2 a * . "  

Finally part (e) gives the limiting behavior of the occupation times. With this 
result you can prove Sinai's (1982) theorem but there is no point. Schumacher 
(1984) has already proved better results. 

While Theorem 2 asserts the possibility of subdiffusive behavior in any d < oo, 
it is not complete until we show there is an example which satisfies the hypotheses. 

Example 2. Let V(x), x ~ R d be a Gaussian process with V(0)= 0, EV(x)= 0, and 
E V(x) V(y) = Ix:  + lyl # -  I x -  yl a, where 0 </~ < 2. 

A theorem of Schoenberg (1983) shows that the last expression is positive 
definite and hence a legitimate covariance function [-see Gangolli (1965) or Pitt 
(1978) for facts we will use below]. It is easy to see that V has stationary increments, 

E(V(x + z) - V(z)) (V(y + z) - V(z)) = Ix + zl ~ + [y + zl a -  Ix - yl # 

-Ix + z :  - I z :  + I x : - I z : -  [y + z :  + lyl a + 21zl a - - Ix :  + l y : - I x -  yl a • 

When fi = 1, V is called L6vy's multiparameter Brownian motion because if 
s,t>O, 

EV(sx) V(tx) = (s /x t)x, 

E V ( -  sx) V(tx) = O, 

so if Ixl = 1, V(tx) t ~ ( -  oo, oo) is a (two-sided) Brownian motion, and it follows 
from the observation above that V is a Brownian motion along any line. 

The V's described above are the random potentials which give rise (by the rules 
described in Sect. 2) to the RWRE with Xt "-~ (logt) 2//~. We will try to argue below 
that the behavior in the independent case will be similar, so to prepare for that we 
would like to observe that although the V fluctuates wildly, the individual p(x, y) 
have nonsingular distributions. Suppose without loss of generality x = 0, y = el, 

p(0, e l )=  e x p ( -  V(el/2)) / Z e x p ( -  V(y/2)) 
Y 

:[Zy exp(V(e l /2) -V(y /2) ) I -1  

> [2d max exp(V(e l /2) -  V(y(2))] -1 . 

Since the increments have normal distributions with mean 0 and variance i, it is 
easy to see that these are C, 7 e (0, oo) so that 

P (max (V(e l /2 ) -  V(y/2))>2) <Ce ,~2, 

and consequently 

P(p(O, e 1) < e) < C' e -  y'(log ~)2 = C" e- ~'log,, 

so E(p(0, el)-k) < oo for all k < oo. 
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The last computation shows that the (logt) 2/~ behavior does not come from a 
few bad bonds. The cause of this behavior will be painfully obvious in the proofs in 
Sect. 5, so we turn now to the tack of checking that V satisfies the hypotheses of 
Theorem 2. 

Brownian motion has the scaling property Bat d= at/2Bv A moments thought 
generalizes this to the examples above as V(ax) d= ap/2 V(x), so (i) holds with e = fl/2 
and W =  V. Levy (1948) has shown that (ii) holds [see also Gangolli (1965, p. 19) or 
Pitt (1978, p. 332], so that brings us to the task of checking (iii). 

Let ~= = {G(e) is bounded}. We will first show that P(g2~) > 0. To do this we wilt 
use the "local nondeterministic" property of these processes first proved by Pitt 
(1978, see Lemma7.1, p. 322). 

(1) There is positive constant C so that for all t e R u and any positive r < It[, 

Var(W(t) ] W(s), I t -  s[ >= r) = Cr e . 

Since the conditional distribution of W(t) given W(s), It-s[ >= r is Gaussian it 
follows that with positive probability W(t)< inf{W(s); I t-s]  = r}, and it follows 
from the stationary increments property that P(Y2,)> 0. 

To improve the last conclusion to P((2,)= 1 we observe that scaling implies 
P(Q,) is independent of e and d <  e implies (2~ C (2,, so all the F2, are the same 
(modulo null sets). The last situation is ridiculous if P(~2~) < 1, but to reach a 
contradiction easily we have to make matters worse. Let f2~(x)={G(g,x) is 
bounded}, where G(e, x) = the component of {y : W(y) < ~} containing x. If we let 
M(x) = sup{W(Ox) : 0 ~ [0, 1]}, then for ~ > M(x) we have G(~, 0) = G(e, x), and 
since the events O+(0) and O,(x) are independent of e it follows that (2+(0) = ~2~(x) for 
all x, 8. 

The last state of affairs is clearly impossible given (1). Let f2,,R(X ) = {G(e, x) 
< B(x, R)}. From (1) it follows that there is a b > 0 so that if Ix] > R + 1, 

P((2~, a(O) c~ F2~, ~ (x)) > 5P(/2~, R(O)). 

