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We study the two-dimensional first passage problem in which bonds have zero 
and unit passage times with probability p and 1 p, respectively. We prove that 
as the zero-time bonds approach the percolation threshold p~, the first passage 
time exhibits the same critical behavior as the correlation function of the 
underlying percolation problem. In particular, if the correlation length obeys 
~(p) ~ ]p-p, . I  ~', then the first passage time constant satisfies /x(p)~ Ip-p , . [ ' .  
At p,, where it has been asserted that the first passage time from 0 to x scales as 
Ixl to a power ~b with 0 < ~ < 1, we show that the passage times grow like 
log IxJ, i.e., the fluid spreads exponentially rapidly. 

KEY WORDS: First passage time; critical behavior; two dimensions. 

1. I N T R O D U C T I O N :  DEFINIT ION OF THE M O D E L  A N D  
S U M M A R Y  OF RESULTS 

First  passage percolat ion was in t roduced in 1965 by Hammers ley  and  

Welsh 11t to describe certain features of the t ranspor t  of fluids in a dis- 

ordered medium. Since that time, the first passage model  has been the sub- 

ject of much rigorous work (see, e.g., the m o n o g r a p h  of Smythe and 
Wie rman  (21 and  the review of Kesten(3)). Recently, there has also been a 

good deal of theoretical and  numerica l  analysis of first passage, with 
applicat ions ranging from conduc t ion  in neural  networks (41 to crack 

propagat ion  in solidsIS'6); such work has focused pr imari ly  on the develop- 
ment  of scaling theories and  the calculat ion of critical exponents.  

Here we present a (r igorous) character izat ion of the critical behavior  
of basic two-dimensional  first passage percolation.  Our  analysis allows us 
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to equate the critical exponent of the first passage time constant to that of 
the correlation length (should either exist) and to test the validity of certain 
scaling theories. 

1.1. Description of the Model 

The first passage model is defined by assigning independent and iden- 
tically distributed variables co h to the bonds of a regular lattice. Henceforth, 
we will take this lattice to be ~d, which is the set of all bonds between 
nearest neighbor points of the hypercubic lattice 2 't. In the fluid transport  
interpretation, o)h is regarded as the time it takes fluid to traverse the bond 
b, and hence is chosen to be nonnegative. 3 For a given realization of time 
coordinates, o) = {co~, Lb E ~ } ,  and a path/~:  x ~ y from site x to y of the 
lattice Y~, the path time is given by the sum 

t/,(co)= ~ c% (1.1) 
hE~, 

One can then calculate the .first passage time 

t.,_,(co)= inf t/,(co) (1.2) 
/ t  : x  ~ ) '  

where the infimum is over all paths from x to y on 2 'l in configuration co. 
The description of the model is completed by declaring that if a set S c  7/~l 
is "wet" at time t, then the wet set at time t + a includes the points y e E J 
for which t~,.(co)< cr for some x e S .  

The above description should be appropriate for systems with 
macroscopic flow where the pressure of the wet set is maintained at a con- 
stant value. This should be contrasted with other fluid transport  problems, 
such as invasion percolation, (7 9.3o~ where it is the flow rate that is held 
constant: one bond is crossed by the fluid per unit time. 

In the first passage problem, one is converned with how the first 
passage time scales with distance for asymptotically separated points. Let n 
denote both the point (n, 0,..., 0) e 2 ~ and the distance of this point from 
the origin. For  a large class of distributions of time coordinates p (see Sec- 
tion 2 for precise statements), it follows from the theorem of 
Kingman(l~ with probability one 

lim n lto,,(co)=-g(p) (1.3) 

where /~(p) is a constant (i.e., independent of realization) called the time 
constant. The simplest distribution that produces interesting behavior is the 

3 There has  also been some work  on models  with negat ive  co~, (see, e.g., Ref. 2, p. 75). 
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Bernoulli {0, 1 } distribution4: co b = 0 with probability p and cob = 1 with 
probability 1 -  p. This distribution is expected to provide a good descrip- 
tion of binary systems in which the passage times of the two constituents 
are separated by many orders of magnitude. For  this distribution, one can 
define the percolation threshold p,. as the point above which zero-time 
bonds form an infinite connected cluster with probability one. It can be 
shown/3.12 14.~7/ that the first passage model undergoes a transition at the 
percolation threshold in the sense that the time constant [which is here 
denoted by # (p ) ]  is zero for p >p,. and positive for p < Pc, 

1.2. Main  Results 

This paper concerns the behavior of the two-dimensional first passage 
time in the critical regime. Using rigorous finite-size scaling arguments, we 
relate the behavior of the first passage time to that of the connectivity 
function in the underlying Bernoulli percolation model. Bernoulli per- 
colation is defined simply by declaring the zero-time bonds to be 
"occupied" and those of unit time to be "vacant." The connectivity Zo,,(p) is 

r0,,(p) = Prob(0 connected to n by occupied bonds) (1.4) 

and the correlation length is defined by 

1/~(p)_= - lim n - l  log Zo,,(p) (1.5) 
n ~  

We prove that if ~(p) diverges with critical exponent v, 

~ ( p ) ~ [ p - - p ~ ]  " as P T P ,  (1.6) 

(in a sense to be made precise in Section 2), then the first passage time con- 
stant exhibits the critical scaling 

b t ( p ) ~ l p - p ~ l '  as PTP~ (1.7) 

The behavior (1.7) is rather surprising in light of general scaling 
theories, (4/ which relate the approach to criticality to the behavior of the 
first passage time at the critical point. It was assumed that at Pc the first 
passage time to, ' scales as a sublinear power ip of the distance n. The scaling 
theories then relate this assumed power to the deviation of the time con- 
stant exponent from v. The result (1.7) suggests that either the scaling 
theories are incomplete or that the behavior of to, ' at threshold has an 

4Another  interesting, but  somewhat  more difficult model  is the Bernoulli {1,00} 
distribution, l~ l I which has a variety of applications.(41 
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unanticipated form. Our next result demonstrates that the scaling theories 
are consistent in the sense that ~ = 0. In fact, we prove the (stronger) result 
that the first passage time scales logari thmical ly  with the distance: 

c 1 log n <~ E(ton ) <~ c 2 log n (1.8) 

where c l and Cz are positive, finite constants. Alternatively, Eq. (1.8) means 
that the wet set spreads exponentially rapidly at the critical point. 

The organization of this paper is as follows. In Section 2, we review 
the relevant backround material from first passage and Bernoulli per- 
colation. In Section 3, we present the proofs of our results and contrast 
these with theoretical predictions. 

2. P R E L I M I N A R I E S  

2.1. The T ime Constant  of  First Passage Percolat ion 

We consider a nonnegative distribution p of time coordinates ~ , ,  
which are assigned independently to each bond b e Bj. 

One of the fundamental results of first passage percolation is the 
existence of a t ime constant  # (p )  for sufficiently well-behaved distributions. 
The first results along these lines were proved by Hammersley and 
Welsh. I~l The strong result below follows from the Kingman subadditive 
ergodic theorem.t1~ 

T h e o r e m  2.1. Let to,, denote the first passage time between the 
origin and the point (n, 0 ..... 0). If the (nonnegative) distribution p has 
finite first moment,  then 

lim n -  It0, , 

exists and is equal to the (finite constant) 

lira E(n - ' to, ,)  - Ix(p) (2.1) 

with probability one (w.p.1) and in L I. 

The reader is referred to Kingman (l~ or Smythe and Wierman (2) for a 
proof of the subadditive ergodic theorem. 

R o m o r k .  It is worth noting that the condition of Theorem 2.1 can be 
weakened, ~ls) but some moment  condition on p is actually required, t16~ 

The quantity/~(p) will be a focus of our attention. That its behavior is 
nontrivial is a consequence of the following result of Hammersley and 
Welsh.f~ I 
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Proposition 2.2. Unless p is a degenerate distribution, /~(p)< 
E(cob). 

It turns out that the problem is of particular interest if the distribution 
p has an atom at zero. Of course, the simplest such example is the Ber- 
noulli distribution with p ( 0 ) = p > 0  and p ( 1 ) = l - p ;  in this case, we 
denote the time constant by /z(p). For  the two-dimensional system with 
this distribution, Kesten (12) proved that # ( p ) >  0 if and only i fp  < p,.  The 
analogous result for higher dimensions was recently proved by 
Kesten(13'14); the statement # ( p ) >  0 if p < Pc was also derived in Ref. 17. 

In this paper, we will be examining the critical behavior of the time 
constant #(p) in two dimensions. One of our principal results is that ~l(p) 
is closely related to the correlation length ~(p) of Bernoulli percolation; 
hence, we review some basic properties of the latter. 