If Q --- P(~2~, R(O)) > 0 and R is so large that P(~2~, R(O)) ____ P(F2~(O))- ae/2, then we 
have a contradiction since 

P(O~(O)) = P(~2~.(O) vof2~(x)) 

=> P(O~, R(0)) + P((2~, R(0) c~ E2~,, (x)) 

__> n(f2~(O)) - ~Q- + ae > n((2~(0)). 
Z 

Having verified (iii) we can now apply Theorem 2 to conclude that the 
corresponding RWRE (a) is recurrent and (b) has 

sup [Xm] = O(log2/Pn). 

The last conclusion is in sharp contrast to (i) all previous regorous results in d > 1 
and to (ii) physicists' speculations that [for models in which the p(x) are 
independent] "the critical dimension is 2," so we would like to take a moment and 
explain (i) what makes our system different from those previously studied and (ii) 
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why we think that the independent case will have behavior similar to that found 
above. 

The answer to both questions can be found in the observation that the 
stationary measure for our process 

~(x) ~ 2d exp( - V(x)) ,~ exp( _+ Clxi ~) 

fluctuates violently in contrast to all previous results in dimension d > 1 in which 
we have e < e(x) < e-  1 (or in a few works moment conditions on c~ and ~-  1) and not 
coincidentally the process behaves asymptotically like Brownian motion (where 
stationary measure is constant). 

As for (ii) you can probably guess our answer given the last paragraph: we 
expect the stationary measure to fluctuate widely in the independent case. It is easy 
to see that this happens in 1 dimensional finite range systems, but deciding what 
happens in d > 1 seems like a difficult problem. 

5. Proofs of Theorems 2 and 3 

Having discussed our results at length, the time has come to prove them. The proof  
of Theorem 2 is quick and simple. Theorem 3 is proved by repeated application of 
the same ideas. 

We begin by observing that we have assumed V(aO)/a ~ ~ W(O) without really 
having explained what this means, so we will do that now: 0--, V(aO)/a ~ is a random 
element of C(R d, R) = continuous functions from R ~ to R. This space has a natural 
topology (uniform convergence on compact sets) and an associated notion of weak 
convergence (p, ~ p if and only if S f d # , - ~  f d #  for all bounded continuous f ) .  

Since the topology above can be generated by a complete metric on the space 
(exercise) it follows from a result of Skorokhod (1956, see Theorem 3.1.1, p. 281) or 
for a more recent treatment Dudley (1968) that we can construct I/1, l/~ . . . .  d V on 
the same probability space in such a way that with probability 1, 

1,1.(0 log 1/~ n)/log n ~ W( O) , 

uniformly on compact sets. 
Having traded our distributional convergence in for almost sure uniform 

convergence we are ready to get to work and do the 

Proof of Theorem 2. The key to the proof is the following 

(1) Upper Bound. Let A be a bounded open set in R d in which W(O)< a and 
W(O) = a for 0 e ~A. 

Let A, = {x ~ Z a : x/log~/'n ~ A}. If ~ > 0  and n is sufficiently large, then for 
x ~ An, 

Px( T+ > TA~,) ~ n-"  + w(x/Jog~/',)+ 3~. 

Proof. We say that V. is good on A if 

(i) sup -V"(O(l°gn) l/') W(O) 
O~A logn < e '  
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and 

(ii) I V.((x + y)/2) - V.(x)l < z logn 

when x ~ A. and f x -  Yl = 1. 
If we let ~b.(x) = 1 on A., = 0  on A~, and let 0A. = {(x, y) : x E A., y e A~}, then ¢. 

has energy 

D(¢.) = ½ Z c~(x, y) < ½ n -"  + ~IO A.I , 
(x, y) ~ OA. 

since it follows from (i) and (ii) that V.((x + y)/2) > ( a -  e) logn when x e A., y e A~. If 
A C { x :  Ixi]<R for l<_ i<d)  the last quantity is 

< ½n-" + ~ 2d(2R logl/~n)a, 

so we have 
(2) If 17, is good and n is sufficiently large, 

D(¢.) =<n -a+2~ . 

To translate this into an estimate on the hitting probability we observe that 
since ¢.(x)= 1 and ¢ . (y)=0 for y e A~., it follows from remarks in Sect. 2 that 

o~(x)Px( T + > Ta~,) < D(¢.) ~ n-~+ 2~, 

and we have 

so replacing 2d by 1 and dividing by e(x) gives the desired result. 
Let G(1 + 4e) = the component of {0 : W(O) < 1 + 4e} containing 0 and imitating 

the notation in (1), let 

G.( a) = { x e Zd : x /log l /~n ~ G(a)}. 