2.2. The Correlat ion Length of Bernoull i  Percolat ion 

The Bernoulli bond percolation model I18) is defined by independently 
taking each bond b e ~3 a to be occupied with probability p or vacant with 
probability 1 - p; thus, there is a strict analogy with the first passage model 
if we say that the occupied and vacant bonds have zero and unit passage 
times, respectively. In any dimension d >  1, the percolation model is 
known (18) to undergo a transition at a nontrivial value of p, denoted by p~, 
called the percolation theshold: i fp  <Pc,  then there are only finite connec- 
ted clusters of occupied bonds w.p.1, while for p > p,,  there is an infinite 
connected cluster of occupied bonds w.p.1. 

Another characterization of the percolation threshold is in terms of the 
asymptotic behavior of a quantity called the connectivity: the connectivity 
between the origin and the point n, denoted by ro,,(p), is the probability, at 
occupation density p, that these two points are connected by a path of 
occupied bonds. It is not hard to show that 

lim n 1 log ro,,(p) = sup n 1 log ro,,(p) (2.2) 
n>~ 1 

we denote this limit by -1 /~ (p ) ,  and call ~(p) the percolation correlation 
length. From the right-hand side, we can see that 1/4 provides the a priori 
bound: 

"c0,,(p) ~< e -"/r (2.3) 

uniformly in n. From this, it is clear that whenever ~(p) < o% p < p~.. The 
converse of this statement (which is not nearly as obvious) follows from the 
work of Hammersley,/19~ combined with a "coincidence of critical points 
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result," the latter having been proved by Kesten/2~ for d =  2 and by Aizen- 
man and Barsky I2~) in general dimension. The properties of ~(p) are sum- 
marized in the following. 

Proposit ion 2.3. The quantity ~-~: [0, p,.] --+ [0, ov] is a mono- 
tone decreasing, continuous function of p which is zero at p,. 

The continuity cited above was established by Grimmett. I22t 
The above results imply that ~(p) exhibits critical behavior as p T p,. in 

the sense that it diverges continuously. Critical scaling is a much more 
subtle issue; it includes the assumption that ~(p) diverges with a power 
law: 

~(P) ~ IP - P , i -"  as p ~ p,. (2.4) 

No statement along the lines of (2.4) has been rigorously established; 
nevertheless, one hopes that (2.4) is true, at least in the sense that 

lim log ~(p)/log I P -  P,] ~ - v  (2.5) 
pT p~ 

exists. Ultimately, we will obtain upper and lower bounds on #(p) such 
that if either kt(p) or ~(p) exhibits critical scaling in the sense just 
described, then the other quantity will also exhibit this scaling. 

Although the correlation length as described above is well-defined, it is 
also useful to have at one's disposal a physical realization of a "relevant 
length scale." It turns out, in a sense which will be made precise below, that 
the following notion is equivalent to the decay rate of correlations: 

Let F3,L=--{x~ZdhO<~Xl<~L,O<<.x2,...,Xd<~3L ) be a 1 + 3  J - I  rec- 
tangle of scale L, and define K3.L(P) to be the probability, at density p, that 
the x~ = 0 and x~ = L faces of F3, L are connected by a path of occupied 
bonds that lies inside r3,L. Obviously, if ~ (p )<  ~ ,  then as L ~  ~ ,  
K3,L(P) --+ 0. However, for L's that are of order unity (and p's that are not 
too small), K3,L(P) will be of order one. Evidently, then, we can locate a 
first scale L~(p) where K3.L,(p) has become "small" by some fixed criterion. 

The connection between these two versions of a length scale has been 
demonstrated in Ref. 23. 

Proposit ion 2.4. In any dimension d>~2, there is a constant c(d) 
such that if Ll (p)  is the largest length scale satisfying K3.L~(p ) >~ c(d), then 
L~(p) diverges as p T P,.. In particular, there are finite, positive constants 
a~(d) and a2(d) such that 

al LI (p )  >~ ~(p) >~ [azLl (p)  ]/[1 + log L~(p)] (2.6) 
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For a proof of Proposition 2.4, see Ref. 17 or Ref. 23. 
An immediate consequence of this proposition is that if LI(p) exhibits 

critical scaling [in the sense of Eq. (2.5)] with critical exponent v, so does 
~(p) and vice versa. Other notions of a correlation length in terms of the 
moments of cluster sizes have been described in Ref. 24, and, for the case of 
two dimensions, these have recently been shown (25t to be equivalent to 
~(p) in the sense of Proposition 2.4. 

Many of the above results are established by considering the models 
that are dual to bond percolation. These are defined as follows: consider 
the lattice S *  that is obtained by shifting 2 a half a unit in each coordinate 
direction. Elementary cells (bonds, plaquettes, cubes, etc.) are defined on 
7/J* in the usual fashion. Observe that the ( d -  1 )-cells of 7/J* are in one-to- 
one correspondence with the bonds of yd; the ( d -  1 )-cell that is transverse 
to a given bond b is called the dual cell of b. We declare the dual cell of b 
to be occupied whenever b is vacant. Connectedness on Zd, occurs 
whenever occupied (d-1) -ce l l s  share a (d-2) -d imens ional  element of 
their boundary. 

The crossing events described above can be conveniently reformulated 
from the point of view of the dual models. In particular, when there is no 
left right crossing of the r3, L by occupied bonds, then the left and right 
faces of the rectangle are separated by a connected sheet of occupied dual 
cells. Of special interest is the case of two dimensions, where the dual of 
bond percolation is again bond percolation. Here, the above statement 
amounts to the fact that either there is a left-right crossing of r3, L by 
occupied bonds or there is a top-bot tom crossing by occupied dual bonds. 

Some final results concerning box crossings, which will prove useful 
later, can be derived on the basis of the bounds of Russo ~26~ and Seymour 
and Welsh. (27~ The proof and our subsequent applications are, however, 
strictly two-dimensional. 

Proposition 2.5. For all L and p, define RL(p) to be the 
probability of a left-right crossing of the square rL=  {xeZd] ]xil <~L/2}. 
Then, in d =  2, there is a continuous and monotone increasing function 
FRsw(X) on [0, 1] satisfying FRsw(0)= 0 and FRsw(1)= 1 such that 

K3,L(p) >~ FRsw(RL(p)) 

For a proof of Proposition 2.5, see either Ref. 26 or Ref. 27. 
From these so-called RSW bounds and the remarks about dual 

crossings, it is clear that in two dimensions, one may also define a 
correlation length in terms of square crossings, rather than "short-way" 
rectangle crossings. Indeed, there is a constant A > 0, explicitly computable 
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in terms of c(d= 2) of Proposition 2.4 and FRsw of Proposition 2.5, such 
that if we define 

Lo(p) = sup{LIRL(p) ~> A } (2.7) 

then Lo(p) obeys the bound (2.6). The correlation length Lo(p) will be used 
in a good deal of our subsequent analysis. 

3. F IRST P A S S A G E  IN T H E  C R I T I C A L  R E G I M E  

In this section, we consider the critical behavior of two-dimensional 
first passage percolation. First, we focus on the approach to criticality, as 
characterized by the behavior of the time constant/~(p) as p T P~. Thus, in 
Sections 3.1 and 3.2, we will take p<p~ and derive lower and upper 
bounds on/~(p) in terms of the percolation correlation length. Assuming a 
power law divergence of ~(p), this gives us the critical exponent for the 
time constant. 

Scaling theories of first passage percolation suggest that the time con- 
stant critical exponent is related to the exponent describing the first 
passage time as a function of distance at the critical point. In Section 3.4, 
we determine, exactly, the "power law" that describes this critical behavior. 
Although the value of both this and the time constant exponent are rather 
surprising, they do satisfy the relationship predicted by the scaling theory. 

3.1. A L o w e r  Bound 

First, we will give a lower bound on #(p) that holds in all dimensions. 
Essentially equivalent results have already appeared elsewheret~3'14'17~; 
however, the authors feel that the proof presented here has a certain 
esthetic appeal. 

T h e o r e m  3.1. Let #(p) be the first passage time constant for the 
Bernoulli system on the bond lattice B d. Then Vp e (0, 1), 

/~(p)~>sup [~ l(p+~)]/llog(~/1-P)I 
e > 0  

Proof. The result follows easily if one observes that the Bernoulli dis- 
tribution at density p + e can be generated in two independent steps: two 
sets of occupiers are independently distributed on the bonds of the lattice, 
the first at density p and the second at density e l ( l - p ) ,  with the 
stipulation that if a b e Bj  is "hit" by at least one occupier, then it is 
occupied. Since the two steps take place independently, the overall 
occupation probability is p + (1 - p) e/(1 - p) = p + e; furthermore, the 
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events are independent from bond to bond. Evidently, then, this is the Ber- 
noulli process at density p + e. 