By hypothesis this is bounded and we have W(0)=I  +4e on 0G(I+4e), so 
applying (1) with x = 0 gives (for n sufficiently large) 

Po(T~- > T.C(1 + 4e)) < n -(1 +*) , 

where we have used T.~(1 +4e) to denote the hitting time of G~(1 +4e). 
Letting n-~oo shows Po(T~- < 0o)= 1 so X.  is recurrent, and we have proved 

(a). To prove (b) we observe that when the last inequality holds the number of 
returns to 0 before we exit A. is larger than N.  a random variable with P ( N .  > m) 
=(1-n-( I+~))  m, rn=0, 1, 2 . . . . .  

From the last formula it is easy to see that P ( N . > t n  (1 +'))-~e -t as n ~ ¢ c  so 
P(N. < n)~0 ,  and since each return to 0 requires at least 2 steps it follows that we 
have 

(3) Po(T:(l+4~)<2n)---*O as n ~ .  

Since Gn(1 +4~) = {x E Z d :x/logl/~n e G(1 +4s)} and G(1 +4e) is a bounded set we 
have proved (b). 
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Proof of Theorem 3. We begin by proving the first part of(c). To do this we begin 
by repeating the argument above with G(a*+60  replacing G(l+4e)  and 0 
replaced by a point chosen near a minimum of W in G(a*+ 60. 

Since W is continuous it follows that if n is large we can pick a point 
x* e G,(a* + 60 = {x e Z d : x/logl/~n e G(a* + 60} so that [W(x*/logl/~n) 
- r e ( a * +  e))l < 6. If V, is good on G(a*+ 60 (in the sense defined above) then it 
follows from (1) that we have 

P:<(T~ + > T~(a* + 60) N n-(a* + 6e)+ re(a* + e)+ 4e ~_~ n - ( 1  + o ,  

since (a* + e ) -  re(a* + e) > 1, and repeating the last part of the proof of (b) shows 

(4) Px..(T.~(a * + 60 < 2n)~0. 

To improve the last conclusion to the one in the first part of(c) we need to show 
that Po(Tx; < T,C(a * + 60) is close to 1. To do this we will prove the following more 
general result. 
(5) Let A be a bounded open set in R e in which W(O)<a and W(O)=a for 
0 e OA. Let K be a connected compact subset of A. There is a constant ? so that ifn 
is sufficiently large then for all x, y e K , =  {z e Za:z/log~/~n ~ K}, we have 

Px(Tr < TA~)>= I - n - ' .  

Proof. Now h.(y)= Pr(T~ < TA~) is the function which minimizes the energy in the 
class of functions which are = 1 at x and = 0 on A~, and the function ~. introduced 
in the proof of (t) has these properties so it follows from (2) that 

n -  ~ + z~ > D @ . )  > D(h . ) .  

To get a lower bound on D(h.) we let z k, 0 < k < m, he a self-avoiding path from 
Zo = X to zm = y (i.e., Iz k 1-- Zk[ = l, 1 <<- k <<- m and zi + z j if i =# j), and observe 

D(h,) > ~ cffz k_ 1, Zk) (h.(Zk) -- h,(Zk_ O) z 
k = l  

> (infc~(zk-i'zk)) k=l ~ (h"(Zk)--h"(Zk-O)2 

('n )) l > 1 fc~(Zk_l, Zk m 

by the Cauchy-Schwarz inequality, so recalling the definition of h. gives 

(I - P,( T x < TAg)) 2 ~ n -  a + 2,m/ inf e(z k_ l, Zk)" 

If A C {X : Ix~l < R for 1 < i < d} the last quantity is 

< n-~+a"/(inf e(Zk-i,Zk)), 

for n sufficiently large. 
Let 7 be chosen so that a -  37 > sup { W(z)" z e K}, and set e = 7/I0. It is easy to 

see that if n is sufficiently large, then for any x, y e K,  we can pick the path so that 

Zk)__>__/,/-a+ 2~ +5~ inf C~(Zk_ l, 
k 
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Plugging this result into the inequali ty above and taking square roots  proves the 
desired result. 

To  prove the second par t  of (c) we need to get an upper  bound  on N~(x)  = the 
number  of visits to x before X,, exists G,(a) = {x  ~ Z d : x / logl /~n ~ G(a)}. N o w  it is 
easy to see that  

(6) EoN"~(a) = Po( Tx < T,~(a))ExU"~(a) < ExN~(a)  

= 1/P~(T~ + > Td(a)) ,  

so we will get our  upper  bound  on the number  of visits by proving the following: 

(7) L o w e r  Bound.  Let  A be a bounded  open  set in R d in which W ( ~ ) <  a and 
W ( ~ ) =  a for  ~ ~ OA. If 5 > 0  and n is sufficiently large, then for all x ~ A. 
= {x  ~ Z d : x / logl /~n ~ A} .  We have 

T c'1 ~ ~ - a + W ( x / l o g  1/~n) - 4e P.(T~ + > "A,~ . . . .  