The way we make use of the above observation is first to determine 
the value of ton in the density p configuration generated after step one. 
Then we have learned that there is a path from the origin to n that uses 
only to, ' vacant bonds. If all these to~ bonds were to become occupied on 
the second stage an event that occurs with probability 
[ e / ( 1 -  p)]"~'--there would be a zero-time path between the origin and n. 
Using this observation and then the Jensen inequality, we have 

Probp+~:(to, , = 0) ~> ~ Probp(t0, , = k)[e/(1 - p ) ] k  

k - O  

= Ep{exp[ -[ log(e/1 - p)] to,,] } 

~> exp[ -[ log(a/1 - p )[ Ep( to,z) ] (3.1) 

Noting that the left-hand side of (3.1) is just to,,( p + a), and recalling (2.1) 
and (2.2), we obtain 

- ~ ( p  + a) ~> log to,,( p + a) >~ -]log(a/1 - P)I Ep(to,,) 

which is the desired result. | 

One expects that the time constant has power law behavior: 

i ~ ( p ) ~ l p - p c l  ~ as P T P ~  (3.2) 

again at least in the sense that 

lim log ~t(p)/log IP - Pc[ = 0 (3.3) 
PTPc 

exists. Given this, Theorem 3.1 implies the following. 

C o r o l l a r y  3.1. If ~(p) and #(p) exhibit scaling of the form (2.5) 
and (3.3), respectively, then 0~< v. 

3.2. An Upper Bound for d = 2  

The question of upper bounds on the time constant is somewhat more 
delicate than that of lower bounds; as of yet, we can only analyze the 
problem in two dimensions. In the exponent language of Eq. (3.3), the 
result of this subsection is 0/> v for d =  2; combined with the result of the 
previous subsection, this determines the two-dimensional critical exponent 
0 (should it exist). 
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T h e o r e m  3.2. Let #(p) be the first passage time constant for the 
Bernoulli system on the bond lattice ~2 and let Lo(p) be the "correlation 
length" defined by Eq. (2.7). Then gp e [0, 1 ], 

#(p)<-..~Lo~(p) 

where K < oe is a constant independent of p. 

Remark. By Proposition 2.4 and the remarks following it [cf. 
Eqs. (2.6) and (2.7)], Theorem 3.2 may also be expressed in terms of the 
conventional percolation correlation length ~(p): 

#(p) ~< K'~-~(p) (3.4) 

Proof. Consider the first passage problem in the region 
{x~ ~21 Ix~l~< 1/2T}, which we will call the "time tunnel" of width T. Let 
us denote by t0rn(co) the first passage time between the origin and n along 
bonds that lie exclusively in the tunnel in configuration co. It is easy to see 
that 

# r (p)  _ lim n - ~tor,, (3.5) 
n ~ o o  

exists and is a (T-dependent) constant w.p.1. Since the tunnel times are not 
exceeded by the full-space times, we have 

#r (p)  >~ #(p) (3.6) 

In fact, it is straightforward to show that the above inequality is strict for 
all 7', and that Vp e [0, 1] 

lim #r (p )  = g(p) (3.7) 
f ~ : w c  

I t  is also useful to consider the end-to-end tunnel t imes--that  is, the 
minimum time from the line x2 = 0 to the line x2 = n along paths inside the 
tunnel. We will denote this first passage time by r Note that r to, ' . to, ' can differ 
from t~, by at most an n-independent constant. Thus, # r (p)  is also the time 
constant for tot,. 

Observe that the end-to-end tunnel times have a geometric inter- 
pretation. Indeed, let us represent each unit time bond as a barrier on the 
dual lattice. Then, the time along each path is simply the number of 
barriers crossed by the path. Furthermore, the travel time between any two 
sets is just the number of independent surfaces (formed by barriers) that 
separate the sets. For  our purposes, this means we can compute t~,, by 
counting the number of independent surfaces in the tunnel that separate 
x~ = 0 from x2 = n. See Fig. 1. 
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Given Eq. (3.7), one may wonder if there is some scale T at which 
#r (p)  becomes a good approximation to #(p). A partial answer is provided 
by considering the time tunnel of width Lo(p) [i.e., the tunnel with 
T = L o ( p ) ] ,  where Lo(p) is the "correlation length" defined by Eq. (2.7). 
We begin with the special case in which n is also exactly Lo(p), i.e., the case 
of a "square tunnel." In order to estimate E(t~o), we first note that by the 
definition of Lo(p), t ~  ~ is zero with probability at least as large as A: 

Prob(t~0~> 1)~< 1 A (3.8) 

To estimate the probability that toc 0c~ exceeds two, we use the identity 

Prob(tL~0 ~> 2) = Prob(tL)~0 ~> 1 ) Co Lo Prob( toLo >~ 2 l tOCo >~ l ) (3.9) 

Given that t~.0 ~> 1, there must be a dual surface (of barriers) that separates 
the left side of the square from the right. The conditioning is "satisfied" 
when we further condition on the leftrnost such surface. (That is, we 
enumerate all possible surfaces ,9 a and further condition on the event that 
some s e ,90 is the leftmost surface. These events form a disjoint partition of 

L 0  the event that toc o>~ 1.) When the leftmost surface happens to be s, the 
situation to the left of s is quite complicated--life must be arranged in such 
a way that no surface lying to the left of s is fully formed. On the other 
hand, things to the right of s are relatively simple; indeed, they are virtually 
unconditioned. Now, regardless of which surface s is, it is evident that, con- 
ditioned on s being the leftmost surface, the probability of getting another 
barrier ( - t h e  probability of getting a barrier strictly to the right of s) is 
smaller than the probability of having found a barrier in the first place. All 
this means that 

Prob(tL~o >~ 21 Co IOL o > 1 ) <~ 1 -- A (3.10) 

o r  

P r o b ( t ~  0~> 2) ~< (1 --A)2 (3.11) 

The type of argument used to derive (3.11) has been formulated in a 
general context by van den Berg and Kesten. 1311 
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Repeating the above line of reasoning, we have 

Prob(t~s ~> n ) ~< (1 - -d)"  

so that 

(3.12) 

E(t~s ~ Prob(t~2.0>~n)~< (1 - A ) / A  (3.13) 
n - -  1 

The above argument can be applied with only slight modification to 
the ful tunnel. Indeed, let us consider n = NLo and estimate IONLo.LO We will 
call the region {xljLo <<. x2 <~ (j + 1 ) Lo, I Xll ~< Lo/2 } the j th  segment of the 
tunnel. Starting at the left end of the first segment, we must estimate the 
number of independent barrier surfaces that separate us from the right end 
of the Nth segment. Now, any surface that separates the left side of the tun- 
nel from the right "starts" on the top of the tunnel (xl = +L0/2) and 
"ends" on the bottom (xl = Lo/2 ). The bottom point of a surface will be 
called its anchor point. 

We will denote by Q/ the number of independent barriers that are 
anchored in the j th  segment regardless of their dependence (or lack 
thereof) on surfaces anchored outside the j th  segment. It is evident that 

N 
L0 tONLo~< Y, Qj (3.14) 

/ =  1 

since the right-hand side may overcount the total number of independent 
barriers, as well as counting those barriers whose top endpoint lies to the 
right of the j th  segment. Now, the Qj are a stationary sequence and only 
mildly dependent; indeed, Prob(QjlQk)-*Prob(Qj) exponentially as 
] j - k l  ~ oo. We thus have 

ixL~ lira N ltCo 
= "ONLo -- E(QI) (3.15) 

N ~ o ~  

Let us estimate E(Q1). To this end, let aL denote a square annulus of 
inner diameter L and outer diameter 3L, and let AL(p) denote the 
probability, at density p, that there is a circuit of zero-time (or "occupied") 
bonds in the annulus. It is easy to obtain a lower bound on AL(p) similar 
to the Russo-Seymour-Welsh bound (Proposition 2.5). Indeed, 

AL(p) >~ g(RL(p)) (3.16) 

with g = [FRsw]. (4) Note that g has the same properties as FRsw; i.e., g is 
strictly increasing with g ( 0 ) = 0  and g(1)=  1. Using the definition (2.7) of 
Lo, we have 

ALo(p ) >~ g(A) > 0 (3.17) 
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Now imagine that the j th  segment of the tunnel coincides with the top 
central square of the annulus aL0 (see Fig. 2). Clearly, if there is a circuit of 
zero-time bonds in aco, then there are no barriers anchored in the j th  
segment. Thus, Q / = 0  with probability exceeding ALo(P). From (3.17) and 
the reasoning used to derive (3.13), it is easy to see that 

E ( Q , ) ~  [1- -g(zf ) ] /g(A)  (3.18) 

Using this, as well as (3.15) and (3.6), we have 

#(p) <~ { [1 - g(d) ]/g(3) } L o ' (p) (3.19) 

as claimed. | 

If one assumes power law behavior of # and ~ with exponents 0 and v, 
Theorem 3.2 immediately implies 0>~v. However, together with 
Theorem 3.1, we have a stronger result. 

C o r o l l a r y  3.2. If either #(p) or ~(p) has critical scaling of the form 
(3.3) or (2.5), then both quantities obey their respective scalings and 0 = v. 