P r o o f  If V, is good  then V.((x + y)/2) < (a + e) log n for all x ~ A , ,  y e Z a, }x - y[ = 1, 
S O  

D(h) > n-(a + ~) ~., ( h ( x ) -  h(y))2 .  
(x, y) ~ cqAn 

To get a lower bound  on the r ight-hand side we use an idea from the p roof  of (5). If 
zk, 0 < k < m is a selfavoiding path  from x to some point  y e 8D., then 

D(h) > n -  (" + ~) ~ (h(zk) -- h(z k_ 1)) 2 , 
k = l  

and the sum minimized by having all the increments equal so 

D(h)  > n-(a + ~) (h(x)  - hCl2)) 2 = n -  (a + t : ) /Ht / ,  

gn 

if h(x)  = 1 and h(y) = 0. N o w  if A C {x : Ix~l < R for 1 < i _< d}, then m < (2R log~/'n) d, 
so we have 

(8) O(h) ~ n (a + e)(2 R 1ogl/e n) ~ n - (a + 2e) 

if n is sufficiently large. This is the lower bound  analogous to 

D(()n) =< n - a + 2e  (2) 

To  translate it into an estimate on the hitting probabili t ies we observe that  the 
min imum energy among  functions = 1 at x and = 0  on  A~ is ~. (x )P~(T  + > TA~,), 
which is > n  -(~+2~) by (8), so if V. is good  and n is sufficiently large then 

P~,( T + > TAg,) ~ n -  (a + 2~)/O~n(X ) >= n -  (a + 2,)/2 d exp(W(x/ log  1/~ n) + e log n) 

> n - (a  + 4~)  + w(x / log l /~n)  

proving (7). 
To  prove the second par t  of (c) now we apply (7) with A = G(a* - 5e) and find 

that  if n is sufficiently large then 

P.(T~ + > T,~(a * -- 5e)) > n ~- 1, 
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for x ~ G . ( a * - 5 ~ ) ,  so it follows from (6) that 

EoN"~(a*-  5e)__< n 1-~, 

and summing over x ~ Gn(a* - 5e) gives 

EoT~(a* - 5e) < n I -SIGn(a* - 5~)1. 

Now if G(a* - 5~) C {x : Ixil < R for 1 = 1 . . . .  d}, we have 

Eo 7~n (a* - 5e) < n 1 - ~(2R log 1/~ n)a, 

and the desired result follows from Chebyshev's inequality 

Po( T~C(a * - 5e) > n) ~ n - ' (  2 R  logl/~ n) ~ . 

To prove (d) we observe that the upper and lower bounds show that 

Px(T~- > Za~) =n-a+4~. 

Applying the observation above to A = G(a* + ~) we see that [to use the notation 
defined for (6)] 

EoNno(a , + ~) < n,*+ 5~, 

so it follows from Chebyshev's inequality that 

Po(N"o(a* + e) > n "*+ 6~)~0, 

or rearranging the inside inequality 

(9) Po(logN"o(a* + ~) > (a* + 6e) logn)-~0. 

To get a lower bound on the number of visits to 0 we let A = G(a* - e) and 
observe that the number of returns to 0 has a geometric distribution with success 
probability 1 - p . ,  where p. = P o ( T ~ - >  T,~(a* -- e)) that is 

P o ( N ~ o ( a * - ~ ) ~ k ) = ( 1 - p . )  k, k=0 ,  1,2 ..... 

(we are not counting the visit at time 0). 
Now (7) implies p.<__n -a*+5~, so we have 

Po(gno(a* - e) > n"*- 6~)__. 1, 

as n ~  co, and rearranging the inside inequality gives 

(10) Po(logN"o(a* - ~) >_ (a* - 6e) (log n) )~  1. 

To prove (e) we observe that the upper and lower bounds show that 

P ~( T + > TA~) = n -  ~ + w (~/,og,,~,) ± ,~ , 

so repeating the proof of (d) shows that 

(9") P~( logN~(a  + ~) > (a + 6e) logn)~O, 

(10') P ~ O o g N ~ ( a -  ~) > (a - 60 log n) ~ 1. 
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W i t h  (9') a n d  (103 in h a n d  all we have to do  is show tha t  if e is small ,  then  s ta r t ing  
f rom 0 we hit  x wi th  high p r o b a b i l i t y  before we exit  Gn(a*-e), but  this is a 
consequence  of  (5) so the p r o o f  is complete .  
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