Corollary 3.2 should be contrasted with real space renormalization- 
group calculations on first passage ~5~ and Monte Carlo simulations on 
related models, t6~ from which it was concluded that 0 " > "  v. 

jth segment 
- -  L o - ~ 

.i )i i..'+)"@))i i.'.'..)i. 

_j) 
Fig. 2. 
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Corollary 3.2 is also somewhat unexpected in light of the predictions 
of general scaling theories for models of this sort (see, e.g., Ref. 4). The con- 
clusions of these theories are summarized below. 

3.3. An Inter lude on Scaling Theory  

Scaling theory relates the approach to criticality, as here described by 
the presumed behavior 

# ( p ) ~  I p -  p~L ~ as p~(p~ (3.20) 

to the behavior at G ,  as here characterized by the scaling of to,, with dis- 
tance. On the basis of the fact that E,(t0,,) scales linearly with distance for 
P < Pc and tends to a constant for p > p~, the behavior at Pc is assumed to 
be of the form 

Ep(to,,)~n ~ at p=p~ (3.21) 

with some power ~ < 1. The scaling theory also assumes a particular scal- 
ing form of Ep(to,,) away from Pc, from which it is predicted f4/ that 

0=v(1  - 0 )  (3.22) 

We emphasize that three separate assumptions are required for the 
above conclusion, namely the two power law behaviors (3.20) and (3.21), 
and the scaling form of E,(to,,) from which (3.22) follows. 

If one accepts this theory, then our Corollary 3.2 implies ~, = 0. This is 
initially rather disconcerting, since one anticipated a power law behavior of 
E,(to,,) at threshold. 

3.4. Behavior  at the Crit ical  Point 

In this subsection, we prove that Ep(to,,) does not have power law 
behavior at p,; indeed, it scales as a logarithm. Note that this implies that 
the fluid spreads exponentially fast at threshold. Given the result of the 
previous subsection, this exponential spreading, though mildly alarming, 
shows that the scaling theory is at least self-consistent. 

T h e o r e m  3.3. Let to, ' be the first passage time between the origin 
and n in the Bernoulli system on ~2. There exist finite, positive constants 
k~ and k2 such that at the critical density p~, 

kl log n ~ Ep,(to~,) <~ k2 log n 

for all n large enough. 
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Proof. We will first establish a roughly equivalent result, which is 
worthwhile in its own right, and from which the above statement can be 
readily obtained. Consider the box F,, -= {x ~ 22]0  ~< Ix1 l, Fx2l ~< n} of width 
2n, centered at the origin (see Fig. 3). Let us define J,, to be the minimum 
time required for fluid that starts at the origin to wet the outside of F,,. We 
will show that there are nontrivial constants b~ and b2 such that 

bl logn<<.Epc[~r ~<b2 log n (3 .23)  

It is obvious that the lower bound in (3.23) implies the lower bound in 
the statement of the theorem. Not  surprisingly, this is the bound that is 
more easily obtained. 

The crucial ingredient in our analysis is that, at the critical point, there 
is no relevant length scale left in the problem. In particular, the occurrence 
of events that characterize the system at distances smaller than the 
correlation length are now typical at all scales. To illustrate this point, 
observe that (essentially by definition) the probabilities RL(p~), K3,c(pc), 
and AL(p,) are of order one, independent of L. (By this, we mean that 
there are nontrivial upper and lower bounds on these probabilities that are 
uniform in L. Of course, for the self-dual model, RL(p~) = 1/2, but this fact 
plays no role in our analysis.) 

1 X 2 

. ' "  . . . . .  " " ' .  F 
. �9 -. 

" , ,  

i 

' " . . . .  
' � 9  

] , 
.i Origin 

'... 
" . . .  

(]JN_ I :..: 
..." 

Od N 

(n,O) 

Xl 

Fig. 3. 
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From this, and a bit of elementary construction, it is possible to show 
that, on all scales, the event of a barrier surface separating the inner and 
outer boundaries of the annulus aL (i.e., the event that there is no zero-time 
path from FL to / '3L) Occurs typically, but is not terribly likely (see, e.g., 
Ref. 17 or Ref. 28). Indeed, denoting the probability of this event by 
A*(p~.), we have 

~* <~A*(pc)<~ ~ (3.24) 

with the ~* nontrivial. This almost immediately implies the lower bound of 
Eq. (3.23). 

To see this, divide F,, into N disjoint annular regions as~,..., aj~, each 
one enclosing the one before. In particular, take Jk = 3k and choose N so 
that 3N+1>~ n >~ 3N; the setup is illustrated in Fig. 3. The time to the boun- 
dary of L,, is not less than the number of these annuli that possess a circuit 
of dual barriers. Hence, 

E[Y,,,] >~ N~* >~ (~*/log 3)log n (3.25) 

which implies the lower bound of (3.23) with b I = ~*/log 3. 
The spirit of the upper bound in (3.23) is similar, but the estimate is 

somewhat more intricate. Since we are after an upper bound on J,,,, we will 
focus on the slightly longer times Y.z,~- Geometrically speaking, we are 
trying to estimate the number of independent rings of barriers that separate 
the origin from the outside of F,, (or FjN+~ ). Any such ring may visit several 
of the annuli a j,,..., ajN+~. Let us start a classification scheme for rings 
according to which annulus is the largest one visited. Therefore, we will call 
the outer reach of a ring the largest of our annuli visited by the ring, and 
denote by V k the number of independent rings surrounding the origin 
whose outer reach is the annulus a j r  Evidently, 

N+I  

~JN~I ~ ~ Vk (3 .26)  
k 1 

All that is needed is a bound on Ep,[ V~] that is independent of k. To 
this end, we define in an analogous fashion the inner reach of a ring, and 
call V~, 0 ~<j'~< k, the number of independent rings with outer reach k and 
inner reach k - j .  (Thus, for example, V~k is the number of independent 
rings that stay completely in the kth annulus.) It should be clear that 

k I 
Vk <~ ~ V~ (3.27) 

} ~ 0 
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Now it is not especially difficult to show that 

Prob( V~k > n) <~ [~* ]" (3.28) 

and, in fact, to derive a similar result for the V)<. The total estimate, 
however, is begining to deteriorate, so we need to control the V j 
systematically for large values ofj.  We will prove that, uniformly in k, there 
is an r/< 1 and an H <  oo such that 

E(V/~) <~ H~ / (3.29) 

Asserting that this has already been done for j = 0 and 1, suppose then that 
j>~ 2. In order to form a barrier surface encircling the origin that starts at 
the kth layer and penetrates inward to the ( k - j ) t h  layer, it has to be the 
case that none of the intervening annuli contain a complete circuit con- 
sisting of the opposite type (zero-time) bonds. The probabilities of these 
"zero-time circuits" are uniformly bounded below by ~ - g ( A ) ,  where A is 
some uniform lower bound on RL(p,) ,  and g is the function defined in the 
proof of Theorem 3.2. Furthermore, the events in different annuli are 
independent; we thus have 

from which we obtain 

P rob (V/~>0)4 (1  a) / -1  (3.30) 

E(J~) ~< [,~(: -~)3 - '  ~/ (3.31) 

for j>~ 2. This implies the estimate promised in Eq. (3.29). 
Adding everything up, we find 

k 1 

E(v~)~< }2 E(vb  
j - 0 

<~H~ t//= H [ I  -~/ ]  I (3.32) 
/ 

Thus, if n is larger than one, we have that E p , [ J , ]  is bounded by a con- 
stant times log n: 

Ep, [3,,,] ~< b2 log n (3.33) 

Already (3.33) gives a reasonably complete picture of the critical point 
behavior. To obtain the result in the statement of the theorem, we need 
only one more ingredient. The first passage time to,, is, of course, the num- 
ber of barrier rings that separate the origin from n. Since there cannot be 
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any infinite surfaces at the critical point, (29) these rings fall into one of two 
categories: (1) those rings that surround the origin but do not enclose n; 
(2) those rings that surround n, but do not enclose the origin. By trans- 
lation symmetry, the expected number of rings in category 1 ) equals that of 
category 2). Thus, we will go to work on 1) and double the answer when 
we are through. 

Now, the time J,,, is already a good estimate on the number of rings in 
either category. However, we have so far failed to count the rings with an 
outer reach extending beyond the box F,, (orFju§ (see Fig. 4). These 
rings can be handled by more or less the same procedure that was used 
earlier. First, it is noted that any such ring with an outer reach of AjN+k 
must cross of order k scales in order to avoid surrounding n. Thus, both the 
probability of observing such a ring and the expected number of such rings 
is exponentially small in k. Summing over all k, this yields only a finite (i.e., 
n-independent) contribution. When twice this is added to twice the estimate 
of Eq. (3.33), one obtains the desired result. | 
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Note oddoO in proof: H. Kesten has recently informed us that he 
can now prove a stronger form of Theorem 3.1, namely that Vpe(0, 1), 
there is a c(p) > 0 such that g(p) >~ c(p) ~ ~(p). 
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